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Some fixed point theorems on equivalent metric spaces

ANDREI HORVAT-MARC1, MARIANA CUFOIAN and ADRIANA MITRE

ABSTRACT. This paper aims to analyze the existence of fixed points for mappings defined on complete met-
ric spaces satisfying almost contractive conditions and a general contractive inequality of integral type. The
existence of a fixed point is ensured by hypotheses formulated in terms of equivalent metric spaces.

1. INTRODUCTION

It can be said that 1912 (the year Brouwer’s Theorem was published) and 1922 (the
year Banach’s Contraction Mapping Principle was published) marked the beginning of
the interesting history of Fixed Point Theory. Numerous fixed point theorems can be found
in literature, for historical aspects see [19, 20, 24], etc. There are some relevant metric
conditions which appear in metric fixed point theory, for details see [1, 5, 15, 27, 28, 29].
More precisely, in a metric space (X, d) we can consider the mapping T : X → X which is

I.) a graphic l-contraction iff

(1.1) d
(
T 2x, Tx

)
≤ l · d (x, Tx) for all x ∈ X,

where l ∈ [0, 1);
II.) a (l, L)–Berinde operator iff

(1.2) d (Tx, Ty) ≤ l · d (x, y) + L · d (y, Tx) for all x, y ∈ X,

where l ∈ [0, 1) and L ∈ [0,∞);
III.) a Caristi operator iff there exists o function ϕ : X → [0,∞) such that

(1.3) d (x, Tx) ≤ ϕ (x)− ϕ (Tx) for all x ∈ X.

Remark 1.1. If T is (l, L)–Berinde operator with L = 0, then we say that T is Banach
contraction.

Remark 1.2 ([10, 9]). If T is (l, L)–Berinde operator with l = b
1−b and L = 2b

1−b , where
b ∈

(
0, 12
)
, then we say that T is Kannan contraction.

Example 1.1. Let 1X : [0, 1] → [0, 1] be given by 1Xx = x for all x ∈ [0, 1], i.e., 1X the
identity map on X . It is ovious that, 1X does not satisfy the Banach contraction condition.
In Example 2.2.3. from [6] it is prove that the identity map is a (l, 1− l)–Berinde operator,
where l ∈ (0, 1).
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Example 1.2. Let T2 : [0,∞) → [0,∞) be given by T2 (t) = 2 · t for all t ∈ [0,∞). If we
assume that T2 is a (l, L)–Berinde operator, then there exist l ∈ (0, 1) and L ∈ (0,∞) such
that

(1.4) 2 |x− y| ≤ l · |x− y|+ L · |y − 2x| for all x, y ∈ [0,∞) .

Hence, for all x, y ∈ [0,∞) we have (2− l) · |x− y| ≤ L · |y − 2x| and this is equivalent
with (2− l)2 · (x− y)

2 ≤ L2 · (y − 2x)
2. We put L2 − (2− l)2 = K2, with K < L, and

obtain the quadratic inequality

(1.5) 0 ≤
(
3L2 +K2

)
x2 − 2

(
L2 +K2

)
xy +K2y2 for all x, y ∈ [0,∞)

The discriminant of the above quadratic equation is ∆ = 4y2L2 (L−K) (L+K) > 0 and
this contradicts (1.5). So, T2 is not a (l, L)–Berinde operator.

In [3, 4, 5, 9, 10] we can find the proof that any Banach contraction [2], any Kannan
contraction any Chatterjea contraction and any Zamfirescu contraction are (l, L)–Berinde
operator. We have the following fixed point theorem.

Theorem 1.1 ([5]). Let (X, d) be a complete metric space and T : X → X be a weak contraction,
i.e., a map satisfying (1.2) with 0 < δ < 1 and some L ≥ 0. Then

(i.) T has at least one fixed point in X (i.e., Fix (T ) = {x ∈ X : Tx = x} 6= ∅);
(ii.) The Picard iteration {xn}∞n=0 defined by

(1.6) xn+1 = Txn , n = 0, 1, 2, . . .

converges to some x∗ ∈ Fix (T ), for any x0 ∈ X
(iii.) The following estimates

(1.7) d(xn, x
∗) ≤ ln

1− l
d(x0, x1) , n = 0, 1, 2, . . .

(1.8) d(xn, x
∗) ≤ l

1− l
d(xn−1, xn) , n = 1, 2, . . .

hold, where l is the constant appearing in (1.2).

In fact, the metric contractive conditions known in literature involve some of the fol-
lowing six displacements

(1.9) d (Tx, Ty) , d (x, y) , d (x, Tx) , d (y, Ty) , d (x, Ty) , d (y, Tx)

such that the Picard iteration {xn}∞n=0 given by (1.6) is a Cauchy sequence. So, in the set-
ting of a complete metric space, this implies that {xn}∞n=0 is convergent. For example, the
Banach contraction condition implies that for any x, y ∈ X , the element Ty must be an ele-
ment of the set {z ∈ X : d (z, Tx) < l · d (x, y)} and Tx ∈ {z ∈ X : d (z, Ty) < l · d (x, y)},
where l ∈ (0, 1).

FIGURE 1. Geometric interpretatin of Banach contraction condition
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In this way, the lengths of sides and diagonals of quadrilateral x − Tx − Ty − y can be
used to obtain some inequalities, which applied iteratively, degenerate the quadrilateral
x− Tx− Ty − y into a single point. This point is the fixed point of T .

x

Tx

x y

Tx

Ty

1
2
[d (x, Tx) + d (y, Ty)]

FIGURE 2. A geometric interpretation of Kannan contractive condition

In the case of Kannan contraction condition, the map T : X → X satisfies the inequality

(1.10) d(Tx, Ty) ≤ a [ d(x, Tx) + d(y, Ty) ], ∀x, y ∈ X,
where a ∈

(
0, 12
)
. So, if we consider the case in which the quadrilateral x− Tx− Ty− y is

a trapezoid, then (1.10) implies that the length of the side Tx − Ty must be less than the
length of the midsegment of the considered trapezoid.

The following fixed point theorem is due to Kannan [17].

Theorem 1.2 ([17]). Let (X, d) be a complete metric space. If the mapping T : X → X satisfies
(1.10), with 0 < a < 1

2 , then T has a unique fixed point.

A similar results is due to Berinde [5].

Theorem 1.3 ([5]). Let (X, d) be a complete metric space and T : X → X be a mapping such
that there exist l ∈ (0, 1) and some L ∈ [0,∞) such that

(1.11) d (Tx, Ty) ≤ l · d (x, y) + L · d (x, Tx) for all x, y ∈ X,
holds. Then T has a unique fixed point.

Most of metrical fixed point theorems deal with a large variety of mappings satisfying
a certain metric condition that involves various functions of the displacements given by
(1.9) and satisfy some properties such that the existence of fixed point is ensure. In this
paper, we study the fixed points set via a transformation applied to the elements ofX , not
to the values given by (1.9). In order to do so, we first present in the following sections
a few aspects and result related to (l, L)–Berinde operator (or almost contractions), and
then, in Section 3, we shall give a new fixed point theorem. Similar approaches to the
previous fixed point results can be found in the works [21, 22]. The case of contractive
condition of integral type are considered, too.
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2. PRELIMINARIES

We shall need the following concept.

Definition 2.1. Let (X, d) be a metric space and the map H : X → X . The mapping
T : X → X is a

(
H, l, L

)
–Berinde operator if there is a constant l ∈ (0, 1) and some

L ∈ [0,∞) such that

(2.12) d
(
HTx,HTy

)
≤ l · d

(
Hx,Hy

)
+ L · d

(
Hy,HTx

)
, for all x, y ∈ X.

Due to the symmetry of the metric d, the condition (2.12) can be satisfied only if the
dual one

(2.13) d
(
HTx,HTy

)
≤ l · d

(
Hx,Hy

)
+ L · d

(
Hx,HTy

)
, for all x, y ∈ X

holds.

Remark 2.3. Let Let (X, d) be a metric space, a ∈ X be an element of X and the map
Hc : X → {a}, i.e., Hcx = a for any x ∈ X . Any mapping T : X → X is

(
Hc, l, L

)
–Berinde

operator for any l ∈ (0, 1) and L ≥ 0.

Remark 2.4. If H : X → X is the identity map 1X , i.e. Hx = x for all x ∈ X , then (2.12) is
(1.2), so any (l, L)–Berinde operator is (1X , l, L)–Berinde operator.

Example 2.3. Let a ∈ (1,∞) be a real number andX = [0,∞) be endowed with the metric
d (t, s) = |t− s| for all t, s ∈ [1,∞). We consider H : [0,∞) → [0,∞) and Ta : [0,∞) →
[0,∞) given by Ta (t) = a · t and

H (t) =


a

t
if t ∈ (0,∞)

0 if x = 0.

We claim that is a
(
H, l, L

)
–Berinde operator. Indeed, for any t, s ∈ (0,∞) we have

d
(
H (Ta (t)) ,H (Ta (s))

)
=

∣∣∣∣1t − 1

s

∣∣∣∣ =
1

a
·
∣∣∣a
t
− a

s

∣∣∣ =
1

a
· d
(
H (t) ,H (s)

)
.

Therefore, (2.12) and (2.13) hold for any t, s ∈ (0,∞), with l ∈
[
1
a , 1
)

and for any L ≥ 0.
Since Ta (0) = 0, we have H (Ta (0)) = H (0) = 0. So, the equality

(2.14) d
(
H (Ta (t)) ,H (Ta (0))

)
= d

(
H (Ta (t)) ,H (0)

)
=

1

t

holds for any t ∈ (0,∞). Now, by 1
t ≤ L·

1
t for anyL ≥ 1, results d

(
H (Ta (t)) ,H (Ta (0))

)
≤

L · d
(
H (0) ,H (Ta (t))

)
. Hence, (2.12) holds for any t ∈ (0,∞), with s = 0, l ∈ (0, 1) and

L ≥ 1. On the other hand, by 1 ≤ (l + L) ·a, we obtain the inequality 1
t ≤ l ·

a
t +L · at . This

is equivalent with (2.13) for any t ∈ (0,∞) and s = 0, with l ∈ (0, 1) and L ≥ 0. Obviously,
(2.12) and (2.13) hold for t = s = 0. In conclusion, Ta is a

(
H, l, L

)
–Berinde operator for

any L ≥ 1 and l ∈
[
1
a , 1
)
, where a ∈ (1,∞).

Remark 2.5. By Example 1.2 and Example 2.3, we can say that the mapping
T2 : [0,∞)→ [0,∞), given by T2 (x) = 2x,

is not a (l, L)–Berinde operator, but is
(
H, l, L

)
–Berinde operator.
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Example 2.4. Let a and b be two real numbers, a, b ∈ R. Let X = {a, b} be endowed with
the usual metric, denoted by d. There are only four maps on X to itself, namely

f1 (a) = f1 (b) = a,

f2 (a) = f2 (b) = b,

f3 (a) = a, and f3 (b) = b,

and
f4 (a) = b, and f4 (b) = a.

Assume T = f4. By Remark 2.3 and Remark 2.4, the mapping T is (fi, l, L)–Berinde
operator, for i ∈ {1, 2, 3}, l ∈ (0, 1) and L ≥ 0. On the other hand, we have

d (f4 (a) , f4 (T (b))) = d (f4 (b) , f4 (T (a))) = 0,

so
d (f4 (T (a)) , f4 (T (b))) = d (a, b) > l · d (f4 (a) , f4 (b)) + L · δ,

holds for any l ∈ (0, 1) and L ≥ 0, where δ ∈ {d (f4 (a) , f4 (T (b))) , d (f4 (b) , f4 (T (a)))}.
Hence, none of (2.12) and (2.13) are not satisfied, therefore it does not exists l ∈ (0, 1) and
L ∈ [0,∞) such that T is a (f4, l, L)–Berinde operator.

Definition 2.2. Let (X, d) be a metric space. We say that the map T : X → X is s-
admissible if for any sequences {xn}∞n=0, the implication

(2.15) lim
n→∞

Txn = Λ =⇒ lim
n→∞

xn = λ, with Tλ = Λ.

holds.

Remark 2.6. If T maps continuously the compact spaceX into itself, then T is s-admissible.

3. FIXED POINT THEOREM FOR (l, L)-BERINDE OPERATOR VIA THE EQUIVALENT METRIC
SPACE

We now state and prove one of the main result in this paper.

Theorem 3.4. Let (X, d) be a metric space and H : X → X be an one-to-one, s-admissible map.
If T : X → X is a H–Berinde operator, i.e. a map satisfying (2.12) with 0 < δ < 1 and some
L ≥ 0, then T has at least one fixed point in X .

Proof. This proof is based on an argument similar to the one used by Berinde in [5].
For any x ∈ X , the inequality

(3.16) d
(
HTx,HT 2x

)
≤ l ·

(
Hx,HTx

)
+ L · d

(
HTx,HTx

)
= l · d

(
Hx,HTx

)
.

holds.
Let x, y ∈ X . By (2.12), we have

d
(
Hx,Hy

)
≤ d

(
Hx,HTx

)
+ d

(
HTx,HTy

)
+ d

(
Hy,HTy

)
≤ d

(
Hx,HTx

)
+ l · d

(
Hx,Hy

)
+ L · d

(
Hy,HTx

)
+ d

(
y,HTy

)
Hence, the inequality

(3.17) d
(
Hx,Hy

)
≤ 1

1− l

[
d
(
Hx,HTx

)
+ d

(
Hy,HTy

)]
+

L

1− l
· d
(
Hy,HTx

)
holds for all x, y ∈ X .
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Let x0 ∈ X be arbitray and let {xn}∞n=0 be the Picard iteration defined by (1.6). Now,
(3.16) is

d
(
Hxn,Hxn+1

)
≤ l · d

(
Hxn−1,Hxn

)
, n = 1, 2, 3, . . .

and, by induction, we obtain

(3.18) d
(
Hxn,Hxn+1

)
≤ ln · d

(
Hx0,Hx1

)
, n = 1, 2, 3, . . .

and

d
(
Hxn,Hxn+p

)
≤

p∑
k=1

d
(
Hxn,Hxn+k

)
≤ ln ·

(
p∑

k=1

lp−1

)
· d
(
Hx0,Hx1

)
=
ln (1− lp)

1− l
· d
(
Hx0,Hx1

)
, n = 1, 2, 3, . . .

(3.19)

Since l ∈ (0, 1), (3.19) shows that {Hxn}∞n=0 is Cauchy sequence in the complete metric
space (X, d) and hence is convergent. Denote

Hxn → h1, as n→∞.

Since {Hxn}∞n=0 is convergent and H is s-admissible, it results that {xn}∞n=0 has a conver-
gent subsequence. So, there are {xnk

}∞k=0 and h2 ∈ X such that xnk
→ h2, as k → ∞.

Without loss the generality, for the simplicity, we denote this subsequence by {xk}∞k=0, so
xk → h2, as k →∞.

Now, we estimate the distance between Hh2 and HTh2. We have

d
(
Hh2,HTh2

)
≤ d

(
Hh2,Hxk+1

)
+d
(
Hxk+1,HTh1

)
= d

(
Hh2,Hxk+1

)
+d
(
HTxk,HTh2

)
.

By (2.12) and (3.17) we obtain

d
(
Hh2,HTh2

)
≤ d

(
Hh2,Hxk+1

)
+ l · d

(
Hh2,Hxk

)
+ L · d

(
Hh2,HTxk

)
= d

(
Hh2,Hxk+1

)
+ l · d

(
Hh2,Hxk

)
+ L · d

(
Hh2,Hxk+1

)
= (1 + L) · d

(
Hh2,Hxk+1

)
+ l · d

(
Hh2,Hxk

)(3.20)

Letting k →∞, we obtain

(3.21) d
(
Hh2,HTh2

)
≤ (1 + l + L) · d

(
Hh2, h1

)
.

Now, because H is s-admissible, by (2.15) we have Hh2 = h1, and by (3.21) we obtain
d
(
Hh2,HTh2

)
= 0, i.e., Hh2 = HTh2. Since H is one-to-one and onto X , it results

h2 = Th2,

which shows that h2 is a fixed point of T . �
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4. FIXED POINT THEOREM FOR MAPPINGS SATISFYING A GENERAL CONTRACTIVE
CONDITION OF INTEGRAL TYPE VIA THE EQUIVALENT METRIC SPACE

From the remarks presented in Section 1, it can be concluded that the conditions which
ensure the existence of a fixed point are related to some lengths between specific elements
of the considered metric space. One tool to measure the distances is the notion of integral.
So, there is a variant of contractive condition expressed by integral. The general condition
of integral type was introduced by Rhoades, B. E. [26] and Branciari, A. [11]. In the last
decade, the literature records many papers in which this type of contractive condition are
studied, see for example [14, 16, 30, 23, 33] and reference therein.

We remind here a fixed point theorem for mappings satisfying a general contractive
condition of integral type.

Theorem 4.5 ([11]). Let (X, d) be a complete metric space, k ∈ (0, 1) and T : X → X be a
mapping such that for each x, y ∈ X one has∫ d(Tx,Ty)

0

f(t)dt ≤ k
∫ d(x,y)

0

f(t)dt

where f : [0,∞) → [0,∞] is a Lebesque-integrable mapping which is summable on each compact

subset of [0,∞), non-negative and such that

t∫
0

f(s)ds > 0 for each ε > 0. Then T has a unique

fixed point x∗ ∈ X such that lim
n→∞

Tnx0 = x∗ for each x0 ∈ X .

We shell need the following concept.

Definition 4.3. Let (X, d) be a metric space. Let H : X → X be a mapping of X to itself
and f : [0,∞)→ [0,∞] be a function such that

i) the map f is Lebesque-integrable, i.e. f is summable on each compact subset of
[0,∞),

ii) f (x) ≥ 0 for all x ∈ [0,∞),

iii)

t∫
0

f(s)ds > 0 for each ε > 0.

The mapping T : X → X is a H-contraction of integral type if the inequality

(4.22)
∫ d(HTx,HTy)

0

f(t)dt ≤ k
∫ d(Hx,Hy)

0

f(t)dt

holds for all x, y ∈ X .

In that follows, based on an argument similar to the one used by Branciari, A. [11], we
state and prove another fixed point theorem in terms of equivalent metric space.

Theorem 4.6. Let (X, d) be a metric space and H : X → X be an one-to-one and onto X ,
s-admissible map. If T : X → X is a H-contraction, then T has at least one fixed point in X .

Proof. For the simplicity, we use the notations
[
0, d

(
Hx,Hy

)]
:= D(x, y) and∫ b

a

f (t) dt :=

∫
[a,b]

fdµ,
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so (4.22) can rewrite as

(4.23)
∫

D(Tx,Ty)

fdµ ≤ k ·
∫

D(x,y)

fdµ.

Let x0 ∈ X and xn = Tnx0, n = 0, 1, 2, . . . be the Picard iteration. We claim that {Hxn}∞n=0

is Cauchy sequence. First, we have∫
D(xn,xn+1)

fdµ ≤ k ·
∫

D(xn−1,xn)

fdµ ≤ . . . ≤ kn ·
∫

D(x0,x1)

fdµ for all n ≥ 1,

and, since k ∈ (0, 1) we obtain

(4.24)
∫

D(xn,xn+1)

fdµ −→ 0, as n→∞.

By iii) from Definition 4.3 and (4.24), we can conclude that

(4.25) d
(
Hxn,Hxn+1

)
−→ 0, as n→∞.

In fact, hypothesis iii) from Definition 4.3 ensure that for any y ∈ X the implication

(4.26)
∫

D(xn,y)

fdµ −→ 0 as n→∞ =⇒ d
(
Hxn, y

)
−→ 0 as n→∞

holds.
From (4.25) we can prove that {Hxn}∞n=0 is Cauchy sequence in the complete metric

space (X, d) and hence is convergent. Hence, there is h1 ∈ X such that

Hxn → h1, as n→∞.

Since {Hxn}∞n=0 is convergent and H is s-admissible map, results that {xn}∞n=0 has a con-
vergent subsequence. So, there are {xnk

}∞k=0 and h2 ∈ X such that xnk
→ h2, as k → ∞.

Without loss the generality, for the simplicity, we denote this subsequence by {xk}∞k=0, so
xk → h2, as k →∞ and Hh2 = h1.

Since ∫
D(h2,xk)

fdµ −→ 0, as k →∞

and ∫
D(Th2,xk)

fdµ −→ 0, as k →∞

by (4.26) we obtain

(4.27) d
(
Hh2,Hxk

)
−→ 0, as k →∞,

respectively

(4.28) d
(
HTh2,Hxk

)
−→ 0, as k →∞.

By triangle inequality, we have

(4.29) d
(
Hh2,HTh2

)
≤ d

(
Hh2,Hxk+1

)
+ d

(
Hxk+1,HTh1

)
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Now, letting k → ∞, by (4.27) and (4.28), results d
(
Hh2,HTh2

)
= 0, i.e. Hh2 = HTh2.

Since H is one-to-one and onto X , results h2 = Th2, which shows that h2 is a fixed point
of T . �

5. CONCLUSION

It is well known that two metric spaces (X1, d1) and (X2, d2) are equivalent if there is
a function h : X1 → X2 which is one-to-one and onto, such that D̃ : X1 → X1 defined
by D̃ (x, y) = d2 (h (x) , h (y)), for all x, y ∈ X1 is a metric equivalent with d1, i.e., the
metrics d1 and D̃ induce the same topology onX1. In the light of this remark, Theorem 3.4
establishes a set of hypotheses which ensure the existence of a fixed point of the map T not
by its properties in the metric space (X, d), but by its properties in the equivalent metric
space

(
X, D̃

)
. Hence, the fixed point theorems can be studied as homotopies, for details

see [25, 32]. In a similar way, a contractive condition of integral type can be rewrite with
respect to the itself equivalent metric space, hence we can obtain new theorems related to
results from [11, 14, 16, 23, 26, 30, 33].

Mathematicians have studied fixed point results in different spaces using various con-
tractive conditions. One of the significant results from the several new contractive condi-
tions which have been developed in an attempt to obtain more refined fixed point results
is the concept of (l, L)-Berinde contractions. Some related fixed point results can be found
in [7, 18, 31] etc. For all these results it is important to give some examples which involve
the fixed point theory as a must-have tool in the study of the solutions of differential and
integral equations, see for example [8, 12, 13, 15, 18]. So, as further study, we propose
studying the numerous examples from literature to reveal a way to combine the meth-
ods to solve some nonlinear differential and/or integral equations with the techniques
from metrical fixed point theory, not only by new contractive conditions but also via an
equivalent metric space.
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[6] Berinde, V.; Păcurar, M. Chapter 2 - Iterative approximation of fixed points of single-valued almost con-
tractions. In Fixed Point Theory and Graph Theory, M. R. Alfuraidan and Q. H. Ansari, Eds. Academic Press,
Oxford, 2016, 29–97.
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2, 131–147.
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