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Darboux integrability of a cubic differential system with
two parallel invariant straight lines

DUMITRU COZMA

ABSTRACT. In this paper we prove the Darboux integrability of a cubic differential system with a singular
point of a center typer having at least two parallel invariant straight lines.

1. INTRODUCTION

We consider the real cubic differential system

(1.1) ẋ = P (x, y), ẏ = Q(x, y),

where P (x, y) and Q(x, y) are coprime polynomials in R[x, y]. Let the origin O(0, 0) be an
isolated singularity of (1.1) with purely imaginary eigenvalues (λ1,2 = ±i, i2 = −1). Then
by using a nondegenerate transformation of variables and a time rescaling, the system
(1.1) can be brought to the form

(1.2)
ẋ = y + ax2 + cxy + fy2 + kx3 +mx2y + pxy2 + ry3 ≡ P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y),

where the variables and coefficients are assumed to be real. The trajectories in some neigh-
borhood of O(0, 0) can be spirals or closed trajectories. Thus, the origin is either a focus
or a center for system (1.2), i.e. a fine focus.

The problem of distinguishing between a center and a focus (the problem of the center)
is open for general cubic differential systems. An approach to the problem of the center
for cubic differential system (1.2) is to study the local integrability of the system in some
neighborhood of the singular point O(0, 0).

Using the method of Darboux integrability and the rational reversibility, the problem
of the center was solved for cubic system (1.2) with: four invariant straight lines [5]; three
invariant straight lines [7], [17]; two invariant straight lines and one irreducible invariant
conic [6]; two invariant straight lines and one irreducible invariant cubic [10]. The center
conditions for a cubic system (1.2) with two distinct invariant straight lines by using the
method of Darboux integrability and rational reversibility were found in [8].

The Darboux integrability conditions were obtained for some reversible cubic differen-
tial systems (1.2) in [2] and for a few families of the complex cubic system in [11].

In this paper we study the problem of integrability for cubic differential system (1.2)
with two parallel invariant straight lines. We obtain fourteen families of cubic systems
with at least two parallel invariant straight lines which are Darboux integrable.
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2. INVARIANT ALGEBRAIC CURVES

We are interested in the algebraic integrability of cubic differential systems which have
a given set of irreducible invariant algebraic curves, called algebraic solutions.

Definition 2.1. An algebraic invariant curve (or an algebraic particular integral) of (1.2)
is the solution set in C2 of an equation Φ(x, y) = 0, where Φ is a polynomial in x, y with
complex coefficients such that

(2.3)
∂Φ

∂x
P (x, y) +

∂Φ

∂y
Q(x, y) = ΦK,

for some polynomial in x, y, K = K(x, y) with complex coefficients, called the cofactor of
the invariant algebraic curve Φ(x, y) = 0.

It is a very hard problem to calculate the invariant algebraic curves for a given differen-
tial system of degree n because, in general, we do not have any evidence on the number
of invariant algebraic curves and on the degree of a curve [13].
Open problem 1. What is the maximum number of algebraic invariant curves in the set
of all polynomial differential systems of degree n > 1 having finitely many invariant
algebraic curves ?
Open problem 2. Give a method to find an upper bound to the degree of the algebraic
solutions for a fixed polynomial differential system of degree n ≥ 2.

Let the cubic system (1.2) have two parallel invariant straight lines l1 and l2. Then by
a rotation of axes we can make them parallel to the axis of ordinates (Oy) and the linear
part of (1.2) preserves the form. According to [6] the cubic system (1.2) has two invari-
ant straight lines l1 and l2 parallel to the axis Oy if and only if the following coefficient
conditions are satisfied

(2.4) a = f = k = p = r = 0, m(c2 − 4m) 6= 0.

In this case the cubic system (1.2) looks

(2.5)
ẋ = y + cxy +mx2y ≡ P (x, y),

ẏ = −(x+ gx2 + dxy + by2 + sx3 + qx2y + nxy2 + ly3) ≡ Q(x, y).

The invariant straight lines l1 and l2 are

(2.6) l1,2 ≡ 2 + (c±
√
c2 − 4m )x = 0

with the corresponding cofactors K1,2(x, y) = y(2mx+ c±
√
c2 − 4m )/2.

For cubic system (2.5) the problem of the existence of an invariant straight line was
studied in [7], of an invariant conic in [6] and of an invariant cubic in [9].

3. THE PROBLEM OF THE CENTER

We consider the cubic differential system (2.5) with a singular point of a focus or a
center at O(0, 0) having two parallel invariant straight lines of the form (2.6). The center
conditions were obtained for system (2.5) when m = l = 0 or m = d = 0 in [12]; when
l = 0 in [14] and for a nine-parameter cubic system (2.5) that can be reduced to a Liénard
type system in [3], [15].

As it was shown in [3], [15], the cubic system (2.5) by change of variables

(3.7) y =
(1 + gx+ sx2)Y

1− d+qx
3 Y
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can be reduced to a Liénard type system of the form

(3.8)
ẋ = Y (1 + c1x+ c2x

2 + c3x
3 + c4x

4),

Ẏ = −x+ (a0 + a1x+ a2x
2 + a3x

3)Y 2 + (b0 + b1x+ b2x
2 + b3x

3 + b4x
4)Y 3,

where ai, bj , ck, i = 0, 3, j = 0, 4, k = 1, 4, are expressed in the coefficients of (2.5).
Using the method of generalized symmetry [1] and the Gröbner bases in [3], [15] there

were obtained 14 sets of center conditions for system (3.8) ((2.5)) when l 6= 0:
(i) q = bd+ dg − 3l, (dg − 3l + bd)(bd− 3l) + d2s = 0, 9(b+ 2g − c)(bd− 3l) + d(9n+

18s− 2d2) = 0, (4d2 + 9(m− s)− 9g(c− g))(bd− 3l) + d(2d2g + 9s(g − c)) = 0;

(ii) q = bd + dg − 3l, m = (c − b − g)(b + g), n = 2b2 − 2bc + 6bg − 2cg + 4g2 − 3s,
(c− 2g− b)(3b+ g)(b+ g) + dl+ (c− g+ b)s = 0, (b2− bc+ 3bg− cg+ 2g2− s)(b2 +
bg + s)− l2 = 0;

(iii) q = bd+ dg − 3l, s = (3bg − 9cg + 2d2 + 12g2 + 6m− 6n)/18, 12dl − 2d2(2b+ g) +
9(b+ 2g − c)(g2 − 4s) = 0, 9g2(c− b− 2g)− 2(b+ 2g)(d2 − 9s) + 3(2dl+ 3gn) = 0,
9(b+ 2g − c)(bd− 3l) + d(9n+ 18s− 2d2) = 0;

(iv) q = bd + dg − 3l, s = −3(3b + g)(b + g)/4, c = (9b + 7g)/2, n = (417b2 + 374bg +
12d2 + 57g2)/64, m = (657b2 + 822bg + 12d2 + 265g2)/64, (27b + 17g)2(3b + g) +
4d2(17b+ 11g) = 0, 2(27b+ 17g)l + (5b+ 3g)(b+ g)d = 0;

(v) q = bd+dg−3l,m = (c−9b−7g)(9b−2c+7g), n = 30b2−12bc+44bg+c2−9cg+16g2,
s = (6b+ 4g − c)(c− 6b− 5g), d(5b+ 4g − c)(c− 7b− 5g) + l(7c− 45b− 33g) = 0,
3d2 − 12(3b + 2g)(11b + 10g) + (9b − c + 7g)(21b + 23c + 7g) = 0, 2(b + g)(2c −
11g − 15b)(3b+ 2g) + (2c− 7g − 9b)(c− 6g − 8b)(c− 7g − 9b) = 0;

(vi) g = −b, m = n+ 3s, q = −3l, d = (bn+ bs− cs)/l, 2s2 + ns− l2 = 0;
(vii) q = s = 0, m = 3(c − 3b − 3g)(b + g), n = 2(3b − c + 3g)(b + g), l = [(b + g)d]/3,

3(c− 4g − 3b)(3b+ 2g) + d2 = 0;

(viii) l = −d(b+g)/6, q = [3d(b+g)]/2, s = [3(−3b2−4bg−g2)]/4, 3(3b+g)(c−g)+2d2 = 0,
m = 3(b+ g)(2c− 3b− 3g)/4, n = (b+ g)(6b+ 3g − c)/2;

(ix) l = [d(c−2g−2b)]/3, m = (2c−3g−3b)(3b+ 3g− c), n = (c−2g−3b)(c−3g−3b),
q = d(3b− c+ 3g), s = −n, d2 + 3(3b+ 2g − c)(c− g) = 0;

(x) c = 3(b+g), s = −(3b+2g)(3b+g), l = −(2b+g)d, n = (48b2 +44bg−3d2 +8g2)/4,
m = [3(−12b2 − 8bg− d2)]/4, q = d(7b+ 4g), (7b+ 5g)d2 + 4(3b+ 2g)2(3b+ g) = 0;

(xi) c = 3(b + g), n = (2d2 − 9bg − 6g2 − 12s)/9, l = (d(2b + g))/6, m = (18bg − d2 +
12g2 + 6s)/6, q = (dg)/2, 36bs− d2g + 24gs = 0;

(xii) q = bd+dg−3l,m = 3(2c−3b−3g)(b+g)/4, n = (2d2−9b2+6bc−18bg−3g2−12s)/6,
3(2c−3b−5g)[(3b+g)(18b+11g)−4(3b+2g)(3b+ c−g)]+4d2(3b−2c+4g)+12s(6b−
2c+7g) = 0, 3d[(4b+2g)(3b+c−g)− (3b+g)(7b+4g)−4s]+ 2d3 +18l(c−2g) = 0,
2d2(2c− b− 3g) + 3(3b+ 2g)[(2c− 3b− 5g)2 − 4s]− 12dl = 0;

(xiii) q = bd+dg−3l, m = 3(c−3b−3g)(b+ g), n = (d2−9b2 + 3bc−18bg−6g2−6s)/3,
d2(2c− 6b− 7g)− 3g(c− b− 2g)(2c− b− 2g)+ 6g(b+ g)(5b+ 3g) + 3s(2c− g) = 0,
9(3b + c + g)l + 3d(2b + g)(c − b − 2g) − 3d(b + g)(10b + 7g) + d(d2 − 6s) = 0,
d2(c− 2b− 3g) + 3g(b+ g)(8b+ 5g) + 3g(b+ c)(b− c+ 2g)− 3dl + 3gs = 0;

(xiv) q = bd + dg − 3l, m = (c − 3b − 3g)(3b − 2c + 3g), n = (d2 − 3(3b − c + 2g)(3b −
2c + 4g) − 6s)/3, 3g(3c − 8g − 9b)(2c − 4g − 3b) − d2g + 3s(6c − 13g − 12b) = 0,
3d(6b2 + bg + 2s) + 18d(c − 2g − b)(c − 2g − 3b) − 9l(3c − 5g − 3b) − d3 = 0,
9dl − 3g(3c− 7g − 9b)(2c− 4g − 3b)− (3b+ g)(d2 − 6s) = 0.
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In Section 4 we will prove that in each of the cases (i) – (xiv) the cubic differential system
(2.5) is Darboux integrable.

4. DARBOUX INTEGRABILITY

The problem of the center for polynomial differential systems is closely related to the
problem of local integrability of the systems in some neighborhood of a singular point
with purely imaginary eigenvalues. It is known from Poincaré and Lyapunov [1] that a
singular point O(0, 0) is a center for system (2.5) if and only if the system has in some
neighborhood of O(0, 0) a nonconstant analytic first integral

(4.9) F (x, y) ≡ x2 + y2 +

∞∑
k=3

Fk(x, y) = C

or an analytic integrating factor of the form

(4.10) µ(x, y) = 1 +

∞∑
k=1

µk(x, y),

where Fk, µk are homogeneous polynomials of degree k.

Definition 4.2. An integrating factor for system (2.5) on some open set U of R2 is a C1

function µ defined on U , not identically zero on U such that

(4.11) P (x, y)
∂µ

∂x
+Q(x, y)

∂µ

∂y
+ µ

(
∂P

∂x
+
∂Q

∂y

)
≡ 0.

We study the algebraic integrability of cubic differential system (2.5), called the Darboux
integrability [4], [7]. It consists in constructing of a first integral or an integrating factor
from the algebraic solutions of the form

(4.12) Φα1
1 Φα2

2 · · ·Φαq
q ,

where Φj = 0, j = 1, q are invariant algebraic curves of (2.5) and Φj ∈ C[x, y], αj ∈ C.

Theorem 4.1. The system (2.5) has a Darboux first integral (a Darboux integrating factor) of the
form (4.12) if and only if there exists constants αj ∈ C, not all identically zero such that

(4.13) α1K1(x, y) + α2K2(x, y) + · · ·+ αqKq(x, y) ≡ 0,

(4.14)
( q∑
j=1

αjKj(x, y) +
∂P

∂x
+
∂Q

∂y
≡ 0
)
,

where Kj is the cofactor of Φj = 0 for j = 1, . . . , q.

The application of the method of Darboux to prove centers in all cases of quadratic
differential systems was firstly proved in [16] and for cubic differential systems (1.2) with
two invariant straight lines and one invariant conic was shown in [6]. Using Definition
2.1 for determining the invariant algebraic curves, the method of Darboux integrability
and the identities (4.11), (4.14) we prove the following Theorem:
Theorem 4.2. Let lm(c2− 4m) 6= 0. The cubic differential system (2.5) is Darboux integrable in
each of the cases (i)−(xiv).

Proof. In Case (i) the system (2.5) has three invariant straight lines:

l1,2 ≡ 2 + (c±
√
c2 − 4m )x = 0, l3 ≡ 3d+ 9lx− 3bdx+ d2y = 0
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and an integrating factor µ = lα1
1 lα2

2 lα3
3 , where u =

√
c2 − 4m and

α1 = [4d4 + 9d2(2b2 + bc− bu− cu− u2) + 27dl(c+ 3u)− 162l2]/[9d2u(c+ u)],

α2 = (27cdl − d2(9b2 + 9bc+ 2d2 + 9mα1 + 18m) + 81l2)/(9d2m), α3 = −3.

In Case (ii) the system (2.5) has four invariant straight lines:

l1 ≡ 1 + (b+ g)x = 0, l2 ≡ 1 + (c− b− g)x = 0,

l3,4 ≡ (2b+ g ±
√
g2 − 4s)(2 + gx± x

√
g2 − 4s) + 4ly = 0

and an integrating factor µ = lα1
1 lα2

2 lα3
3 lα4

4 , where α1 = 1, α3 = −α4 − 3,

α2 = [l2 − g(b+ g)(b2 + bg + s)− s(b2 + bg + s)3l−2]/[(b2 + bg + s)(g2 + bg − s)− l2],

α4 = [l2(g2 + bg − 2s− 3(b+ g)
√
g2 − 4s)− 2s(b2 + bg + s)2]/[2l2(b+ g)

√
g2 − 4s].

In Case (iii) the cubic system (2.5) has two invariant straight lines

l1,2 ≡ 2 + (c±
√
c2 − 4m )x = 0

and one invariant conic
Φ2 ≡ g(9bg − 9cg + 2d2 + 18g2)2x2 + 6dg(9bg − 9cg + 2d2 + 18g2)(b+ g)xy+

+ 12(3gx+ dy + 3)(2d2(2b− c+ 3g) + 9g(b− c+ 2g)2) = 0.

The system has an integrating factor µ = lα1
1 lα2

2 Φα3
2 , where u =

√
c2 − 4m and

α1 = [α2(u2 − c2) + 4g(b+ g)]/(c2 − u2), α3 = −3,
α2 = (c2 − 2bc+ 2bg + 2bu− 3cg − cu+ 2g2 + 3gu)/[u(c− u)].
In Case (iv) the cubic system (2.5) has three invariant straight lines

l1,2 ≡ 4 +
(

9b+ 7g ± (5b+ 3g)
√

(9b+ 3g)/(17b+ 11g)
)
x = 0,

l3 ≡ (5b+ 3g)(2 + 3(b+ g)x) + 4ly = 0

and one invariant conic
Φ2 ≡ (17b+ 11g)[(3b+ g)(b+ g)2x2 + 8l(b+ g)xy + (b2 − g2)x+ 8ly − 2(b+ g)]−
− (5b+ 3g)2(b+ g)2y2 = 0.

The system has an integrating factor

µ =
l23

l
3/2
1 l

3/2
2 Φ

5/2
2

.

In Case (v) the cubic system (2.5) has three invariant straight lines

l1 ≡ 1 + (9b− c+ 7g)x = 0, l2 ≡ 1− (9b− 2c+ 7g)x = 0,

l3 ≡ (7b− c+ 5g)[1 + (6b− c+ 5g)x] + ly = 0

and one invariant conic
Φ2 ≡ (5b− c+ 4g)[(6b− c+ 4g)(b+ g)x2 + (5b− c+ 3g)x+

+ (8b− c+ 6g)(b+ g)y2 − 1] + 2l(b+ g)xy + 2ly = 0.

The system has an integrating factor

µ =
l2l

2
3

l
3/2
1 Φ

5/2
2

.

In Case (vi) the cubic system (2.5) has four invariant straight lines

l1 ≡ 2 + (c+
√
c2 − 4m )x = 0, l3 ≡ b−

√
b2 − 4s− 2sx+ 2ly = 0,

l2 ≡ 2 + (c−
√
c2 − 4m )x = 0, l4 ≡ b+

√
b2 − 4s− 2sx+ 2ly = 0
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and one invariant conic

Φ2 ≡ lsx2 − l2xy − blx− bsy − csy + l = 0.

The system has an integrating factor

µ =
1

l1l2l3l4Φ2
.

In Case (vii) the cubic system (2.5) has two invariant straight lines

l1 ≡ 1 + 3(b+ g)x = 0, l2 ≡ 1 + (c− 3b− 3g)x = 0

and one invariant cubic

Φ3 ≡ (b+ g)d3y3 + 3(3b+ 2g)(3(1 + gx)2 + 3d(1 + gx)y + d2y2) = 0.

The system has an integrating factor

µ =
1

l
1/3
1 l2Φ3

.

In Case (viii) the cubic system (2.5) has two invariant straight lines

l1 ≡ 2 + (2c− 3b− 3g)x = 0, l2 ≡ 2 + 3(b+ g)x = 0

and one invariant cubic
Φ3 ≡ (b+ g)(9bx+ 3gx− 2dy)3 − 6(3b+ g)[3(3b+ g)(3b+ 5g)x2−
− 12dgxy − 4d2y2 + 6(3b− g)x− 12dy − 12] = 0.

The system has an integrating factor

µ =
1

l1l
2/3
2 Φ3

.

In Case (ix) the cubic system (2.5) has two invariant straight lines

l1 ≡ 1 + (2c− 3b− 3g)x = 0, l2 ≡ 1 + (3b+ 3g − c)x = 0

and one invariant cubic
Φ3 ≡ (c− 3b− 2g)[3(3b− c+ 3g)(3b− c+ 2g)x3 + 3d(c− 3b− 3g)x2y+

+ 3(c− g)(c− 3b− 3g)xy2 + d(2b+ 2g − c)y3] + 3(3b+ 2g − c)(c− g)y2−
− 3dgxy + 3(3b− c+ 2g)(3b− c+ 4g)x2 + 3(3b+ g − c)x− 3dy − 3 = 0.

The system has an integrating factor

µ =
1

l
1/3
1 l

2/3
2 Φ3

.

In Case (x) the cubic system (2.5) has three invariant straight lines

l1,2 ≡ 2 + (3b+ 3g ±
√

45b2 + 42bg + 3d2 + 9g2)x = 0, l3 ≡ 2 + 2(3b+ 2g)x− dy = 0

and one invariant cubic
Φ3 ≡ 2(3b+ 2g)(3b+ g)2x3 − 3d(5b+ 3g)(3b+ g)x2y + 6d2(2b+ g)xy2+

+ 4d(2b+ g)2y3 + 6d(b+ g)xy − 6(b+ g)(3b+ g)x2 − 6bx+ 3dy + 2 = 0.

The system has an integrating factor

µ =
1

l
2/3
1 l

2/3
2 l

1/2
3 Φ

5/6
3

.
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In Case (xi) the cubic system (2.5) has two invariant straight lines

l1,2 ≡ 6 + [9(b+ g)±
√

3(27b2 + 18bg + 2d2 + 3g2 − 12s) ]x = 0

and one invariant quartic

Φ4 ≡ x(6by + dx+ 4gy)3dg2 + 4(3b+ 2g)[6d2g2x3 + 3dg(18bg + d2 + 12g2)x2y+
+ 6g(18bg + d2 + 12g2)x2 + 2d(2bd2 + 3bg2 + d2g + 2g3)y3+
+ 6(3b+ 2g)(2d2gxy2 + 9dgxy + 12gx+ 2d2y2 + 6dy + 6)] = 0.

The system has an integrating factor

µ =
1

l
1/3
1 l

1/3
2 Φ4

.

In Case (xii) the cubic system (2.5) has two invariant straight lines

l1 ≡ 2 + 3(b+ g)x = 0, l2 ≡ 2 + (2c− 3b− 3g)x = 0

and one invariant quartic

Φ4 ≡ 3s(a20 − g2 − s)x4 + 3a31x
3y + 3a22x

2y2 + (9ba03 + 6ga03 − d2l)xy3+

+ 3g(a20 − g2)x3 + 3(da20 + bdg − ds− 3gl)x2y + 2d(bd+ dg − 3l)xy2+

+ 3a03y
3 + 3a20x

2 + 3(bd+ 2dg − 3l)xy + d2y2 + 6gx+ 3dy + 3 = 0,

where
a03 = (b2d+ 2bdg + 6bl − 6cl + dg2 + 12gl)/6,
a31 = (bd+ dg − 3l)a20 − bdg2 − bds− dg3 − dgs+ 3g2l + 3ls,
a22 = (a20d

2 + b2d2 + 2bd2g − 6bdl − 2d2s− 6dgl + 9l2)/3,
a20 = (27b2g − 18bcg + 8bd2 + 54bg2 + 6cg2 + 4d2g − 24dl − 3g3)/[6(2c− 3g)].

The system has an integrating factor

µ =
l
1/3
1

l2Φ4
.

In Case (xiii) the cubic system (2.5) has two invariant straight lines

l1 ≡ 1 + 3(b+ g)x = 0, l2 ≡ 1 + (c− 3b− 3g)x = 0

and one invariant quartic

Φ4 ≡ 3s(a20 − g2 − s)x4 + 3a31x
3y + 3a22x

2y2 + (9ba03 + 6ga03 − d2l)xy3+

+ 3g(a20 − g2)x3 + 3(da20 + bdg − ds− 3gl)x2y + 2d(bd+ dg − 3l)xy2+

+ 3a03y
3 + 3a20x

2 + 3(bd+ 2dg − 3l)xy + d2y2 + 6gx+ 3dy + 3 = 0,

where
a03 = (2b2d+ 4bdg + 3bl − 3cl + 2dg2 + 6gl)/3,
a31 = (bd+ dg − 3l)a20 − bdg2 − bds− dg3 − dgs+ 3g2l + 3ls,
a22 = (a20d

2 + b2d2 + 2bd2g − 6bdl − 2d2s− 6dgl + 9l2)/3,
a20 = (54b2g − 18bcg + 4bd2 + 108bg2 − 6cg2 + 2d2g − 12dl + 39g3)/[3(2c− 3g)].

The system has an integrating factor

µ =
1

l
1/3
1 l2Φ4

.

In Case (xiv) the cubic system (2.5) has two invariant straight lines

l1 ≡ 1 + (3b− c+ 3g)x = 0, l2 ≡ 1 + (2c− 3b− 3g)x = 0
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and one invariant quartic

Φ4 ≡ 3s(a20 − g2 − s)x4 + 3a31x
3y + 3a22x

2y2 + (9ba03 + 6ga03 − d2l)xy3+

+ 3g(a20 − g2)x3 + 3(da20 + bdg − ds− 3gl)x2y + 2d(bd+ dg − 3l)xy2+

+ 3a03y
3 + 3a20x

2 + 3(bd+ 2dg − 3l)xy + d2y2 + 6gx+ 3dy + 3 = 0,

where
a03 = ((8(b+ g)(b+ g − c) + 2c2)d+ l(3b− 3c+ 6g))/3,
a31 = (bd+ dg − 3l)a20 − bdg2 − bds− dg3 − dgs+ 3g2l + 3ls,
a22 = (a20d

2 + b2d2 + 2bd2g − 6bdl − 2d2s− 6dgl + 9l2)/3,
a20 = [54bg(b− c+ 2g) + 2d2(2b+ g) + 12c2g − 42cg2 − 12dl + 39g3]/[3(2c− 3g)].

The system has an integrating factor

µ =
l
1/3
1

l
1/3
2 Φ4

.

�

Note that the integrability conditions (i), (ii), (vi), (x) were obtained in [7] and the inte-
grability conditions (iii), (iv), (v) were determined in [6].

5. MAIN RESULTS

The application of the method of Darboux to prove centers in all cases (i)−(xiv) of cubic
differential systems (2.5) was firstly shown in this paper.

Theorem 5.3. The cubic differential system {(2.5), lm(c2 − 4m) 6= 0} has a center at O(0, 0) if
and only if it is Darboux integrable.

The proof of the main result, Theorem 5.3, follows directly from Theorem 4.2 and the
center conditions (i)−(xiv).
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