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Unpredictability in Markov chains

MARAT AKHMET

ABSTRACT. We have formalized realizations of Markov chains as conveniently constructed sequences, and
explained, why the random dynamics admits the unpredictability, the concept introduced in our papers previ-
ously. The method of the domain structured dynamics (dynamics on labels) has been applied. An illustrating
example with a proper numerical simulation is provided.

1. INTRODUCTION AND PRELIMINARIES

The first goal of the Markov research [19] was to show that the random processes of de-
pendent events may behave as with independent events. Thus, respectively simple mod-
els were invented, most effective for many applications. It is impossible underestimate
the role of the Markov chains in development of random dynamics theory and its appli-
cations. For instance, the egrodic theorem was strictly approved at the first time under
the circumstances. There are many observations that the chains are relative to symbolic
dynamics and correspondingly to Bernoulli scheme. The significant step for the compre-
hension was done by Donald Ornstein in [21], who verified that B−automorphisms such
as subshifts of finite type and Markov shifts, Anosov flows and Sinai’s billiards, ergodic
automorphisms of the n−torus [22, 23] and the continued fraction transforms are, in fact,
isomorphic. Issuing from these sources it is of great interest not only to show that vari-
ous random processes can be described in terms of chaos, but they relate equally in the
sense to each other. Researchers have looked for chaos in random dynamics, as well as for
stochastic features in deterministic motions [12, 13, 14]. Thus, the problem of chaotic in-
gredients in Markov chains, which is discussing in the paper, is a part of the more general
project.

The unpredictable orbit [1] as a single isolated motion, presenting the Poincaré chaos
[2], and identified in the chains as a certain event, is the ultimate point of comprehen-
sion of results of this paper. In other words, the main result of this paper is existence
of a realization, which is an unpredictable sequence, and its closure, in the topology of
convergence on bounded intervals, contains all other realizations of the random process.
This implies that each finite simulation of the dynamics is an ark of the unpredictable re-
alization. In other words, it has been proved that the unpredictability is a certain event for
the Markov chain. Let us remind that an event is certain, if it occurs at every performance of an
experiment.

The main task of the present research is to find signs of the unpredictability in Markov
chains. Then, to show that the presence is maximal in the sense of probability. The method
of domain structured chaos is originated in [4, 5] is in the basis of our study. In the book
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[11], we have suggested, issuing from the wide spectra of problems, call it Domain Struc-
tured Dynamics. In the present research, we suggest another term Dynamics on Labels. It
has been successfully applied for chaos indication in fractals [4], neural networks [5], and
for Bernoulli processes [7].

One can apply finite [12, 13, 15] partitioning and symbolic dynamics to find random-
ness in deterministic motions. Differently, we utilize infinite and even uncountable parti-
tioning [3, 4, 9] to establish strong relations of the random processes with Poincaré chaos.
We formalize a chaos generation through specially structured sets, subduing them to the
abstract similarity map. This provides to us the comprehension that chaotic behavior
is proper to the Bernoulli scheme dynamics and then to various random and determin-
istic processes on discrete and continuous time [6, 7, 8]. Presently, we are on the next
step of the exploration, and show how chaos can be recognized in Markov chains. Time-
homogeneous chains with a finite state space and memory are under discussion.

The approach is applied such that the dynamics can be investigated, focusing not on
ergodicity, but on a single motion description such that an individual geometry is better
understood. Thus, we show that an isolated realization of a Markov chain behaves in
time identically with a properly chosen realization of a Bernoulli scheme, and they both
are identical in dynamics with the path of the similarity map in a correspondingly chosen
space.

The closure of the unpredictable realization as it is Poisson stable is said to be the
quasi-minimal set [24]. It contains uncountable set of unpredictable realizations. We have
proved that a quasi-minimal set as the union of all infinite realizations of the Markov chain is
a certain event. In other words, each experiment of the process produces an orbit of the
quasi-minimal set. This is another formulation of the main result.

Our research confirms that the Bernoulli scheme [7], Markov chains, as well as abstract
hyperbolic dynamics [6] are all with the same type of chaos. It is significant that the
Poincaré chaos is proper for the motions. This provides, new opportunities, exceptionally
for stochastic processes. We suppose that the research can be complemented with similar
analysis for other Bernoulli automorphisms considered by D. Ornstein [21] as well with
extension of the results for majority of stochastic processes, if proper structured domains
will be constructed.

2. MARKOV CHAINS

A Markov chain is a stochastic model, which describes a sequence of possible events
such that the probability of each event depends only on the state attained in the previous
one [17, 18]. There are many applications of the Markov chains as statistical models of
real-world processes such as studying queues or lines of customers arriving at an airport,
currency exchange rates, cruise control systems in motor vehicles and animal population
dynamics [20].

Let a discrete-time stochastic process Xn, n ≥ 0, on a countable set S be given. That
is, a collection of random variables defined on a probability space (Ω, F, P ), where P is
a probability measure on a family of events F in an event-space Ω. The set S is the state
space of the process, and the valueXn ∈ S is the state of the process at time n. The Markov
chain, is a stochastic process such that the Markov property P{Xn+1 = sj |X0, ..., Xn} =
P{Xn+1 = sj |Xn} is true for all si, sj ∈ S and n ≥ 0, and P{Xn+1 = sj |Xn = si} = pij ,
where pij is the transition probability that the chain jumps from state i to state j. The prop-
erty says that, at any time n, the next state Xn+1 is conditionally independent of the past
X0, ..., Xn−1 given the present stateXn.More precisely, that the transition probabilities do
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not depend on the time parameter n. That is, the chain is time-homogeneous. If the transi-
tion probabilities were functions of time, the process would be a non-time-homogeneous
Markov chain.

Consider a finite state space S = {s1, . . . , sm},wherem is a natural number, not smaller
than two, and a metric d for the space. Denote pij = pj(si) the Markov probability for
sj such that Σm

j=1pij = 1 for all i = 1, . . . ,m. In what follows, we shall investigate the
problem of chaos considering that all the probabilities pij , i, j = 1, . . . ,m, are positive.

If fij is the event, which consists of two elementary events, si and sj , happen succes-
sively, then an infinite realization of the Markov chain Xn, n ≥ 0, can be formalized as the
infinite sequence fi1j1fi2j2 . . . finjn . . . , with ik = jk−1 for all k = 2, 3, . . . . We have that
p(fij) = pij . The formalization does not give advantages, if one consider the chains with-
out memory, but it makes easier the discussion of the processes with memory, in what
follows.

Present the last sequence as the label Fi1i2..., ik = 1, 2, ...,m, k = 1, 2, . . . , of the space
of labels, F , with the metric δ(Fi1i2...,Fl1l2...) = Σ∞k=1d(sik , slk)/2k.

Next, we will consider Markov chains with memory of a non-zero length, besides the
zero length memory. We start with the length equal to two such that the element fijk
presents three elementary events si, sj and sk happen successively, and the probability
for sk is equal to pijk = pk(si, sj). Then the Markov chain with memory has the formal
presentation fi1j1k1

fi2j2k3
. . . finjnkn

. . . , where jl = kl−1, il = jl−1 for all l = 2, 3, . . . . Ac-
cepting the last sequence as the element Fi1i2..., ik = 1, 2, ...,m, k = 1, 2, . . . , of the space
F with the metric δ(Fi1i2...,Fl1l2...) = Σ∞k=1d(sik , slk)/2k we attain the basis, common with
that for the chain without memory.

At last, consider the Markov process with the memory of the length equal to arbitrary
natural number n. We formalize the discussion with the elements fi1,...,in , which consist
of successive elementary events si1 , . . . , sin , such that the sequence fi11,...,in1 . . . , fi1l ,...,inl . . .
with ijl = ij+1

l−1 , j = 1, . . . , n−1, l = 2, 3, . . . , is the formalization of the chain. We obtain the
structure for the dynamics research, if accept the last sequence as an element Fi11i

1
2...
, i1k =

1, 2, ...,m, k = 1, 2, . . . , of the space F , making stress on the events with the indexes
i1k, k = 1, 2, . . . .

It is clear that for all cases, regardless are they with memory or not, we have constructed
one and the same space F of elements Fi1i2..., ik = 1, 2, ...,m, k = 1, 2, . . . , with the
distance δ(Fi1i2...,Fl1l2...) = Σ∞k=1d(sik , slk)/2k. This is why, the space (F , δ) is the main
object of analysis for chaos presence in the random process, in what follows.

Complete the dynamics with the special mapping ϕ : F → F such that

(2.1) ϕ(Fi1i2...in...) = Fi2i3...in...,

for each element of the set. The map ϕ is in the paradigm of the Bernoulli shift [23], known
for the symbolic dynamics. It is said to be the abstract similarity map [4] as it is convenient
to describe fractals, which are determined through the abstract self-similarity. The triple
(F , ϕ, δ) is said to be the abstract similarity dynamics [11].

From the definitions it implies that appearance of values of the map is the same as for
the members of the state space, which ordered successively. Consequently, if one proves
that the map is chaotic one of types in literature, then we have to recognize that the chaos
is proper for the stochastic dynamics if appropriate probability arguments are provided.

The following sets,

(2.2) Fi1i2...in =
⋃

jk=1,2,...,m

Fi1i2...inj1j2...,

where indices i1, i2, ..., in, are fixed, were introduced in [4, 5].
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It is clear that

F ⊇ Fi1 ⊇ Fi1i2 ⊇ ... ⊇ Fi1i2...in ⊇ Fi1i2...inin+1
..., ik = 1, 2, ...,m, k = 1, 2, ... ,

that is, the sets form a nested sequence.
Since one can verify that

(2.3) ϕn(Fi1i2...in) = F ,

for arbitrary natural number n and ik = 1, 2, ...,m, k = 1, 2, ... , there is a reason to call ϕ
a similarity map.

We will say that for the sets Fi1i2...in the diameter condition is valid, if

(2.4) sup
ik=1,2,...,m

diam Fi1i2...in → 0 as n→∞,

where diam(A) = sup{δ(x,y) : x,y ∈ A}, for a set A in F .
Define the function δ(A,B) = inf{δ(x,y) : x ∈ A, y ∈ B}, for two nonempty sets A and

B in F . Set F satisfies the separation condition of degree n if there exist a positive number
ε0 and a natural number n such that for arbitrary indices i1i2...in one can find indices
j1j2...jn such that

(2.5) δ
(
Fi1i2...in , Fj1j2...jn

)
≥ ε0.

Let us give the definition of the unpredictability in the sense of the dynamics (F , δ).

Definition 2.1. [11] A point Fi1i2... from the set F is unpredictable, if there exist a posi-
tive number ε0 and sequences tm, sm, of natural numbers both of which diverge to infinity
such thatϕtm(Fi1i2...ik...)→ Fi1i2...ik... asm→∞ and δ(ϕtm+sm(Fi1i2...ik...), ϕ

sm(Fi1i2...ik...)) ≥
ε0 for each natural number m.

Theorem 2.1. If the diameter and separation conditions are valid, then dynamics of the similarity
map possesses an unpredictable trajectory.

Proof. Let us fix an unpredictable point of the dynamics as a member Fi1i2...ik... of F ,
which index sequence i1i2...ik... consists of subsequently chosen all strings of length one,
then all possible strings of length two, etc., to infinity. The sample of this construction is
seen for the two symbolic alphabet case in the next diagram,

( 0 1︸︷︷︸
1 blocks

| 00 01 10 11︸ ︷︷ ︸
2 blocks

| 000 001 010 011 . . .︸ ︷︷ ︸
3 blocks

| . . .).

It is easily seen, by the diameter condition that the point is Poisson stable. That is,
there exists a sequence of integers, tm, divergent to infinity such that ϕtm(Fi1i2...ik...) →
Fi1i2...ik... as n → ∞. Consider the unpredictability property. We will show that there is
a sequence sm divergent to infinity such that δ(ϕtm+sm(Fi1i2...ik...), ϕ

sm(Fi1i2...ik...)) ≥ ε0,
where ε0 is the separation constant for the space (F , δ). Assume on the contrary, that
there is no such sequence. Then, δ(ϕtm+i(Fi1i2...ik...), ϕ

i(Fi1i2...ik...)) < ε0, for all natural i.
This contradicts to the diameter condition, and the choice of the initial point, since means
absence of the initial string of length n in the index sequence of the point ϕtm(Fi1i2...ik...).

�

It is easily seen that for a finite metric space (S, d), the Definition 2.1 has the next form,
which is most convenient for the present research.
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Definition 2.2. A bounded sequence si ∈ S, i = 0, 1, . . . , is called unpredictable if there
exist a positive number ε0 and sequences tn, un, n = 1, 2, . . . , of positive integers both of
which diverge to infinity such that si+tn = si for each bounded interval of integers, if n is
sufficiently large, and d(stn+un , sun) ≥ ε0 for each natural number n.

Let us fix an unpredictable realization of the chain, which can be determined as follows.
Consider an unpredictable pointF∗i1i2... of the map ϕ. Fix the sequence, s∗ = {s∗ik}k,which
is the corresponding unpredictable realization of the Markov chain. Duo to the Definition
2.2 and Theorem 2.1, the following assertion is valid.

Theorem 2.2. Each finite realization of the Markov chain coincides with an arc of s∗. That is, the
unpredictable realization happens in each experiment of the chain, and is a certain event.

Thus, one has to recognize that each experiment of the Markov chain, with and with-
out memory, produces an arc of an unpredictable orbit. This result can be considered as
the main achievement of this research. It agrees with the principle result of the ergodic
theory [25] that a single trajectory proves behavior of the whole dynamics and all other
trajectories. In fact, we can say that it is a fixed unpredictable orbit. In other words, this
is reproduction of the chaos as a certain event. This is what guaranties the irregularity of
each finite sample path of the chain.

Now, let us consider the random dynamics for deterministic sensitivity. For the dis-
cussion, let us fix an infinite sequence of elements of the state space. The probability that
a simulated realization will coincide with the sequence forever is equal to zero. Conse-
quently, the complimentary event that an experiment with the same start state will diverge
from the sequence at some finite time is equal to one. Since of the metric it means that the
sensitivity is present for the random dynamics with probability one.

To finalize the relationship of the stochastic dynamics and deterministic chaos, we con-
clude that there are elements of the deterministic chaos, which are certain events such as
appearance of an unpredictable sequence as a finite realization, and there are ingredients
fo chaos such as the sensitivity, which are most probable, but not deterministic, not cer-
tain events. Possibly, it is useful to say that chaos is proper for the random processes with
increasing to one probability as time is increasing. In this sense, one can recommend the
second law for unpredictable strings [10, 11].

3. AN EXAMPLE: RANDOM WALK

Consider the following Markov chain as an example. Let the real valued scalar dy-
namics Xn+1 = Xn + Yn, n ≥ 0, be given such that Yn = {−1, 1} is a random variable.
Since we expect for the chaotic dynamics realizations to be bounded, the special chain
with boundaries is constructed. That is, the probability distribution P (1) = P (−1) = 1/2,
if Xn 6= 1, 4, and certain events Yn = −1, if Xn = 4, and Yn = 1, if Xn = 1. To satisfy the
construction of the present research, we will make the following agreements. First of all,
denote s0 = 1, s1 = 2, s2 = 3, s3 = 4. Consider, the state space S = {s1, s2}. Introduce
the following events, f11 = {s1, s0, s1}, f12 = {s1, s2}, f21 = {s2, s1}, f22 = {s2, s3, s2}.
It is clear that pi1 + pi2 = 1, i = 1, 2, and all the probabilities are equal to the half. That
is, despite the differences with the theoretical chain construction in the main body of the
paper, we have the sequences fi1j1fi2j2 . . . finjn . . . , with ik = jk−1 for all k = 2, 3, . . . ,
and we are in the circumstances of the domain structured chaos. Consequently, there is
unpredictability. To visualize an unpredictable realization, we will draw the graph of the
function ψ(t) = Xn, if t ∈ [n/10, (n + 1)/10), 0 ≤ t ≤ 60. According to Theorem 2.2, it
is an arc of an unpredictable sequence. The graph of the function is seen in Figure 1. It
illustrates an unpredictable sequence, the sample path of the random walk.
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FIGURE 1. The graph of the function ψ(t) as visualization of the unpre-
dictable realization of the chain Xn, n ≥ 0. The vertical lines are drawn
for better visibility.

4. CONCLUSIONS

The outcome of the research is the existence of an unpredictable sequence as a real-
ization of the Markov chain, and the sequence appears as finite realization of each ex-
periment of the process. That is, appearance of the sequence is a certain event for the
stochastic dynamics. In the same time the sensitivity appears not deterministically, but
with probability one as time increases to infinity. From this point of view one can say that
the deterministic chaos is an event for the stochastic dynamics with probability one. This
result is true for many other discrete time random processes. For instance, the Bernoulli
scheme. The significant use of the investigation is that one can unite methods of deter-
ministic chaos with those for stochastic dynamics. Many other opportunities may appear.
Among the methods are control and synchronization of chaos [16]. We have discussed the
sensitivity is present with probability one. Evidently, it is true for the Bernoulli scheme
[10, 11] and other dynamics, which can be approved for the similarity dynamics. Next, our
study will relate Markov processes with continuous time, as well as unbounded [8, 11].
This also is connected to many other random processes. Our results provide more lights
on the Markov chains as ergodic processes, since we have shown that there is the un-
countable set of realizations, which are unpredictable orbits of the dynamics, and each of
them is dense in the set of all realizations [2].
Acknowledgements. The author has been supported by 2247-A National Leading Re-
searchers Program of TUBITAK, Theory of unpredictable oscillations and applications to
neural networks dynamics, Turkey, N 120C138.

REFERENCES

[1] Akhmet, M.; Fen, M. O. Unpredictable points and chaos. Commun. Nonlinear Sci. Numer. Simulat. 40 (2016),
1–5.
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