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Convergence of Tseng-type self-adaptive algorithms for
variational inequalities and fixed point problems

YONGHONG YAO1, NASEER SHAHZAD2 and JEN-CHIH YAO3

ABSTRACT. In this paper, we present a Tseng-type self-adaptive algorithm for solving a variational inequality
and a fixed point problem involving pseudomonotone and pseudocontractive operators in Hilbert spaces. A
weak convergent result for such algorithm is proved under a weaker assumption than sequentially weakly
continuous imposed on the pseudomonotone operator. Some corollaries are also included.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖. Let C be
a nonempty closed and convex subset of H .

In this paper, our work is closely related to a classical variational inequality:

(1.1) find x† ∈ C such that 〈f(x†), x− x†〉 ≥ 0,∀x ∈ C,
where f : H → H is a nonlinear operator. Here, use Sol(f, C) to denote the solution set of
(1.1). Throughout, assume that Sol(f, C) is nonempty.

Variational inequalities are theoretically and algorithmically applied in various fields
like particular cases convex optimization problems ([3, 4]), linear and monotone comple-
mentarity problems ([2]), equilibrium problems ([28]), fixed point problems ([27]), etc. For
more information, please refer to [5, 11, 20, 21, 24].

A survey of algorithms for variational inequalities can be found in [12]. If f(x) =
∇F (x) for some convex function F : C → C, variational inequality (1.1) is equivalent
to minC F (x). This fact indicates a natural extension of the projection gradient algorithm
([17, 18, 19, 22]) for the constrained optimization, i.e., an iterate with the form

un+1 = projC [un − τnf(un)](1.2)

where τn > 0 is stepsize and projC means the orthogonal projection from H onto C.
This algorithm (1.2) is convergent under quite strong assumptions, in which f must

be strongly monotone and Lipschitz continuous. To avoid these difficulties, Korpelevich
suggested in [16] an extragradient algorithm of the form

(1.3)

{
vn = projC [un − τnf(un)],

un+1 = projC [un − τnf(vn)].

Extragradient algorithm (1.3) affords an available method for solving a classical monotone
variational inequality. Consequently, extragradient algorithm (1.3) was applied by many
scholars, who implemented it in a variety of forms; see, e.g., [7, 9, 13, 14, 15, 23]. Especially,
Ceng, Teboulle and Yao [6] established the weak convergence of extragradient algorithm
for solving the pseudomonotone variational inequality and fixed point problem under the
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additional hypothesis of the sequentially weak-to-strong continuity of f . However, this
additional hypothesis is not satisfied even for the identity operator. Recently, Vuong [26]
weaken this hypothesis to the sequentially weak-to-weak continuity of f .

At the same time, an inevitable drawback of extragradient algorithm is the need to cal-
culate two projections onto the closed convex set C in each iteration. For solving this flaw,
as a transformation of extragradient algorithm (1.3) is the following remarkable procedure
introduced by Tseng [25]

(1.4)

{
vn = projC [un − τnf(un)],

un+1 = vn + τn[f(un)− f(vn)].

Here, a natural problem arises: could we extend Tseng’s algorithm for solving some com-
mon problems related to variational inequalities under some weaker conditions imposed
on f?

It is our main purpose in this paper that we further investigate iterative algorithm
for solving pseudomonotone variational inequality and fixed point problem of pseudo-
contractive operators under the weaker assumption imposed on f . Our method bases
on Tseng’s algorithm and self-adaptive technique which is independent of the Lipschitz
constant of f . We prove that the proposed algorithm weakly converges to a common so-
lution of the pseudomonotone variational inequality and of the fixed point problem for
the pseudocontractive operator g.

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H . Let {un} be a
sequence in H . un ⇀ z† denotes the weak convergence of un to z†. ωw(un) denotes the
set of all weak cluster points of {un}, i.e., ωw(un) = {u† : ∃{uni

} ⊂ {un} such that uni
⇀

u†(i→∞)}. Recall that an operator f : H → H is said to be
• monotone if

〈f(x)− f(x†), x− x†〉 ≥ 0,∀x, x† ∈ H.
• strongly monotone if there exists some constant γ > 0 such that

〈f(x)− f(x†), x− x†〉 ≥ γ‖x− x†‖2,∀x, x† ∈ H.
• pseudomonotone if

〈f(x†), x− x†〉 ≥ 0 implies that 〈f(x), x− x†〉 ≥ 0, ∀x, x† ∈ H ;

• L-Lipschitz continuous if there exists some constant L > 0 such that

‖f(x)− f(x†)‖ ≤ L‖x− x†‖, for all x, x† ∈ H .

• sequently weakly continuous if xn ⇀ x̃ implies that f(xn) ⇀ f(x̃).
Recall that an operator g : C → C is said to be pseudocontractive if

‖g(x)− g(x†)‖2 ≤ ‖x− x†‖2 + ‖(I − g)x− (I − g)x†‖2

for all x, x† ∈ C.
Here, we use Fix(g) to denote the fixed points set of g.
For fixed x ∈ H , there exists a unique x† ∈ C satisfying ‖x−x†‖ = inf{‖x− x̃‖ : x̃ ∈ C}.

Denote x† by projC [x]. The projection projC has the following basic property: for given
x ∈ H ,

〈x− projC [x], y − projC [x]〉 ≤ 0, ∀y ∈ C.(2.5)

Applying this characteristic inequality, we have the following equivalence relation

x† ∈ Sol(f, C)⇔ x† = projC [x† − τf(x†)],∀τ > 0.(2.6)
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In a Hilbert space H , we have

(2.7) ‖αu+ (1− α)u†‖2 = α‖u‖2 + (1− α)‖u†‖2 − α(1− α)‖u− u†‖2,
∀u, u† ∈ H and ∀α ∈ [0, 1].

Lemma 2.1 ([28]). Let C be a nonempty, convex and closed subset of a Hilbert space H . Assume
that g : C → C is an L-Lipschitz pseudocontractive operator. Then, for all ũ ∈ C and u† ∈
Fix(g), we have

‖u† − g[(1− µ)ũ+ µg(ũ)]‖2 ≤ ‖ũ− u†‖2 + (1− µ)‖ũ− g[(1− µ)ũ+ µg(ũ)]‖2,

where 0 < µ < 1√
1+L2+1

.

Lemma 2.2 ([27]). Let C be a nonempty, convex and closed subset of a Hilbert space H . Let
g : C → C be a continuous pseudocontractive operator. Then,

(i) Fix(g) ⊂ C is closed and convex;
(ii) g is demi-closedness, i.e., un ⇀ z̃ and g(un)→ z† imply that g(z̃) = z†.

Lemma 2.3 ([8]). Let C be a nonempty closed convex subset of a real Hilbert space H . Let
f : H → H be a continuous and pseudomonotone operator. Then x† ∈ Sol(f, C) iff x† solves the
following dual variational inequality

〈f(u†), u† − x†〉 ≥ 0, ∀u† ∈ C.

Lemma 2.4 ([1]). Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{xn} ⊂ H be a sequence. If the following assumptions are satisfied

(i) ∀x̃ ∈ C, limn→∞ ‖xn − x̃‖ exists;
(ii) ωw(xn) ⊂ C,

then xn ⇀ u ∈ C.

3. MAIN RESULTS

In this section, we first propose a Tseng-type algorithm for solving pseudomonotone
variational inequality (1.1) and the fixed point problem for the pseudocontractive operator
g by using a self-adaptive stepsize search. Let C be a nonempty closed convex subset of a
real Hilbert space H . Let f, g : H → H be two nonlinear operators. Let {γn} and {µn} be
two sequences in (0, 1). Let α ∈ (0, 1] and δ ∈ (0, 1) be two constants.
Algorithm 3.1. Initialization: Take u0 ∈ C and τ0 > 0. Set n = 0.
Step 1. (Fixed point step) For known un, compute

vn = (1− γn)un + γng[(1− µn)un + µng(un)].(3.8)

Step 2. (Tseng-type step) For known τn, compute

wn = projC [vn − τnf(vn)],(3.9)

and

un+1 = (1− α)vn + αwn + ατn[f(vn)− f(wn)].(3.10)

Step 3. (self-adaptive step) Compute

τn+1 =

{
min

{
τn,

δ‖wn−vn‖
‖f(wn)−f(vn)‖

}
, if f(wn) 6= f(vn),

τn, if f(wn) = f(vn).
(3.11)

Step 4. Set n := n+ 1 and return to step 1.

Remark 3.1. If at some step wn = vn = projC [vn − τnf(vn)], by the equivalence relation
(2.6), we deduce that vn ∈ Sol(f, C).
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Remark 3.2. If choose α = 1 in (3.10), then Step 2 can be rewritten as{
wn = projC [vn − τnf(vn)],

un+1 = wn + τn[f(vn)− f(wn)],

which is exactly Tseng’s method.

Remark 3.3 ([3]). By (3.11), we know that τn is monotonically decreasing. Moreover, by
the κ-Lipschitz continuity of f , we deduce that δ‖wn−vn‖

‖f(wn)−f(vn)‖ ≥
δ
κ , which together with

(3.11) implies that τn ≥ min{τ0, δκ}. Thus, the limit limn→∞ τn exists, denoted by τ †. It is
obviously that τ † > 0 which ensures τn strictly greater than zero at each iterative step.

Remark 3.4. If f(wn) = f(vn), then the next iterate un+1 is independent of the stepsize
τn. In this case, we can choose τn+1 to be any number between τ † and τn.

In the sequel, we assume that the operator f satisfies the following property (F): For
given a sequence {un} ⊂ H , if un ⇀ u ∈ H and lim infn→∞ ‖f(un)‖ = 0, then f(u) = 0.

Remark 3.5. It is obviously that if f is sequentially weakly continuous, then f satisfies the
above property (F).

Next, we prove the convergence of Algorithm 3.1.

Theorem 3.1. Assume that f is a pseudomonotone and κ-Lipschitz continuous operator satisfying
property (F). Assume that g is a pseudocontractive and L-Lipschitz continuous operator. Suppose
that Γ := Sol(f, C) ∩ Fix(g) 6= ∅ and 0 < γ < γn < γ < µn < µ < 1√

1+L2+1
(∀n ≥ 0). Then

the sequence {un} generated by Algorithm (3.10) converges weakly to some point in Γ.

Proof. Let p ∈ Γ. By the property (2.5) of projC and (3.9), we have

〈wn − vn + τnf(vn), wn − p〉 ≤ 0.(3.12)

Since p ∈ Sol(C, f), 〈f(p), wn − p〉 ≥ 0. This together with the pseudomonotonicity of f
implies that

〈f(wn), wn − p〉 ≥ 0.(3.13)

Combining (3.12) and (3.13), we obtain

〈wn − vn, wn − p〉+ τn〈f(vn)− f(wn), wn − p〉 ≤ 0.

It follows that
1

2
(‖wn − vn‖2 + ‖wn − p‖2 − ‖vn − p‖2) + τn〈f(vn)− f(wn), wn − p〉 ≤ 0,

which yields that

(3.14) ‖wn − p‖2 ≤ ‖vn − p‖2 − 2τn〈f(vn)− f(wn), wn − p〉 − ‖wn − vn‖2.

By (3.10), we have

(3.15)

‖un+1 − p‖2 = ‖(1− α)(vn − p) + α(wn − p) + ατn[f(vn)− f(wn)]‖2

= ‖(1− α)(vn − p) + α(wn − p)‖2 + α2τ2
n‖f(vn)− f(wn)‖2

+ 2α(1− α)τn〈vn − p, f(vn)− f(wn)〉
+ 2α2τn〈wn − p, f(vn)− f(wn)〉.
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From (2.7) and (3.15), we derive

(3.16)

‖un+1 − p‖2 = (1− α)‖vn − p‖+ α‖wn − p‖2 − α(1− α)‖vn − wn‖2

+ α2τ2
n‖f(vn)− f(wn)‖2 + 2α2τn〈wn − p, f(vn)− f(wn)〉

+ 2α(1− α)τn〈vn − p, f(vn)− f(wn)〉.
According to (3.14) and (3.16), we obtain

(3.17)

‖un+1 − p‖2 ≤ ‖vn − p‖ − α(2− α)‖vn − wn‖2 + α2τ2
n‖f(vn)− f(wn)‖2

+ 2α(1− α)τn〈vn − wn, f(vn)− f(wn)〉
≤ ‖vn − p‖ − α(2− α)‖vn − wn‖2 + α2τ2

n‖f(vn)− f(wn)‖2

+ 2α(1− α)τn‖vn − wn‖‖f(vn)− f(wn)‖.

Thanks to (3.11), ‖f(wn)− f(vn)‖ ≤ δ‖wn−vn‖
τn+1

. It follows from (3.17) that

‖un+1 − p‖2 ≤ ‖vn − p‖ − α(2− α)‖vn − wn‖2 + α2δ2 τ2
n

τ2
n+1

‖wn − vn‖2

+ 2α(1− α)δ
τn
τn+1

‖vn − wn‖2

= ‖vn − p‖ − α
[
2− α− αδ2 τ2

n

τ2
n+1

− 2(1− α)δ
τn
τn+1

]
‖vn − wn‖2.

(3.18)

By Remark 3.3, we deduce

lim
n→∞

[
2− α− αδ2 τ2

n

τ2
n+1

− 2(1− α)δ
τn
τn+1

]
= 2− α− αδ2 − 2(1− α)δ > 0.

So, there exists θ > 0 and N such that

2− α− αδ2 τ2
n

τ2
n+1

− 2(1− α)δ
τn
τn+1

≥ θ

when n ≥ N .
In combination with (3.18), we get

‖un+1 − p‖2 ≤ ‖vn − p‖ − αθ‖vn − wn‖2.(3.19)

Set tn = (1− µn)un + µng(un) for all n ≥ 0. By (3.8) and (2.7), we obtain

(3.20)

‖vn − p‖2 = ‖(1− γn)(un − p) + γn[g(tn)− p]‖2

= (1− γn)‖un − p‖2 + γn‖g(tn)− p‖2

− γn(1− γn)‖un − g(tn)‖2.
Applying Lemma 2.1, we derive

‖g(tn)− p‖2 = ‖g[(1− µn)un + µng(un)]− p‖2

≤ ‖un − p‖2 + (1− µn)‖un − g(tn)‖2.
(3.21)

Combining (3.20) and (3.21), we obtain

‖vn − p‖2 ≤ ‖un − p‖2 + (γn − µn)γn‖un − g(tn)‖2,(3.22)

which results, together with (3.19), that

(3.23) ‖un+1 − p‖2 ≤ ‖un − p‖2 − (µn − γn)γn‖un − g(tn)‖2 − αθ‖vn − wn‖2,
which can be transformed into

(3.24) (µn − γn)γn‖un − g(tn)‖2 + αθ‖vn − wn‖2 ≤ ‖un − p‖2 − ‖un+1 − p‖2.
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From inequalities (3.23) and (3.24), we can conclude the following conclusions:
(r1): The sequence {‖un − p} is monotonically decreasing and hence limn→∞ ‖un − p‖

exists. Thus, the sequence {un} is bounded.
(r2): limn→∞ ‖un− g(tn)‖ = 0 and so limn→∞ ‖vn−un‖ = limn→∞ γn‖un− g(tn)‖ = 0.
(r3): limn→∞ ‖vn−wn‖ = 0 and thus limn→∞ ‖f(vn)− f(wn)‖ = 0 due to the Lipschitz

continuity of f .
By the boundedness of the sequence {un}, we obtain the following results:

(r4): the sequence {vn} is bounded by (3.22) and γn < µn.
(r5): the sequence {wn} is bounded because of ‖wn‖ ≤ ‖vn‖+ τn‖f(vn)‖ by (3.9).

Since f is κ-Lipschitz continuous, we have

‖un − g(un)‖ ≤ ‖un − g(tn)‖+ ‖g(tn)− g(un)‖
≤ ‖un − g(tn)‖+ κµn‖un − g(un)‖.

It follows that

‖un − g(un)‖ ≤ 1

1− κµn
‖un − g(tn)‖ → 0,

and thus,

lim
n→∞

‖un − g(un)‖ = 0.(3.25)

By virtue of (3.10) and (r3), we have

lim
n→∞

‖un+1 − vn‖ = 0.(3.26)

Next, we show that ωw(un) ⊂ Γ. Pick up any p† ∈ ωw(un). Then, there exists a subse-
quence {uni

} of {un} such that uni
⇀ p† as i→∞. Consequently, vni

⇀ p† and wni
⇀ p†

based on (r2) and (r3), respectively.
On account of (3.25) and Lemma 2.2, we acquire that p† ∈ Fix(g). Now, we only need

to prove that p† ∈ Sol(f, C). In view of (2.5) and wni
= projC [vni

− τni
f(vni

)], we achieve

〈wni
− vni

+ τni
f(vni

), wni
− u〉 ≤ 0,∀u ∈ C.

It follows that

(3.27)
1

τni

〈vni
− wni

, u− wni
〉+ 〈f(vni

), wni
− vni

〉 ≤ 〈f(vni
), u− vni

〉, ∀u ∈ C.

Noting that from (r3), we have limi→∞ ‖vni − wni‖ = 0. Then, by (3.27), we deduce

lim inf
i→∞

〈f(vni
), u− vni

〉 ≥ 0.(3.28)

Next, we consider two possible cases.
Case 1. lim infi→∞ ‖f(vni

)‖ = 0. By vni
⇀ p† and f satisfying property (F), we deduce

that f(p†) = 0. Consequently, p† ∈ Sol(f, C).
Case 2. lim infi→∞ ‖f(vni

)‖ > 0. In terms of (3.28), we obtain

lim inf
i→∞

〈(f(vni
))0, u− vni

〉 ≥ 0,(3.29)

where (f(vni))
0 means the unit vector of f(vni), that is, (f(vni))

0 =
f(vni

)

‖f(vni
)‖ (note that for

each i ≥ 0, f(vni
) 6= 0, otherwise, vni

∈ Sol(f, C) and p† ∈ Sol(f, C)).
Thanks to (3.29), we can choose a positive real numbers sequence {εi} satisfying εi → 0

as i→∞. For each εi, there exists the smallest positive integer Ni such that

〈(f(vni))
0, u− vni〉+ εi ≥ 0, ∀i ≥ Ni.
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It follows that

〈f(vni
), u− vni

〉+ εi‖f(vni
)‖ ≥ 0, ∀i ≥ Ni.(3.30)

Set v̂ni =
f(vni

)

‖f(vni
)‖2 . Thus, we have 〈f(vni), v̂ni〉 = 1 for each i. From (3.30), we deduce

〈f(vni), u+ εi‖f(vni)‖v̂ni − vni〉 ≥ 0, ∀i ≥ Ni.(3.31)

Since f is pseudomonotone, it follows from (3.31) that

〈f(u+ εi‖f(vni
)‖v̂ni

), u+ εi‖f(vni
)‖v̂ni

− vni
〉 ≥ 0, ∀i ≥ Ni.(3.32)

Note that limi→∞ ‖εi‖f(vni)‖v̂ni‖ = limi→∞ εi = 0. Thus, taking the limit as i → ∞ in
(3.32), we obtain

〈f(u), u− p†〉 ≥ 0.(3.33)

Applying Lemma 2.1 to (3.33), we conclude that p† ∈ Sol(f, C).
Finally, we show that the entire sequence {un} converges weakly to p†. As a matter of

fact, we have the following facts in hand:
(i) ∀p ∈ Γ, limn→∞ ‖un − p‖ exists;

(ii) wω(un) ⊂ Γ;
(iii) p† ∈ wω(un).

Thus, by Lemma 2.4, we deduce that the sequence {un}weakly converges to p† ∈ Γ. This
completes the proof. �

Remark 3.6. It is obviously that monotonicity implies pseudo-monotonicity. Hence, our
theorem holds when the involved operator f is monotone.

Based on Algorithm 3.1 and Theorem 3.1, we can obtain the following algorithms and
the corresponding corollaries.
Algorithm 3.2. Initialization: Take u0 ∈ C and τ0 > 0. Set n = 0.

Step 1. For known un and τn, compute

wn = projC [un − τnf(un)],

and

un+1 = (1− α)un + αwn + ατn[f(un)− f(wn)].

Step 2. Compute

τn+1 =

{
min

{
τn,

δ‖wn−un‖
‖f(wn)−f(un)‖

}
, if f(wn) 6= f(un),

τn, else.

Step 3. Set n := n+ 1 and return to step 1.

Corollary 3.1. Assume that f is a pseudomonotone and κ-Lipschitz continuous operator sa-
tisfying property (F). Suppose that Sol(f, C) 6= ∅. Then the sequence {un} generated by Al-
gorithm 3.2 converges weakly to some point in Sol(f, C).

Algorithm 3.3. Initialization: Take u0 ∈ C and τ0 > 0. Set n = 0.
Step 1. For known un, compute

un+1 = (1− γn)un + γng[(1− µn)un + µng(un)].

Step 2. Set n := n+ 1 and return to step 1.

Corollary 3.2. Assume that g is a pseudocontractive and L-Lipschitz continuous operator. Sup-
pose that Fix(g) 6= ∅ and 0 < γ < γn < γ < µn < µ < 1√

1+L2+1
(∀n ≥ 0). Then the sequence

{un} generated by Algorithm 3.3 converges weakly to some point in Fix(g).
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4. APPLICATION TO COMPUTING DYNAMIC USER EQUILIBRIA

In this section, we apply Algorithm 3.2 to compute dynamic user equilibria ([10]).
Let P be set of paths in the network. W be set of O-D pairs in the network, Qij be fxed

O-D demand between (i, j) ∈ W , Pij be subset of paths that connect O-D pair (i, j), t be
continuous time parameter in a fxed time horizon [t0, t1], hp(t) be departure rate along
path p at time t, h(t) be complete vector of departure rates h(t) = (hp(t) : p ∈ P), Ψp(t, h)
be travel cost along path p with departure time t, under departure profile h, vij(h) be
minimum travel cost between O-D pair (i, j) for all paths and departure times.

Assume that hp(·) ∈ L2
+[t0, t1] and h(·) ∈ (L2

+[t0, t1])|P|. Define the effective delay
operator Ψ : (L2

+[t0, t1])|P| → (L2
+[t0, t1])|P| as follows:

h(·) = {hp(·), p ∈ P} 7→ Ψ(h) = {Ψp(·, h), p ∈ P}

The travel demand satisfaction constraint satisfies

Qij =
∑
p∈Pij

∫ t1

t0

hp(t)dt,∀(i, j) ∈ W.

Then, the set of feasible path departure vector can be expressed as

Λ = {h ≥ 0 :
∑
p∈Pij

∫ t1

t0

hp(t)dt,∀(i, j) ∈ W} ⊂ (L2[t0, t1])|P|.

Recall that a vector of departures h∗ ∈ Λ is a dynamic user equilibrium with simultaneous
route and departure time choice if

h∗p(t) > 0, p ∈ Pij ⇒ Ψp(t, h
∗) = vij(h

∗), for almost everyt ∈ [t0, t1].(4.34)

Note that (4.34) is equivalent to the following variational inequality ([10])

〈Ψ(h∗), h− h∗〉 ≥ 0,∀h ∈ Λ.(4.35)

Based on Algorithm 3.2, we have the following algorithm.
Algorithm 4.1. Initial path flow u0 ∈ (L2[t0, t1])|P| and τ0 > 0. Set n = 0.
Step 1. For known un and τn, compute the effective path delays Ψp(t, un) and

wn = projΛ[un − τnΨ(un)].

Step 2. Compute the effective path delays Ψp(t, wn) and

un+1 = (1− α)un + αwn + ατn[Ψ(un)−Ψ(wn)].

Step 3. Compute

τn+1 =

{
min

{
τn,

δ‖wn−un‖
‖Ψ(wn)−Ψ(un)‖

}
, if Ψ(wn) 6= Ψ(un),

τn, else.

Step 4. Set n := n+ 1 and return to step 1.
If the delay operator Ψ is Lipschitz continuous and pseudomonotone, then we can ap-

ply Algorithm 4.1 to compute dynamic user equilibria. It should be pointed out that Algo-
rithm 4.1 requires two evaluations of the delay operator Ψ. It is clear that this procedure
is the most costly step in the implementation of Algorithm 4.1.

Acknowledgements. Yonghong Yao was partially supported by the grant TD13-5033.
Jen-Chih Yao was partially supported by the Grant MOST 106-2923-E-039-001-MY3.



Variational inequalities and fixed point problems 549

REFERENCES

[1] Abbas, B., Attouch, H.; Svaiter, B. F. Newton-like dynamics and forward-backward methods for structured
monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161 (2014), 331–360.

[2] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer,
Berlin 2011.

[3] Bot, R. I.; Csetnek, E. R.; Vuong, P. T. The forward-backward-forward method from continuous and discrete
perspective for pseudo-monotone variational inequalities in Hilbert spaces. Eur. J. Oper. Res. 287 (2020),
49–60.

[4] Cai, X.; Gu, G.; He, B. On the O(1/t) convergence rate of the projection and contraction methods for varia-
tional inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57 (2014), 339–363.
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