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A two-level based genetic algorithm for solving the
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ABSTRACT. The soft-clustered vehicle routing problem (Soft-CluVRP) is a relaxation of the clustered vehicle
routing problem (CluVRP), which in turn is a variant of the generalized vehicle routing problem (GVRP). The
aim of the Soft-CluVRP is to look for a minimum cost group of routes starting and ending at a given depot
to a set of customers partitioned into a priori defined, mutually exclusive and exhaustive clusters, satisfying
the capacity constraints of the vehicles and with the supplementary property that all the customers from the
same cluster have to be supplied by the same vehicle. The considered optimization problem is NP-hard, that is
why we proposed a two-level based genetic algorithm in order to solve it. The computational results reported
on a set of existing benchmark instances from the literature, prove that our novel solution approach provides
high-quality solutions within acceptable running times.

1. INTRODUCTION

The Vehicle Routing Problem (VRP) is one of the best-known, intensively studied and
important combinatorial optimization problems, being investigated in the literature for a
long period. In 1959, Dantzig and Ramser [6] studied a fuel distribution problem which
led to the VRP. Since then, the VRP received a lot of attention, many results being obtained
concerning the mathematical formulations of the problem and the solving methods (ex-
act, heuristic, metaheuristic and hybrid algorithms). Several variants and extensions of
the VRP have been considered in the literature. For further information on VRP and its
variations, we refer to Mor and Speranza [19].

In the last two decades, a lot of attention was focused on VRP variants defined on
graphs whose nodes (customers) are divided into a given number of subsets, called clus-
ters. The first problem of this type was considered by Ghiani and Improta [14] and it
was called the Generalized Vehicle Routing Problem (GVRP). GVRP looks for a minimum
cost collection of routes beginning and finishing at the depot in such a way that every
cluster is visited exactly once, the incoming and the outgoing customer at every visited
cluster is the same, and the total demands for any route does not surpass the vehicle ca-
pacity. Different mathematical models of the GVRP based on integer programming and
mixed integer programming have been introduced by Bektas et al. [3] and Pop et al. [23].
Due to the complexity of the problem, heuristic and metaheuristic algorithms have been
proposed for dealing with the GVRP. See for more information in [20, 21, 24]. The clus-
tered vehicle routing problem (CluVRP) is a version of the GVRP in which we look for
minimum cost group of routes beginning and finishing at the depot, satisfying the capac-
ity constraints, visiting all the customers, except the depot, precisely once, and with the

Received: 04.02.2021. In revised form: 19.10.2021. Accepted: 26.10.2021
2010 Mathematics Subject Classification. 90C27, 68T20.
Key words and phrases. vehicle routing problem, soft-clustered vehicle routing problem, genetic algorithms, two-

level solution approaches.
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supplementary condition that once a vehicle reaches a cluster, all the customers belong-
ing to that cluster are visited before the vehicle departs. As far as we know, the CluVRP
was first considered by Pop et al. [23]. The current literature regarding the CluVRP is
rather scarce: Pop et al. [23] presented three mathematical models of the problem based
on mixed integer programming, Battara et al. [2] described exact algorithms for solving
small and medium instances of the problem, Vidal et al. [32] proposed a hybrid meta-
heuristic algorithm, Defryn and Sörensen [7] developed a heuristic algorithm obtained by
combining two variable neighborhood search algorithms and Exposito et al. [9] and Pop
et al. [26] described two different approaches obtained by splitting the problem into two
sub-problems.

The soft-clustered vehicle-routing problem (Soft-CluVRP) is a relaxation of the CluVRP
obtained by relaxing the condition that once a vehicle reaches a cluster, all the vertices
belonging to that cluster are visited before the vehicle departs, by the following soft-
clustered constraint: all the customers belonging to the same cluster must be supplied
by the same vehicle. This variant was first considered by Defryn and Sörensen [7] in-
spired by a real application in parcel delivery in which the customers are scattered in
geographical regions called clusters, to simplify the sorting process. The same authors [7]
developed a heuristic approach that solves the Soft-CluVRP problem by combining two
variable neighborhood search algorithms. Recently, Hintsch and Irnich [16] provided an
exact solution approach based on branch-and-cut and Heßler and Irnich [15] described a
branch-and-cut algorithm which solved problems of small and medium sizes. For deal-
ing with larger instances, Hintsch [17] developed a large multiple neighborhood search
algorithm.

Recently, Posada et al. [29, 30] and Sabo et al. [31] investigated a new variant of the
GVRP in which the nodes of the graph may belong to one or more clusters.

These variants of the VRP belong to the class of generalized network design problems.
These problems naturally extend the classical combinatorial optimization problems, hav-
ing the following main features: the nodes of the graph are divided into a predefined
number of clusters and, when taking into consideration the feasibility constraints of the
initial problem, these are expressed in relation to the clusters rather than to individual
nodes. For more information on this class of problems, we refer to [4, 5, 8, 11, 13, 22, 28].

The aim of our paper is to present a novel solution approach for solving the Soft-
CluVRP, namely a two-level based genetic algorithm, obtained by splitting the problem
into two smaller subproblems: a macro-level subproblem and a micro-level subproblem.
The macro-level subproblem looks for determining the clusters supplied by the same ve-
hicle, using the corresponding macro graph (i.e. the graph achieved after substituting all
the nodes of a cluster with a supernode defining that cluster), while the scope of the micro-
level subproblem is to find the order in which customers are visited by each vehicle. The
second subproblem reduces to finding a collection of minimum cost hamiltonian tours
visiting all the customers corresponding to the clusters supplied by one vehicle. These
hamiltonian tours are calculated optimally using the Concorde TSP solver [1]. The com-
putational results obtained by testing our solution approach on the benchmark instances
from the specific literature are reported and interpreted.

The remaining of our paper is organized as follows: in Section 2, we define the Soft-
CluVRP, the two-level based genetic algorithm for solving the investigated problem is
presented in Section 3, the computational experiments and the obtained results are dis-
played in Section 4 and finally, the conclusions are presented in Section 5.
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2. DEFINITION OF THE SOFT-CLUSTERED VEHICLE-ROUTING PROBLEM

We consider G = (V,E, c) an undirected, connected and weighted graph characterized
by the set of nodes V = {v0, v1, v2, ..., vn}, the set of edges E, defined as follows:

E ⊆ {{vi, vj}| vi, vj ∈ V, i 6= j ∈ {0, 1, 2, ..., n}}.
and the cost function c : V → R+ which assigns to every edge e = (u, v) ∈ E of the graph,
a positive number c(e) = ce = c(u,v) ∈ R+, called the cost of the edge e.

The edges are divided into two categories: edges defined between nodes that pertain
to the same cluster, known as intra-cluster edges, and edges defined between nodes that
pertain to different clusters, known as inter-cluster edges.

The nodes v1, ..., vn represent the customers and the node v0 represents the depot. The
whole set of nodes {v0, v1, ..., vn} is divided into k + 1 mutually exclusive nonempty sub-
sets, called clusters, denoted by C0, C1, ..., Ck, and satisfying the following conditions:

1. V = C0 ∪ C1 ∪ ... ∪ Ck

2. Cl ∩ Cp = ∅ for all l, p ∈ {0, 1, ..., k} and l 6= p.
3. C0 = {v0}

The total cost of one route is the total amount incurred by all the edges pertaining
to that specific route. Every customer vi (i ∈ {1, ..., n}) has an established non-negative
demand di to be shipped or picked up. There are m homogeneous vehicles; every one of
them has a capacityQ and with the aim of ensuring feasibility, one assumes that di ≤ Q for
each i ∈ {1, ..., n}. Moreover, the subsequent assumption is made: every vehicle carries
out one route, one particular cluster is invariably visited by only one single vehicle and
one vehicle can visit more than one cluster if the restrictions regarding its capacity are
satisfied.

The soft-clustered vehicle-routing problem (Soft-CluVRP) aims in identifying the mini-
mum cost group of routes visiting all the customers in such a way that the following
constraints hold:

• every route begins and finishes at the depot;
• all the customers belonging to a certain cluster have to be supplied by exactly one

vehicle;
• the sum of the demands of the visited nodes by a route does not surpass the vehi-

cle capacity, Q.
An illustrative scheme of the Soft-CluVRP defined on an undirected graph with 25

nodes divided into 8 clusters, denoted by C0, C1, ..., C7, where C0 represents the depot,
and a feasible solution of the problem are presented in Figure 1. We can observe that the
feasible solution of the Soft-CluVRP defined on Figure 1 consists of two routes.

The routes satisfying the above conditions are called soft-clustered routes. Consequently,
a feasible solution of the Soft-CluVRP is made up by a group of soft-clustered routes.

Evidently, the Soft-CluVRP is an NP -hard optimization problem because it contains
the classical Capacitated Vehicle Routing Problem as a special case when all the clusters
are singletons.

3. DESCRIPTION OF THE TWO-LEVEL BASED GENETIC ALGORITHM

Our innovative solution approach for solving the Soft-CluVRP is achieved by splitting
the problem into two smaller subproblems:

1. a macro-level subproblem which looks for determining the clusters supplied by
each vehicle;
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FIGURE 1. A feasible solution of the Soft-CluVRP residing in two soft-
clustered routes

2. a micro-level subproblem whose aim is to find the visiting order of the nodes
belonging to the clusters visited by the same vehicle.

3.1. The macro-level subproblem. The macro-level subproblem is defined on the graph
G′ achieved from G after we replaced all the nodes belonging to a given cluster Ci with
a super-node corresponding to Ci, ∀ i ∈ {1, ..., k}, the cluster C0 representing the depot
contains already one node. This graph G′ will be the called macro-graph. Edges of G′ link
different pairs of super-nodes C0, C1, . . . , Ck.

In order to supply a set of routes for visiting the clusters, called macro-routes, we use
the macro-graph G′. A principal characteristic of this approach is that in this way we are
reducing substantially the solution space of the original problem.

In Figure 2, we illustrate a set of two macro-routes corresponding to the example pro-
vided in Figure 1.

FIGURE 2. A feasible solution in the macro-graph corresponding to the
example provided in Figure 1

There exist several soft-clustered routes associated to a macro-route visiting a number
of clusters satisfying the capacity constraints of the vehicles. Among these soft-clustered
routes there is one, which will be called the best soft-clustered route (w.r.t. cost minimiza-
tion), that is going to be found using the Concorde TSP solver [1].
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3.2. The micro-level subproblem. The macro-level subproblem applied on the macro-
graph G′ provides us for each vehicle, a collection of clusters to be visited, fulfilling the
capacity constraints of the vehicles. Next we present how we can transform a collection
of clusters visited by a vehicle into a TSP.

Let us suppose that we have a given collection of p clusters visited by a vehicle and
satisfying the capacity constraints. We will denote by Gp the corresponding subgraph of
G with the set of vertices belonging to the considered p clusters, including the depot and
the corresponding edges, making no difference between intra-cluster and inter-cluster
edges. Then finding the optimal way of visiting the p clusters reduces to solving a TSP on
the subgraph Gp.

In Figure 3, we illustrate the optimal solution corresponding to the macro graph G′,
presented in Figure 2.

FIGURE 3. The optimal solution corresponding to the feasible solution
presented in Figure 2

Evidently, the optimal solution corresponding to the feasible solution in the macro
graph G′ is a feasible solution of the Soft-CluVRP. In the illustrated example the feasible
solution of the Soft-CluVRP consists of two soft-clustered routes which are the optimal
Hamiltonian cycles visiting the following collection of clusters: C0 − C1 − C2 − C4 − C0

and C0 − C6 − C5 − C3 − C0

3.3. The proposed Genetic algorithm. In this subsection, we present the GA that sup-
plies us good quality Soft-CluVRP solutions. The GA includes a macro-level solver for
building valid chromosomes and a micro-level solver for evaluating their fitness.

3.3.1. Representation. In our developed algorithm we make use of an efficient representa-
tion at the level of the macro-graph, in which the chromosome for each candidate solution
is represented as an array of fixed dimension, m and each gene contains the collection of
the clusters visited by a certain vehicle. Our proposed representation restricts the route of
each vehicle and contains the collection of clusters. In general, the chromosome has the
following structure:

(g1, g2, ..., gm)

where each gene gi consists of a collection of clusters visited by vehicle i, i ∈ {1, ...,m}.
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For example, for the feasible solution illustrated in Figure 2 made up by two macro-
routes C0 − C1 − C2 − C4 − C0 and C0 − C6 − C5 − C3 − C0, the associated chromosome
is represented by the following array of lists:

({C0, C1, C2, C4}, {C0, C3, C5, C6}).

For each chromosome representing the collection of clusters visited by each vehicle, we
can provide the corresponding best soft-clustered routes by solving a certain Traveling
Salesman Problem, whose nodes are the depot and the nodes belonging to the collection
of clusters visited by a given vehicle.

3.3.2. Initial population. It is known that the initial population has a substantial effect on
the efficiency of the GA. In general, the initial population is generated randomly from
the entire space of the candidate solutions, thus supplying an unbiased initial population.
This variant of generating the initial population is very useful in bench-marking GAs, but
in the case of real-world applications we might need additional information that helps to
construct the initial population. In our case this additional information is supplied by the
demands of the customers and the capacity Q of the vehicles.

Our initial population, which contains the sets of macro-routes is constructed as fol-
lows:

• The construction of each chromosome requires k steps, where k is the number of
clusters.

• In the first m steps, a gene is created in which a cluster is added at random. In this
way we assure that at the end there will be no empty genes.

• In the next steps, an unassigned cluster Cj , j ∈ {1, ..., k} is randomly chosen, then
a gene gi, i ∈ {1, ...,m} that has sufficient remaining capacity to include Cj is
randomly chosen. If there is no such gene, then gi is picked from all the genes.
Then the cluster Cj is allocated to the gene gi.

This generating mechanism could create supercharged genes, resulting invalid chro-
mosomes. The supercharge of a gene gi is: sgi = total demandgi − Q if total demandgi −
Q > 0, otherwise sgi = 0. A gene gi is supercharged if sgi > 0. The supercharge of the
chromosome is the sum of the supercharges of its genes. So a chromosome is invalid if
it has a positive supercharge. If the chromosome is invalid, then the following repairing
moves are repeated untill its supercharge becomes 0.

• Randomly chose two genes g1 and g2 and a cluster from each of them: Cg1 and
Cg2 .

• Perform the first operation from the following list, that reduces the supercharge
of the chromosome. If none of the operations has this property, then no changes
are performed to the chromosome.

1. Move Cg2 from g2 to g1.
2. Move Cg1 from g1 to g2.
3. Swap g1 and g2 between Cg1 and Cg2 .

3.3.3. Fitness evaluation. The fitness function associated to every individual chromosome
from the solution space is provided by the total cost of the best soft-clustered routes cor-
responding to the set of nodes specified by its genes. Our scope is to minimize the total
distance. Each gene gi of the chromosome defines a subgraph Ggi of G, which corre-
sponds to a specific micro-level subproblem. The fitness evaluation implies solving the
micro-level subproblem for each of the genes, and adding the results.
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3.3.4. Selection. The selection mechanism merges the newly created population with the
current population, removes the duplicates, then sorts the resulting population by fitness
value. Then the best D chromosomes are selected for the new current population. All the
other chromosomes are discarded.

3.3.5. Crossover. The crossover mechanism selects from the current population two par-
ents P1 and P2, which are used to create an offspring. The first parent is always chosen
randomly from the best 20% chromosomes in the current population, and the second par-
ent is chosen randomly from the entire population. The crossover operator used in our
GA works as follows:

• In offspringO are added genes from either P1 or P2 with equal probabilities. After
this operation the chromosome may need repairs because the same clusters may
appear in several genes and there may be clusters that do not appear in any gene.

• The first repairing step involves removing the duplicates. If a cluster Cj , j ∈
{1, ..., k} appears in two genes g1 and g2, it will be deleted from either g1 or g2.
The gene from which it is deleted is chosen at random, modified genes having
priority. A modified gene is a gene that was already changed by the crossover
operator. All the repairing steps try to preserve (as much as possible) the original
genes inherited from the parrents.

• The second repairing step involves adding missing clusters to the chromosome. If
a cluster Cj , j ∈ {1, ..., k} is missing, it is added to a randomly selected gene, that
is searched in order in the following cathegories.

1. Empty genes;
2. Modified genes with sufficient remaining capacity to include cluster Cj ;
3. Genes with sufficient remaining capacity to include cluster Cj ;
4. Modified genes;
5. All the genes;

• The third step involves repairing the empty genes. If the g1 gene has no assigned
cluster, except the depot, then another gene g2 that contains at least two clusters is
chosen at random and one of its clustres it is moved to g1.

• If the chromosome still needs repairs, then it is processed by the repairing moves
described in the Initial population section.

3.3.6. Mutation. For some of the resulted offspring from the crossover algorithm, we may
apply a mutation operator with a given probability which was determined based on pre-
liminary computational experiments.

Our GA uses an exchanging inter-cluster mutation operator which acts as follows:

• Pick randomly two genes g1 and g2.
• Pick randomly one cluster C1 from g1, and one cluster C2 from g2.
• Move C1 from g1 to g2, and C2 from g2 to g1, only if such a move is possible, i.e.
g1 and g2 do not become supercharged. If the move is not possible, the operator
ends without changing the chromosome.

3.3.7. Genetic parameters. The parameters of the algorithm have an important impact on
the efficiency of the GAs. Based on preliminary computational experiments, we have
chosen the following values for the genetic parameters: the population size µ has been set
at 50, the mutation probability was set at 5% and our GA stops when there has been no
improvement in the population for 30 iterations.



124 Ovidiu Cosma, Petrică C. Pop and Cosmin Sabo

4. COMPUTATIONAL RESULTS

This section contains the computational results achieved by our two-level based genetic
algorithm for solving the Soft-CluVRP.

In order to asses the performance of the proposed two-level based genetic algorithm,
we tested our solution approach on a set of 72 instances provided by Bektas et al. [3]
and adapted from the CVRP benchmark instances. The names of the instances have the
following format: X–nn–kz–Ck–Vm , whereX is the type of the instanceX ∈ {A,B, P} , n
refers to the number of vertices , z represents the number of vehicles in the original CVRP
instance , k is the number of clusters and m is the number of vehicles in the instance.
There are two sets of instances denoted by GVRP-2 and GVRP-3, which differ by the
desired average number of customers per cluster, that takes two possible values 2 and 3.

The proposed two-level based genetic algorithm for solving the Soft-CluVRP was im-
plemented in Java, and in our experiments we performed 30 independent runs for each
instance. The testing machine was an Intel(R) Core i3-8100 @ 3.6 GHz, 8 GB RAM. In
order to solve the micro-level problem we used the Concorde TSP solver [1].

In Tables 1 and 2, we report the computational results achieved by our two-level based
genetic algorithm, in comparison to the best existing heuristic method from the literature
for solving the Soft-CluVRP, provided by Hintsch [17] using the developed large multi-
ple neighborhood search algorithm, denoted by (LMNS). We point out that the computa-
tional results reported by Hintsch [17] were obtained using a standard PC equipped with
MS Windows 7, an Intel(R) Core(TM) i7-5930K CPU processor clocked at 3.5 GHz, and
with 64GB of main memory. The LMNS algorithm was implemented in C++ and com-
piled in 64-bit single-thread code with MS Visual Studio 2015 in release mode. For each
instance, the LMNS algorithm was run with ten different random seeds, while in our GA
we performed 30 runs for each instance.

Tables 1 and 2 have the following structure: the first column contains the name of
the instance, followed by four columns that contain the results achieved by the LMNS
algorithm [17]: the cost of the best found solution (Best), the average cost solution (Avg.),
the average time calculated as the average over 30 runs, reported in seconds and the
percentage gap (Gap) calculated as follows: %gap = 100 × (Avg. − Best)/Best. The
”=” symbol indicates a value identical to the best known solution displayed in column 2. The
last four columns contain our obtained results: the cost of the best found solution (Best),
the average cost solution (Avg.), the average time calculated as the average over 30 runs,
reported in seconds and the percentage gap (Gap). To facilitate the comparison between
the two algorithms, the best results are marked in bold. Regarding the efficiency of the
algorithms, it is difficult to make a fair comparison, because they were implemented in
different programming languages, and in our experiments we used a weaker processor. A
comparison between the two programming languages in terms of efficiency can be found
in [33]: the C++ time factor is 1, and the 64 bit Java time factor is 5.8. Therefore, our
programming language is 5.8 times slower. Nevertheless, for 7 instances, we actually
obtained better computational times.

Analyzing the computational results displayed in Table 1 in the case of GVRP-2 in-
stances, we can observe that our two-level based genetic algorithm delivered the optimal
solutions in all the 30 runs for 17 out of 32 instances, while the LMNS algorithm provided
the optimal solutions in all the 30 runs for 29 out of 32 instances. In the case of our pro-
posed solution approach the gap is at most 1.42% and the average computational time is
up to 176 seconds.

When taking a closer look at the computational results displayed in Table 2, one can
notice that: our two-level based genetic algorithm delivered the optimal solutions in all
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TABLE 1. Computational results for solving the Soft-CluVRP in the case
of GVRP-2 instances

Instance LMNS [17] Our approach
Best Avg. Time Gap (%) Best Avg. Time Gap [%]

A-n32-k5-C16-V2 595 606.1 1.2 1.87 = 603.44 1.8 1.42
A-n33-k5-C17-V3 528 = 1.7 0 = = 22.2 0
A-n33-k6-C17-V3 561 563.1 1.6 0.37 = = 14.9 0
A-n34-k5-C17-V3 568 = 1.8 0 = 569.08 26.3 0.19
A-n36-k5-C18-V2 596 = 1.6 0 = 598.24 7.5 0.38
A-n37-k5-C19-V3 573 = 2.1 0 = = 37.8 0
A-n37-k6-C19-V3 660 = 1.4 0 = = 39.0 0
A-n38-k5-C19-V3 547 = 2.2 0 = = 34.4 0
A-n39-k5-C20-V3 659 = 2.1 0 = = 44.9 0
A-n39-k6-C20-V3 676 = 2.1 0 = 676.76 44.0 0.11
A-n44-k6-C22-V3 723 = 2.3 0 = 723.80 59.0 0.11
A-n45-k6-C23-V4 679 = 2.5 0 = 680.56 77.8 0.23
B-n31-k5-C16-V3 451 = 1.4 0 = = 24.0 0
B-n34-k5-C17-V3 495 = 2.1 0 = = 35.7 0
B-n35-k5-C18-V3 654 = 1.9 0 = 656.64 42.0 0.40
B-n38-k6-C19-V3 479 = 2.0 0 = 479.55 43.0 0.11
B-n39-k5-C20-V3 378 = 1.7 0 = 381.36 51.5 0.89
B-n41-k6-C21-V3 514 = 1.9 0 = 514.55 76.2 0.11
B-n43-k6=C22-V3 522 = 2.4 0 = 523.18 88.9 0.23
B-n44-k7-C22-V4 562 = 1.8 0 = = 94.3 0
B-n45-k5-C23-V3 542 = 2.8 0 = 544.64 74.9 0.49
B-n45-k6-C23-V4 506 = 2.5 0 = 506.36 135.0 0.07
B-n50-k7-C25-V4 495 = 3.3 0 = = 91.5 0
B-n50-k8-C25-V5 954 = 2.6 0 = 960.14 169.9 0.64
P-n16-k8-C8-V5 299 = 0.2 0 = = 0.0 0
P-n19-k2-C10-V2 195 = 0.7 0 = = 1.6 0
P-n20-k2-C10-V2 208 = 0.8 0 = = 1.4 0
P-n21-k2-C11-V2 208 = 1.0 0 = = 2.8 0
P-n22-k2-C11-V2 209 = 1.0 0 = 212.00 3.4 1.44
P-n22-k8-C11-V5 397 = 0.4 0 = = 4.5 0
P-n23-k8-C12-V5 369 = 0.5 0 = = 1.8 0
P-n40-k5-C20-V3 401 = 2.5 0 = = 46.7 0
P-n45-k5-C23-V3 443 = 2.9 0 = 444.00 78.4 0.23
P-n50-k6C25-V4 464 464.4 3.4 0.09 = 465.08 151.3 0.23
P-n51-k10-C26-V6 548 = 2.3 0 = 548.75 176.0 0.14

the 30 runs for 26 out of 32 instances, while the LMNS algorithm provided the optimal
solutions in all the 30 runs as well for 26 out of 32 instances. In the case of our proposed
solution approach the gap is at most 1.04% and the average computational time is up to
276.5 seconds.

Overall, we can remark that our proposed solution approach delivers high-quality so-
lutions of the Soft-CluVRP within reasonable running times.
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TABLE 2. Computational results for solving the Soft-CluVRP in the case
of GVRP-3 instances

Instance LMNS [17] Our approach
Best Avg. Time Gap (%) Best Avg. Time Gap [%]

A-n32-k5-C11-V2 515 = 1.5 0 = = 9.0 0
A-n33-k5-C11-V2 461 = 1.7 0 = = 2.1 0
A-n33-k6-C11-V2 554 = 1.7 0 = = 0.1 0
A-n34-k5-C11-V2 538 = 1.9 0 = = 3.7 0
A-n37-k6-C13-V2 605 = 1.8 0 = = 0.0 0
A-n38-k5-C13-V2 507 = 2.2 0 = = 12.2 0
A-n39-k6-C13-V2 603 = 2.1 0 = = 2.1 0
A-n44-k6-C15-V2 691 691.8 2.0 0.12 = = 0.0 0
A-n45-k6-C15-V3 652 = 2.6 0 = = 14.4 0
A-n53-k7-C18-V3 627 = 3.3 0 = = 22.4 0
A-n55-k9-C19-V3 645 = 3.3 0 = = 25.7 0
A-n61-k9-C21-V4 671 672.6 3.4 0.24 = 672.47 85.4 0.22
B-n31-k5-C11-V2 375 = 1.6 0 = = 5.91 0
B-n34-k5-C12-V2 415 = 2.0 0 = 419.31 9.34 1.04
B-n35-k5-C12-V2 557 557.3 2.1 0.05 = = 11.69 0
B-n38-k6-C13-V2 427 = 1.8 0 = = 5.43 0
B-n41-k6-C14-V2 469 = 2.3 0 = 469.59 24.0 0.12
B-n43-k6-C15-V2 405 = 2.6 0 = = 8.29 0
B-n44-k7-C15-V3 443 = 1.8 0 = = 15.22 0
B-n50-k8-C17-V3 661 = 2.7 0 = = 32.72 0
B-n52-k7-C18-V3 427 = 3.6 0 = = 48.81 0
B-n56-k7-C19-V3 420 = 3.8 0 = = 56.95 0
B-n63-k10-C21-V3 685 = 3.2 0 = = 65.03 0
B-n66-k9-C22-V3 683 685.5 4.2 0.37 = 686.33 276.55 0.49
P-n16-k8-C6-V4 251 = 0.4 0 = = 0.0 0
P-n22-k8-C8-V4 365 = 0.8 0 = = 0.7 0
P-n23-k8-C8-V3 270 = 0.7 0 = = 0.0 0
P-n50-k8-C17-V3 441 441.3 2.8 0.07 = 441.20 19.47 0.05
P-n50-k10-C17-V4 471 = 2.8 0 = = 26.6 0
P-n51-k10-C17-V4 493 = 2.6 0 = = 22.27 0
P-n55-k8-C19-V3 454 454.8 3.8 0.18 = = 76.6 0
P-n55-k15-C19-V6 572 = 2.4 0 = = 50.2 0
P-n60-k15-C20-V5 591 = 2.5 0 = = 53.0 0
P-n65-k-10-C22-V4 575 = 4.7 0 = = 84.3 0
P-n70-k10-C24-V4 602 = 5.1 0 = 602.23 133.2 0.04

5. CONCLUSION

In this paper, we presented a novel solution approach for solving the soft-clustered
vehicle-routing problem, namely a two-level based genetic algorithm, obtained by de-
composing the optimization problem into two smaller subproblems: a macro-level sub-
problem and a micro-level subproblem.

The computational results reported on a set of 72 benchmark instances from the liter-
ature prove that our novel solution approach based on genetic algorithms is comparable
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with the best existing methods from the literature and provides high-quality solutions
within acceptable running times.

In the future, we plan to improve the developed two-level based genetic algorithm by
combining with local search methods and to evaluate the generality and scalability of the
proposed solution approach by testing it on larger instances.

REFERENCES

[1] Applegate, D.; Bixby, R.; Chvatal, V.; Cook, W. Concorde tsp solver.
http://www.tsp.gatech.edu/concorde/index.html, 2001.

[2] Battarra, M.; Erdogan, G.; Vigo, D. Exact algorithms for the clustered vehicle routing problem. Oper. Res. 62
(2014), no. 1, 58–71.

[3] Bektas, T.; Erdogan, G.; Ropke, S. Formulations and Branch-and-Cut Algorithms for the Generalized Vehi-
cle Routing Problem. Transportation Science 45 (2011), no. 3, 299–316.

[4] Cosma, O.; Pop, P. C.; Zelina, I. A novel genetic algorithm for solving the clustered shortest-path tree
problem. Carpathian J. Math. 36 (2020), no. 3, 401–414.

[5] Cosma, O.; Pop, P. C.; Zelina, I. An effective genetic algorithm for solving the clustered shortest-path tree
problem. IEEE Access 9 (2021), 15570–15591.

[6] Dantzig, G. B.; Ramser, J. H. The Truck Dispatching Problem. Management Science 6 (1959), no. 1, 80–91.
[7] Defryn, C.; Sörensen, K. A fast two-level variable neighborhood search for the clustered vehicle routing

problem. Comput. Oper. Res. 83 (2017), 78–94.
[8] Demange, M.; Monnot, J.; Pop, P. C.; Ries, B. On the complexity of the selective graph coloring problem in

some special classes of graphs. Theoretical Computer Science 540-541 (2014), 82–102.
[9] Exposito-Izquierdo, C.; Rossi, A.; Sevaux, M. A two-level solution approach to solve the clustered vehicle

routing problem. Computers & Industrial Engineering 91 (2016), 274–289.
[10] Feremans, C.; Labbe, M.; Laporte, G. Generalized network design problems. Eur. J. Oper. Res. 148 (2003),

no. 1, 1–13.
[11] Fidanova, S.; Pop, P. C. An improved hybrid ant-local search for the partition graph coloring problem. J.

Comput. Appl. Math. 293 (2016), 55–61.
[12] Fischetti, M.; Salazar-Gonzales, J. J.; Toth, P. A Branch-and-Cut Algorithm for the Symmetric Generalized

Traveling Salesman Problem. Operations Research 45 (1997), no. 3, 378–394.
[13] Fuksz, L.; Pop, P. C. A hybrid genetic algorithm with variable neighborhood search approach to the number parti-

tioning problem. in Proc. of HAIS 2013, Lecture Notes in Computer Science, 8073 (2013), 649–658.
[14] Ghiani, G.; Improta, G. An efficient transformation of the generalized vehicle routing problem. Eur. J. Oper.

Res. 122 (2000), 11–17.
[15] Heßler, K.; Irnich, S. A branch-and-cut algorithm for the soft-clustered vehicle-routing problem. Discret.

Appl. Math. 288 (2021), 218–234.
[16] Hintsch, T.; Irnich, S. Exact solution of the soft-clustered vehicle-routing problem. Eur. J. Oper. Res. 280

(2020), 164–178.
[17] Hintsch, T. Large multiple neighborhood search for the soft-clustered vehicle-routing problem. Comput.

Oper. Res. in Press, (2020).
[18] Hintsch, T.; Irnich, S. Large multiple neighborhood search for the clustered vehicle-routing problem. Eur. J.

Oper. Res. 270 (2018), no. 1, 118–131
[19] Mor. A.; Speranza, M. G. Vehicle routing problems over time: a survey. 4OR Springer 18 (2020), 129–149.
[20] Pintea, C.; Chira, C.; Dumitrescu, D.; Pop, P. C. Sensitive ants in solving the generalized vehicle routing

problem. Int. J. Comput. Commun. Control. 6 (2011), no. 4, 734–741.
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