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Convergence estimates for abstract second order
differential equations with two small parameters and
Lipschitzian nonlinearities

ANDREI PERJAN and GALINA RUSU

ABSTRACT. In areal Hilbert space H we consider the following singularly perturbed Cauchy problem
{ euls(t) + duls(t) + Aucs(t) + B(ues(t)) = f(t), t€(0,T),
ues(0) = up, uls(0) =u1,

where ug,u1 € H, f : [0,T] — H, €, § are two small parameters, A is a linear self-adjoint operator and B is a
nonlinear A'/2 Lipschitzian operator.

We study the behavior of solutions u.s in two different cases: ¢ -+ 0and 6 > dg > 0;e — Oand 6 — O,
relative to solution to the corresponding unperturbed problem.

We obtain some a priori estimates of solutions to the perturbed problem, which are uniform with respect
to parameters, and a relationship between solutions to both problems. We establish that the solution to the
unperturbed problem has a singular behavior, relative to the parameters, in the neighbourhood of ¢t = 0.

1. INTRODUCTION

Let H be a real Hilbert space endowed with the scalar product (-, -) and the norm | - |,
and V be a real Hilbert space endowed with the norm || - ||. Let A : V C H — H, be a
linear self-adjoint operator and B is nonlinear A'/? Lipschitzian opeartor. Consider the
following Cauchy problem:

euls(t) + o uls(t) + Aucs(t) + B(ues(t)) = f(t), t € (0,7),
Ues(0) = up, uls(0) = u,
where ug, u1, f : [0,7] = H and ¢, § are two small parameters. We investigate the beha-

vior of solutions us to the problem (P.s) in two different cases:
(1) e = 0and § > dp > 0, relative to the solutions to the following unperturbed system:

(Psé)

ol (t) + Als(t) + B(ls(t)) = f(t), t€(0,T),
(Ps)
15(0) = uo;
(12) e — 0 and 6 — 0, relative to the solutions to the following unperturbed system:
Au(t) + B(o(t) = f(8), te[o,T), (Py)

The problem (P.5) is the abstract model of singularly perturbed problems of hyperbolic-
parabolic type in the case (i) and of the hyperbolic-parabolic-elliptic type in the case (ii).
Such kind of problems arise in the mathematical modeling of elasto-plasticity phenom-
ena. These abstract results can be applied to singularly perturbed problems of hyperbolic-
parabolic-elliptic type with stationary part defined by strongly elliptic operators.
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A large class of works is dedicated to the study of singularly perturbed Cauchy prob-
lems for linear or nonlinear differential equations of second order of type (P.5). Without
pretending to make a complete analysis we will mention some of these works.

Under various restrictions, in [2]-[7], [12], [15], [16], [17], [33] convergence estimates for
linear hyperbolic-parabolic singular perturbations were obtained.

The nonlinear problems of hyperbolic-parabolic type have been analyzed in [13], [32],
[18]-[20].

Under some assumptions, closely related to those we use in this article, in [21] and [22]
the author has been analyzed the behavior of solutions to the semi-linear second order
Cauchy problems with a small parameter.

Some special cases of hyperbolic-parabolic singular perturbations for nonlinear equa-
tions of Kirchhoff type with a small parameter in front of the second-order time-derivative
were studied in [8] -[11] and [14].

In most of the mentioned cases the results were obtained by using the theory of semi-
groups of linear operators. Different to other methods, our approach is based on two key
points. The first one is the relationship between solutions to the Cauchy problem for the
abstract linear second order differential equation and the corresponding problem for the
first order equation. The second key point are a priori estimates of solutions, which are
uniform with respect to the small parameter. Moreover, we study the problem (P.s) for
a larger class of functions, i. e. f € W1P(0,T; H). Also we obtain the convergence rate,
as € — 0, which depends on p. Using these specific techniques in our previews works we
managed to obtain convergence estimates for abstract second order differential equations
with one parameter and: linear operators [23], depending on time linear operators [27],
Lipschitzian nonlinearities [25], monotone nonlinearities [26]; two small parameters and:
linear operators [28], [29], depending on time linear operators [30], monotone nonlineari-
ties [31].

The organization of this paper is as follows. In the next section the theorems of exis-
tence and uniqueness of solutions to the problems (P.s), (Ps5) and some a priori estimates
of these solutions are presented. In the section 3 we present a relationship between so-
lutions to the problem for the abstract linear second order differential equation and the
corresponding solution to the problem for the first order equation. The main result of this
paper is established in the section 4. More precisely, we prove the convergence estimates
of the difference of solutions to the problems (P.s) and (P5) fore — 0,6 > §p > 0 and also
to the problems (FP.;) and (Fp) fore — 0,6 — 0.

Fork € N*,1 <p < +o0, (a,b) C (—o0,+00) and the Banach space X, by W*?(a,b; X)
we denote the Banach space of vectorial distributions v € D'(a,b; X), u¥) € L?(a,b; X),
j=0,1,..., k, endowed with the norm

_— 3
(S50 D)) * for p € [1,00),

”uHW""X’(a,b;X) = Oféljagk HU(J)HLC’C(a,b;X) for p= oco.

||u||W’CvT‘(a7b;X) =

In the particular case p = 2 we put W*2(a,b; X) = H*(a, b; X).
If X is a Hilbert space, then H*(a,b; X) is also a Hilbert space with the scalar product

k b
(uvv)Hk(a,b;X) = Z/ (u(j)(t)7v(j) (t))X dt.
j=07%

The framework of our paper will be determined by the following conditions:
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(HA) V C H densely and continuously, i.e. |ul?* < wol||u|[?, Vu € V. The operator
AV C H — H is linear, self-adjoint and positive definite, i.e. there exists w > 0 such that
(Au,u) > wlul®, YuecV;
(HB) The operator B : D(B) C H w H is AY/? lipschitzian, i. e. D(AY?) C D(B) and
there exists L > 0 such that
|B(u) — B(v)| < L|AY?(u—v)|, Vu,v € D(AY?).

2. SOLVABILITY OF PROBLEMS P.5 AND Ps AND a priori ESTIMATES FOR THEIR
SOLUTIONS

In this section we will remind the results about the solvability of problems (P.s)
and (Ps) and also about the regularity of their solutions. Also we will prove an a priori
estimates for the solutions of these problems. The following theorems were inspired by
the work [1] and are completely proved in the work [24]

Theorem 2.1. Let T € (0,00]. Let us assume that the operators A and B satisfy conditions
(HA), (HB). If ug € D(A), uy € D(AY?)and f € WH1(0,T; H), then there exists a unique
function w € W2(0,T; H), AY?u € W;>°(0,T; H) and Au € L(0,T; H), with some ~
depending on L and w, such that u satisfies the equation
(2.1) u(t) + /() + Au(t) + B(u(t)) = f(t), te€(0,7),
in the sense of distributions and also the initial conditions
(2.2) w(0) = ug, u'(0) = u;.
The function t € [0,T) — ' (t) is differentiable on the right and

dru ,

L (to) = f(to) — Au(to) — B(u(to)) —Uu (to), tg € [O,T)
The function t € [0, T] — Au(t) is weakly continuous in H and
d

%(Au(t),u(t)) =2(Au(t),u'(t)), tel0,T].

This function is called the strong solution to the problem (2.1), (2.2).

Theorem 2.2. Let T € (0,00]. Let us assume that the operators A and B satisfy condi-
tions (HA), (HB). If vo € D(A), f € WYY (0,T; H), then there exists a unique function
v e WH0,T;V), A2y e W12(0,T; H), with some ~y depending on L and w, such that
v satisfies the equation

(2.3) d;—tv(t) + Av(t) + B(v(t)) = f(t), t€[0,T), in H
and the initial condition
(2.4) v(0) = vg.

This function is called the strong solution to the problem (2.3), (2.4).

For the further consideration we rewrite the problems (P.;s) and (Ps) in the form:

{ pU[l(s) + U (s) + AUL(s) + B(U,L(s)) = F(s), se(0,T/4),

Uu(0) =u, U(0) = duy, (Pu)

nd £(s) + AL(s) + B(L(s) = F(s). s € (0,7/0)
"(s) + s)+ B(L(s)) = F(s), se(0,T/6),
{ L(0) = u, (Po)
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where U,,(s) = uc5(6 s), L(s) = l5(sd), F(s) = f(sd) and p = /52

In what follows we will prove an a priori estimates for solutions to the problems (P,,)
and (Pp). These estimates play a key role in determining the behavior of solutions to the
problem (P.5) as ¢ — 0 and 6 — 0. To this end, we give two lemmas of the Gronwall-
Belman type.

Lemma 2.1. Let ¢ € L'(a,b) (—oco < a < b < o) with ¢(s) > 0a. e. on (a,b) and let
f € C([a, b]) such that | f| is non-decreasing function. If h € C([a, b]), h(z) > 0 verifies

B0 < PO+ [ vemss, e o,
then
o<1+ [ v, e o
also holds.

Lemma 2.2. Let ¢ € L'(a,b) (—0o < a < b < o0) with ¢(s) >
b

0a. e on (a,b) and let
f € C([a,b]) such that f > 0 is non-decreasing function. If h € C([a, b)),

] ( ) > 0 verzﬁes

—|—/ W(s)h(s)ds, ¥t € [a,b],

then
h(t) < (1) eap] / hs)ds}, vie ol

also holds.
In what follows, we will need also the following lemma.

Lemma 2.3. Suppose that v, z, h : [a,b] CR = R, v € C([a,b]), z € L*(a,b), h € L'(a,b),
v(t) > 0fort € [a,b] and z(t) > 0, h(t) > 0,a. e. t € (a,b). If

o(t) + (/tt 2(s) ds>1/2 <

t t
(2.5) < ¢ (v(to) —|—/ h(s) ds) +c / z(s)ds, Yto, t € [a,b], t>to,
to to

with co > 1, ¢ > 0, then for any o € (0, 1) the inequality

t t

(2.6) v(t)+ (1— ) (/ 22(s) ds)l/z < el (t-a) [v(a) _,_/ h(s)ds}, t e la,b],

a a
is true with 4 = ¢2 a2 Incy.
Proof. From (2.5) it follows that

t
1/2

t
(27) v(t)+ [1 -1 (t—to) 1/2 / 22(s ds < ¢ [v(to) —|—/ h(s) ds}, t >ty > 0.

to
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Letg = a?c;? witha € (0,1) and t;, = a + kg, k € N. Denoting by
tg

1/2
m(tk) =—(1-a) ( / 22(s) ds) and putiing in (2.7) tg = tx_1 and ¢t = 5, we get

t—1
tr
v(ty) <m(ts) + co {v(tkfl) + / h(s) ds]
th—1
From this inequality, we deduce
k-1 i k ‘
(2.8) v(ty) < ckv(a) + Z b= / h(s)ds + Z b= m(ty).
5=0 i =1

Lett € (a,b) be arbitrary. There exists k € N, such thata+ k¢ <t < a+ (k+1) ¢. Putting
in (2.7) ty = t;, and taking into account (2.8), we obtain

t tj
v(t)+ (1 —«a) K/ ds)l/2 +Z chmitt ( / 22(s) ds)l/z} <
tr tj—1
k tit1
Sco[clgv() / ds+Zc / ds}, te(a+kqga+ (k+1)q.
£ £
C e L, wm
Sincel—a>0and\/k+1<2aj> <foora]20then
j=1

t tj
1/2
v(t) +VE+1(1— ) /z ds+Zc2(k i+ / ZQ(S)ds} <
ti—1

tja

29 <c cov /h ds—i—Zc / ds} te(a+kga+ (kE+1)q.
As c¢g > 1, then (2.9) implies the inequality

; 1/2
(2.10) v(t) + (1—a) (/ 22(s) ds) < c’“‘1 / h(s ds t € la,b].
Since cf = eF o0 < e(cf o™ o) (t=2) from (2.10) we obtain (2.6). O

Lemma 2.4. Suppose that the operators A and B satisfy conditions (HA), (HB), vy € D(A),
u; € D(AY?), F € WY(0,00; H) and o € (0,1). Then for any strong solution U, to the
problem (P,,) the following estimate

K HU;/L/”L‘”(O,S:H) + ||U,LIL||C([O,S]:H) +(1-a) HA1/2U;/L||L2(O,S:H <

(2.11) < C(Lyw)My(s)e™®, s>0, p,de€(0,1],
holds with

1/2 L?In2
(212)  Mo(s) = |Auo| + [AZus| + [F(0) — BO)| + [[F[lwr.1(0,58): 70 = —5—-

o
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VG -

2 /wlL?
(213) H ||U;Ll||L°°(0,S:H) + ||U;/,LHC([0,S]H) + HA1/2U/;||L2(O,S:H) < C(L,W) MO(S)a § 2 Oa
is true for p,d € (0,1].

Proof. Proof of the estimate (2.11). Let U, (s) = Uu(s + h) — U,(s) and denote by

E(Uun, s) = [Uun(s |+}Uﬂh +QFLU/h(s)| + 44 (AUun(s), Upn(s)) +

IfFL<wand 0 < p < pg= then the estimate

(2.14) +4p / U2 ()| dr + 4 / (AU (7), Up(7)) dr.
If U, is strong solution to the problem (7P,,), then

A B(U,s) = 4 (Fh(s) - (B(Uu(s)))h, Uyn(s) + 2uU;h(s)), s> 0.

ds
Since, acc , (B(UM(S)),L‘ < L|AY2Uu(s)|,

last equality on [sg, s) C (0, c0), we get

then integrating the

EUun,5) < E(Un, 50) +4/ (th (] + L|AY2U, (7 ]) U (7) + 2 UL (7)| dr <
S0
(2.15) < E(Upun, s0) +4 / (’Fh(ﬂ + L ’Al/ZUuh(T)D E1/2(Uuha7) dr,s > sg > 0.
S0

Denoting by
8) = [|Uun ()" +]Upun ()42 1 ULy ()44 1 (AU, (), Uy (9))] V2, 2(5) = 2| AY2Upun (5))|

and using Lemma 2.1, from (2.15) we obtain the inequality

S

(v2(5) +/ 22(7) d7>1/2 < v(sp) +/ [2 |Ey ()| + L \Z(T)H dr, s> sy>0.

S0 S0

As\/ﬁ—i—\/f)g\/ix/a—&—bfora,bzo,then
v(s) + (/ 22(1) d7)1/2 <V2 [’u(so) +/ [2|Fh(7')| +L |z(7')\] dT], s> s9 > 0.

Taking ¢y = V2, ¢c; = V2 L,a = 0, h(s) = 2|Fj,(s)| and applying Lemma 2.3 to the last
inequality, we get
/ 12 5 \1/2
U (5)] 4 [ U (5) + 21 U ()] + (1 — ) (/ AU () dr) " <
0

S

(2.16) < Cevs [El/z(Uuh,O) +/ |Fh(¢)|d7], s> 0.
0
with 7o from (2.12).
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Under the conditions of Lemma, due to the Theorem 2.1, we have that U}, € C([0, T]; H),
|AY/2U,| € C([0,T)). Therefore, the following relations
[h= U ()] = U} (s)],  h =0,
WL Un(s) + 20 h™ LU | = |UL(s) + 20 U2(s)], 40,

(2.17) (B! AU (s), B Upn(s)) — [AV2U! ()7, Lo,
h_QE(Uu/m ) — |(5’LL1|2
+|2( AUOf (Uo))75U1|2+4,U,($2’Al/2ul|2,h¢0

hold. Taking into account the relations (2.17), we divide (2.16) by h and then pass to the
limit in the obtained inequality, to get the estimate (2.11).
Proof of the estimate (2.13). Let L < w. In this case

b |U P+ |AV2U,0 [ = L |AY2Up | U+ 20U >

> U7+ [1 = =] A2 2 0L 4200 [U] =
= u[|ULn] = L[AYV2U[]" + 00 |AV20[7, o =1—L (w2 +pL), p€(0,pl,
Because vy > qp = % (1 — ;G) > 0 for p € (0, o], then from (2.15) we have that
U ()] + [Un () + 2 Ul () ° + 4 (AU (s), U, (3))+4q0/ (AU (1), Uy(7)) dr <

0

S

< E(Uun,0) +4 / [|Fn ()] |Upn () + 21U (7)]] dr, s> 0.
0
Consequently, taking

S

2 2
Hh |U/Lh )| + |Uuh(5) +2u ;2h(5)| +4qo / (AUuh(T)v Uuh(T)) dr
0
and applying Lemma 2.1 to the last inequality, we get the estimate

@18)  H) < EVUm0) 42 [ IBr)ldr 520 0]
In such thatrtue of relations (2.17), dividing the inequality (2.18) by i and then passing to
the limit in the obtained inequality as h — 0 we get the estimate (2.13). O

3. RELATIONSHIP BETWEEN SOLUTIONS TO THE PROBLEMS (P,) AND (P;) IN THE
LINEAR CASE.

In what follows for ,u > 0 denote by

K(t,7p) = Q\f (Kl(t 7 1) + Kot 7, 1) — 2K (t, 7, u)) Vi > 0,
where
3t — 271 2t — 71 3t + 67 24T
Kl(t’T’“)’EXp{ Ap1 }A(z\/ﬁ)’Kz(t’T’“)*eXP{ Ap }A(QJ;E)’

Ks(t,r,pn) = exp{ })\(;F) A(s) = /:O e dn.
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The properties of kernel K (¢, 7, i) are collected in the following lemma.

Lemma 3.5. [23] The function K (t, T, 1) possesses the following properties:
(i) K(t,7,u) >0,Vt>0,Vr >0;
(ii) / K(t,r,p)dr =1,Vt > 0;
0

oo

(iii) Let ¢ € [0,1]. Then/ K(t,r,p) |t —7%dr < C (p+ vpt)’,
0
Yu > 0,Vt > 0;

(iv) Letp € (1,00] and f: [0, 00) = H, f(t) € WP(0,00; H). Then

p—1
p

500 [ Km0 0dr] < COI N (0t Vi) T > 0.0 2 0
W) IfO<2vyu<1,then

k=1,2.

) )

/O K(t,7, 1) T dr < W 67(1+’Yﬂ)t7 >0
Lemma 3.6. [23] Let B = 0. Assume that A : D(A) C H — H is a linear, self-adjoint, po-
sitive definite operator and F' € L3°(0,00; H) for some v > 0. If U, is strong solution to the
problem (P,,) with U, € W2>(0,00; H) N L (0, 00; H), AU, € L°(0, 00; H), then for every
0 < p < (2y)7" the function W,,, defined by W, (s) = [;° K(s,7, 1) Uu(7) dr, is the strong
solution in H to the problem

{W’(s) + AW, (s) = Fo(s, 1), ae. s>0, in H,

Fots.) = = 2o (T [2) = A5y 5 o + [ kG ) i
Ou = /000 e "U,2uT)dr.

4. BEHAVIOUR OF SOLUTIONS TO THE PROBLEM (P.s)

In this section, in the framework of conditions (HA) and (HB), we wiil prove the main
result about the behavior of the solutions to the problem (F.s), in both cases: ¢ — 0 and
0 >0 > 0;e = 0and 6 — 0, relative to solution to the corresponding unperturbed
problem.

Theorem 4.3. Let T > 0 and p > 1. Let us assume that the operators A and B satisfy conditions
(HA) and (HB). If ug € D(A), uy € D(AY?)and f € WYP(0,T; H), then there exists constant
C=C(T,p,w, L) > 0 such that
(4.19)
CMe'? 9(e,6)
—1 < ’
[ues — Isllc (o)) < o) (02 —drpe)i

52
§e(0,1], ac(0,1), c e (O,H),
0

where u.s abd ls are strong solutions to the problems (P.s) and (Py), respectively,

L?1n?2 _ 49L°T In?2

(420) M = |Aug| + A ?uy| + [BO)| + || Fllw e 0,750, %0 = 2 602
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cl/4 _
6(p+1)/p Zf p Z 2a
(4.21) O(e, ) = cp=1/2p
—z n Pe (1,2).
1/4
IffZO,fhen@((s,&):é(pT I_fB Othei’l’yzo

Proof. During the proof, we will agree to denote by C all constants C(T', p,w, L). For any
f €~I/Vl4’(07 T; H) let us define the function
f:]0,00) — H as follows:

f), 0<t<Ty

~ 2T —t

Fo =Ty, T<i<on
0, t>2T.

Then f(t) € W?(0,T; H) and

(4.22) A UMW+mem=A £ £ @] di +

Since W?(0,T; H) — C([0,T]; H) continuously and
max{1,T}
T1/p

[f (D)
Tr—T

TY’}

1+ .
[ p+1

(4.23) 1 fllcqo,m;m) < C(p) 1 fllwiwo,1;0),

then from (4.22) we get

~ 1
(4.24) ||f|‘W1vP(O,oo;H) < C(]% T) ||f\|lep(o,T;H), C(Z% T) = O(p) max {T, T}

If we denote by U,, the unique strong solution to the problem (P,), defined on (0, c0)
instead of (0,5) with S = T'/§ and f instead of f, then, from Theorem 2.1 and Lemma
2.4, it follows that U, € W2>°(0, 00; H)N W12(0,00; V), AY2U,, € L(0,00; H), AU, €
L5:(0, 00; H) with 7o from (2.12).

Moreover, for p € (1, 00) and V§ € (0, 1], the estimate (4.24) implies

(4.25) I Fllwro 0,000 < C0.T) 5P || Fllwro 0,751
Due to the estimates (4.24), (4.25) and Lemma 2.4, we obtain the following estimates
3 /277
||Ul/l||C([0,s];H) HA / ||L2(OSH) S
(4.26) <Ce VP M, s>0, p e (0,1, aec(0,1).
holds.

By Lemma 3.6, the function W), defined by W, (s) = [, K(s, 7, ) U ,.(T) dr, is strong
solution to the problem

{W/Q(S)—FAWM(S):ﬁo(S,M), ae. s>0, in H,
)

(4.27)
Wu(0) = opu,

for every u € (0,(270)~'), where

Emuwwh@um+/ K(s,7,1) F m—/ K (5,7, ) BO, (7)) dr,
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1 3s B 1 [s <~
(4.28)  fo(s,p) = ﬁ[2exp{@})\( ;) —)\(5 ;)}7cpu:/0 e " U,(2ur)dr.
Denote by R(s, p) = L(s)— W,.(s), where L is the strong solution to the problem (Py) with
F instead of F, T' = oo and W, is the strong solution to the problem (4.27). Then, due to
Theorem 2.2, R(-, 1) € W,.:>°(0, 00; H) and R is strong solution in H to the problem

loc

R/(s,11) + AR(s, 1) + B(L(s)) — B(W,(s)) = F(s,p), a.e. s >0,
IR (v e '
where
Flo =) = [ Klsmp) () dr = s, ) m -
0
(4.30) —B(W,(s)) + /O h K (s,7, 1) B(U,(7)) dr.

In what follows we need the following two Lemmas, which will be proved after the proof
of the Theorem 4.3.

Lemma 4.7. Assume the conditions of Theorem 4.3 are fulfilled. Then for any 6 € (0, 1] and any
a € (0,1) the following estimates:

CMMUQ

@31 Uu() = W) < s a0

1
(]_ + \/g) e’YO(l'HVYO)S’ 5>0, e (O7 7>7
270

| K |42 (00 - B dr <

C M pt/* 1 1
4.32 < 1 /2 pro(1+2p70)s o > L
( 3) _51/p(1_0[)(1_4'}/0,u)1/2( +\/g) € ,5_0, MG(O’4’YO)’
‘AI/Q (ﬁu(s) - WH(S))| <
(4.33) < cM M1/4 (1 +\/§)1/2 e0(1+2u70)s ¢ > e (0 L)
= S a) (- )2 52 0pne (0 20),
o ~
/ K(s,T, u)‘Al/Q(UH(T) — WM(T))‘dT <
0
@34 < CMpt/t (14 /5) /20 11700/ o504 e (0 7)
= 57— a) (1~ dyo p)P" 220, Ihg
are valid.

Lemma 4.8. Let the conditions of Theorem 4.3 are fulfilled. Then for the strong solution to the
problem (4.29) the following estimate

(4.35)

- oM (1 4 \/g) e4970s/16 MB
= S (1= a) (1= 470n) 2’

s>0,0¢ (0,1, ac(0,1), pe (0

IR0, s]; B) 7m),

1 p—1
is true with 8 = min {77 L}
4" 2p
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Consequently, from (4.31) and (4.35), we deduce
(4.36)

- - ~ C M (14 /5)e9708/16 1,8
10u = Llleqo,ssm < [Un = Walleo.ssm + [[Blloo.sim < 517, 0= a) (1 dop) 2’

s>0,6¢€ (0,1, ac(0,1), pe (0,4,Y ) Since U,,(s) = U,(s), L(s) = L(s), for all
s €[0,T/0], Un(s) = ues(0 s) and L(s) = l5(d s), then for ¢ € [0,T] we have

~ ~ T
Jues(8) = Ls(D)] = luzs(65) = 15(05)| = [0 (s) = L(s)]|, s € [0.5].
Concequently, from (4.36) follows the estimate (4.19). |

Proof of Lemma 4.7. Proof of the estimate (4.31). Using properties (i), (ii), (v) from Lemma
3.5 and (4.26), we get

m@>wmwsAmK@mw@@&wwhs

< [ k| [ 0@ ar < ZH [T K |enr - ene
0 T

C M pu'/? 1
<1 s g >0, §e (0,1 0,—).

Thus, the estimate (4.31) is proved.
Proof of the estimate (4.32). Using Hdélder s inequality, we have

/OOO K(s,7, 1) |AY2(U,(s) — Uy(r)) | dr < /oo K(s,, 1) ’ / \A1/2(7;(5)|d5‘d7 <
/ K(s,7, 1) 7'|1/2

/ Ks¢u)|s—7|d7 / K(s,T, 1) /|A1/2U’ |2d§D

(4.37) < Opt 1+ s) 2 Q) (s),
where, due to (4.26) and property (v) from Lemma 3.5,

9= [ K
< [" ke[ [T 1arT@ra [T a0 08 i dr <

CM2 270s > 2907
< ey e +/0 K (s, 1, 7) €277 dr| <

CM [,
< Yos
=520 (1— a)? g

dr <

‘Al/QU/ )2 d{‘ r <

A2 (6) ae <

C M2 270 (1+27v0p)s

(4.38) = 52/p (1— )2 (1 —4op)’

e270(1+270p)s }
I —4yop
§>0,6€ (0,1, ac(0,1), pe (O,M0

Now, (4.37) and (4.38) imply the estimate (4.32).

Proof of the estimate (4.33). Because A is self-adjoint, the operator A'/? is also self-adjoint
and, consequently, A'/2 is a closed operator. Thus,

439) A2 (T(s) — Wols))| < /0 T K (s, 7o) |42 ([0(s) - To(r)| dr
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and the estimate (4.33) follows from (4.32).
Proof of the estimate (4.34). Using the estimate (4.33), we deduce that

/OOO K(s,7, 1) ‘Al/2 (ﬁu(T) — W,L(T))‘ dr <

CM,LL1/4

. <
R T I S e

| EGmpentem @z
0

1
f 1 — 1).
or §e(0,1], u€(074%>7 ae (0,1)
Denote by

(s, 1) = / K(s,7,p) 7% 002007 g | =0, 1.
0
Then, using Hélder' s inequality and property (v) from Lemma 3.5, we have

/ K (s, 7, ) e00+250m7 (1 4 /7)1 2 dr <
0

o0 1/2 o0 1/2
< (/ K (s, 7, p) e0+270m7 dT) X (/ K(s,7,p) 025007 (1 4 \/7) dT) <
0 0

1/2 )
< Ji/? [Jo+ gL JIW} < o+ ST <

_ca+ NOR
~ (T—470p)
Thus, the estimates (4.40) and (4.41) imply (4.34). Lemma 4.7 is proved.

Proof of Lemma 4.8. In virtue of condition (HB), multiplying scalarly in H the equation
(4.29) with R and then integrating on (s, 5), we obtain

|R(s,u>|2+2/5

S0

(4.41) e+ /) o500 e (0, i)
- 4

2
AVER(E )| dg <

(442) < RGsoun)+2 [ CVFE )|+ L AV2RE )] R )| dé.

S0

Vs > sg > 0. Applying Lemma 2.1 to the last inequality, we get

(1Rsp+2 [

S0

<RG0, + [ [ I+ L[4V R(E ] de s > 50 20

S0

a2p(e | a) " <

or

[R(s, )] + ( / 42 R(, )| d€>1/2 <
< V2 [R(s0.10] + [

S0

Using Lemma 2.3, we obtain the inequality

S

“]:(faﬂﬂ + L ‘Al/QR(f,,u)“], Vs > sg > 0.

[R(s, )| + (1 =) ( /0 S 4 72R(e, )| dﬁ)w <

(4.43) <Cevs [|R(o,u)| + / \F ()] dg], Vs >0, ae(0,1).
0
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In what follows, we will estimate the right side of (4.43). Using (4.26), we get

o) ~ o] 2pT
|R(0, )| S/o e’ M(2m)—u0‘d7§/o e_T/O |UL(8)] dé dr <

oo 00 1/2 o 1/2 oo
S/ T(2uT) 1/2 / dTéij(\;ll//; /71/26(“’0”_1”(17:
0 0 0
C M p'/?

1
4.44 ==, ¢ 1 — ).
(4.44) Sy €0 we (o)

Let us estimate | F(t, 1) |. Using the property (iv) from Lemma 3.5 and (4.25), we have

/ K(s,m,p)F d7‘<0 NE | 1o 0,00 11y (4 /15)P7D/P <

(4.45) < COIF lror:m O+ vEs) P " s>0, 5e(0,1].
Since efA\(1/€) < C, V& >0, the following estimates

/OSeXp{ifL}A(\/g)dSSCu/Omef/4d§§0u, Vs > 0,
/()S)‘G\/E)dggﬂ/om A(%ﬁ)dggcu, Vs >0,

hold. Then

(4.46) 5 [ e nde] < Coulul, szo

Further, we estimate the difference

@40 Hsn) = [ K BOL) - BOVL(S) = Do) + L)

where, due to the property (ii) from Lemma 3.5, we have

B = [ Klsirn) (BO) - BOV0)
B = [ Kl (BOVU) ~ BOV() dr

Since A'/2 is a closed operator, using properties (i), (iii) from Lemma 3.5, condition (HB)
and estimate (4.34), for I (s, u) we deduce the following estimate

(s, 10)| < L /OOO K(s,7, 1) ]AI/Q@(T) - W#(T))‘dT <

CMM1/4(1+\/§)1/2 e'yg(l+17'yo,u,/4)s
S (R T BN

§>0, 8¢ (0,1, ae(0,1),pe (0 L).

> 450
Next, we evaluate I5(s, it). Because

[BUV(5) = BOVu(7)] < L [|AV2(Wi(s) = Tu(s)] + [AY2 () = W) |+

(4.48)

(4.49) HAV2(T(s) - Tulm)].
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then using property (ii) from Lemma 3.5, (4.31), (4.32) and (4.34), we get
(o) < L[ AV, (0) = Tulo)) [+ [ K s, [AV2(D ) = W, ()| ar+

(4.50)

> - - C M p/* (14 /5)
1/2 _ < Yo (1417 pyo/4)s
+/O K (5,7, 1) [AY2(0(7) = Tu(s)) | dr] < =7 T :

s>0,0€(0,1],ae(0,1), e (O,ﬁ).

From (4.47), using (4.48) and (4.50), for I(¢,e) we get the estimate

(4.51) (1.0 < CMBV L+ VU2 o (T im0/
. ) = 51/p (1_a) (1_47()”)3/2

58207

1
ford € (0,1], a € (0,1), u € (0, m)
Using (4.45), (4.46) and (4.51), from (4.30) we obtain

cM [M1/4 (14 +/5) eVo(1+17 70 p/4) s
P(1-a) (I — 470 )2

‘]—"(T,,u)‘ < 517 +

8 (et v/jis) U gt ) <

CM(1++/s)
T oM (=) (1 -4y p)?/?

- M (1 4 \/§> eYo (141770 /‘t/4) s
S ST (o) (1 a0 )

[u1/4 0T 0 1/4) s 5 (p=1)/2p | 5(p+1>/pu} <

[u”“ + =72 (5 4 5<p+1)/p)} <

M (1 + \/g) evo (14+17~vo p/4) s
= T (1= a) (1= 4 p) 2

CM(1+/s)er (14170 pn/4) s ub
5P (L—a) (1—4rop)p?

{u”4+ p(P=1)/2p 5] <

$s>0,0€ (0,1, a€(0,1), pe (O, ﬁ) Consequently,

CM(1++/s)er (1+17 o 11/4) s 8
SUP (1 —a) (1 — 4y p)3/2

(452) | 17 wlar < 520,
0
1
1 1 — ).
ford € (0,1, a € (0,1), pe (0,4%)

From (4.43), using (4.44) and (4.52) we get the estimate (4.35). Lemma 4.8 is proved.
In what follows we will investigate the special case when L < \/w.

Theorem 4.4. Let T > 0 and p > 1. Let us assume that the operators A and B satisfy conditions
(HA), (HB) and L < \/w. Ifug € D(A), wy € D(AY?) and f € WP(0,T; H), then there
exists constant C = C(T, p,w, L) > 0 such that

(4.53) ||u55 _15||C([0,T];H) <CM ot @(675),

§ € (0,1], € € (0, 106%), o = %, where ucs and ls are strong solutions to the problems

(P.s) and (Ps), respectively, and M and O (g, ) are from (4.20) and (4.21). If f = 0O, then
/

51 4
00.¢) = Sorom
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Proof. In the proof of this theorem, we will denote by C'all constants C(T', p,w, L) and
also we will keep the same value for Uw f F W, Fo, fo, Pur £ and R as in the proof
of Theorem 4.3. In addition, it is easy to see that: for F the estimates (4.25) are valid,
the function W, is the strong solution to the problem (4.27) for u € (0,00). But in this
special case (L < y/w), by virtue of Lemma 2.4, the functions ﬁu will satisfy the following
estimates

(4.54) 1T, Nl 0.0 + 1AY2T, | 1205011y < C M TP,

$>0, 6€(0,1], pe(0,upl, with M from (4.20) and 1 from (4.53).
In what follows, we need the following two Lemmas, which will be proved after the
proof of the Theorem 4.4.

Lemma 4.9. Assume the conditions of Theorem 4.4 are fulfilled. Then the following estimates:
(4.55) |Uu(s) = Wa(s)| < CMSTVP 2 (14 s),
8203 56(071]7 MG(O,,U,()L

/OOO K(s,7,p) |[AY2(U,(s) — Uu(1)) | dr <

(4.56) SCOMSHP P14 4/s) 2 s>0, 5€ (0,1, pe(0,pm),

(4.57) |AY2(U,,(5) = W(s))] < C MVt (1 4 /5)V2,
SZO, 56(071], /JG(O,,U/(]}7

/OOO K(s, T, M)‘AW(@(T) — W) ‘dT <

(4.58) SOMSTVPpM 1+ /s) 2, s >0, 5€(0,1), pe(0,ul,
hold with M and g from (4.20) and (4.54).

Lemma 4.10. Let the conditions of Theorem 4.4 are fulfilled. Then for the strong solution to the
problem (4.29) the following estimate

I1Rllco, s): ) + A2 RI| L2(0,5:00) <
(4.59) SOMSYP PP (1+5)%2 5>0,6€(0,1], pe (0,p0)
. . . 1 p—1
is true with 8 = min { P }, M and o from (4.20) and (4.54).
4" 2p
Consequently, from (4.55) and (4.59), we deduce
10, = Lllcqo,simy < N0 = Walleqo,sim + [1Rllego,s:m) <

(4.60) <SCMIVPPP(1+5)%2 5s>0,6€(0,1), pe (0,pu).

Since U, (s) = U,(s), L(s) = L(s), forall s € [0,T/4], U.(s) = ucs(3s) and L(s) = I5(5 s),
then for ¢ € [0,T] we have
- ~ T
Jues(8) = Ls(0)] = luzs(65) = 15(05)| = [0 (s) = ()], s € [0.5].
Concequently, from (4.60) the estimate (4.53) follows. |
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Proof of Lemma 4.9. Proof of the estimate (4.55). Using properties (i), (iii) from Lemma
3.5 and (4.54), we get

\(7() \</ KST/J‘U M(T)|d7‘§

/Kmu‘/ |07, (¢ |d§'dT<51/ / K(s,m,p) |7 — 8| dr <

SCOMSHP P2 (14+/5), 5>0, 6€(0,1], pe (0, p).

Thus, the estimate (4.55) is proved.
Proof of the estimate (4.56). Using Holder s inequality, we have

/Ooo K(s,7,p) [AY2(U,(s) — Uy(1)) | dr < /oo K(s,T, 1) ‘ / |AY20 (¢)] df‘dT <

/ Ksru)|s—7|1/2

<(/O K(s,T,u)\s—T|dT / K(s,,1)

(4.61) < C M1+ VE)Y2QLA(s),

where, due to (4.54), we have

=] Ksrn)
< [" Kenw[ [ 10T @R [T 14T i i<

(4.62) <CM2572P s>0, 6€(0,1], pe (0,pul.

Now, (4.61) and (4.62) imply the estimate (4.56).
Proof of the estimate (4.57). The proof follows from (4.39) and (4.56).
Proof of the estimate (4.58). Using the estimate (4.57), we deduce that

/000 K(s,T, 1) ‘A1/2 ((7“(7') — WM(T))‘ dr <

° |A1/2U/ |2 dé—‘

~ 1/2
|A1/2UL(£)I2d§D <

420 (€)1 de| <

(4.63) <CMpttemte / K(s,m,p) (1+/7)!/2 dr,
0

s>0, 6€(0,1], pe(0,puo)
Using Holder's inequality and properties (ii) and (v) from Lemma 3.5, we get

/000 K(s,70) (1+v7)2dr <

oo

§( ; K(S,T,M)dT)l/QX( ;

oo

1/2
K(s,mp) 1+ 7)dr) <
< (1—1—/000 K(S,T,u)ﬁdr)1/2 < (1+ (/000 K(S,T,u)7d7)1/2)1/2 <

(4.64) <SCOA+vs)"2 520, pe (0,
Thus, the estimates (4.63) and (4.64) imply (4.58). Lemma 4.9 is proved.
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Proof of Lemma 4.10. In virtue of conditions (HB) and L < \/w, from (4.42) we obtain
—_L [® 2
2 gV L / A2 de <
(R p)P +2 == || R )| de <

< [R(0, u)? + 2 / IFE )| [RE )| e, Vs >0,

where F (&, 1) is defined by (4.30). Applying Lemma 2.1 to the last inequality, we get

(4.65) IR(s. )| < |R(0, )| + /O ()] dE, Vs >0,

In what follows, we will estimate the right side of (4.65). Using (4.54), we get

o'} _ oo 2pT
RO < [ e |Ouenn) wlar< [ e [T |0 dear <
0 0 0

(4.66) <CMpste / re Tdr =CMpt/?5P,
0

§ € (0,1], 11 € (0, o). Let us estimate | F(t, u)|. First of all let us mention that in this case
the estimates (4.45) and (4.46) remain true.

Now we will estimate the integrals I (s, 1) and Iz (s, i) from (4.47) in this case.

Using properties (i), (iii) from Lemma 3.5, condition (HB) and estimate (4.58), for
I (s, 1) we deduce the following estimate

[T (s, )| < L /000 K(s,7, 1) ’Al/Q(ﬁu(T) - WM(T))‘dT <

(4.67) SCOMSVP A+ )2, s>0, 6€(0,1], pe(0,uml
Using (4.49), property (ii) from Lemma 3.5, (4.55), (4.56) and (4.58), for I (s, ) we get

Ia(sup) < £ (A2, = O] + [ Ko, JAY2(Tlr) = W, () dr+

[ Klsmn) [ (0,(0) = Gu)| dr] <

(4.68) SOMSVP (14 s5), s>0,6€ (0,1, pe (0,u)
Then (4.67) and (4.68) imply the estimate
(4.69) [I(t,e)] <CMSTPpt (1 +/s), s>0,5€(0,1], pe (0,pu)

Using (4.45), (4.46) and (4.69), from (4.30) we obtain
[F(ro )] < C M2 [ (14 v/5) + 6 (o y/jas) "7 4 gt Iy) <

<SOMSP PP (1+Vs), s>0,6€(0,1], pe(0,u)
Consequently,

(4.70) / |F(r, )| dr < CMVPpP s (14 /s),
0

5>0,6€(0,1], pe(0,po].
From (4.65), using (4.66) and (4.70) we get the estimate (4.59). Lemma 4.10 is proved.
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Remark 4.1. Suppose that A, B, ug, ;1 and f satisfy conditions of Theorem 4.3 or Theorem
44. If 0 > 69 > 0, then there exist C = C(L,w,p, T, ) and g9 = €¢(dg, L), such that the
estimate

[ues — Usl|c om0 < CMEP, € (0,e0).

1 p—1
is true with M and 8 = min {7, L}
4° 2p

In what follows we will investigate the special case when ¢ — 0 and § — 0 simultane-
ously.

Theorem 4.5. Let T > 0 and p > 1. Let us assume that the operators A and B satisfy conditions
(HA), (HB) and \/w > L. Ifug € D(A) and f € WYP(0,T; H), then there exists constant
C = C(p,w, L) > 0such that

(4.71) l15(t = ()] < |uo — (A+ B) " F(0)|e™*"° + C 6P~ V/P || fllwrno.1:m),

t € (0,T], where wy = /w(y/w — L), l5 and v are strong solutions to the problems (Ps) and (Pp),
respectively.

To prove the theorem, we need the following lemma, which will be proved after the
proof of the theorem.

Lemma 4.11. Let T > Oand p > 1. Suppose the operators A and B satisfy conditions (HA),
(HB) and \/w > L. If f € WYP(0,T; H), then the equation Av+ B(v) = f has a unique solution
v e WLP(0,T; H) and

(4.72) l[vl[wreorm < Clw, L, T, p) || fllwro,r:m)-

Proof of Theorem 4.5. Denote by Ry (t,6) = Is(t) — v(t), where [; is strong solution to
the problem (Ps) and v is strong solution to the problem (FPy). Then Ry (¢, d) is the strong
solution to the problem

(4 73) 6R/1 (t7 6) + ARl (tv 6) =-9 ’U/(t) - B(l§(t)> + B(’U(t)), te (07 T)7
’ R1(0,0) = up — (A+ B)~1£(0),
Multiplying equation from (4.73) scalarly in H by R, we obtain the equality
d
0 It 8> +2 (ARy(t,6), Ri(t,0)) =

=-20 (v’(t),Rl(t,é)) + (B(v(t)) — B(l(;(t)),Rl(t,(S)), te (0,7).
Then, using conditions (HA), (HB) and /w > L, we get

] %|R1(t,5)|2 + 2w |Ri(t,8)]> <28 W' ()| |Ri(t,0)], t€(0,T).
From the last inequality we get
%|R1(t, 8) et /22 < 200/ (t) e °| Ry (t,6) €0"°|, € (0,T).
Integrating this inequality on (0, ), we obtain
|Ry(t,8) e“°"/°1> < |Ry(0,6)]% + 2 /Ot [0 (7) €7/ |Ry (7, 6) e°7/°| dr, t € [0,T).
Applying Lemma 2.1 to the last inequality and using (4.72), we get the estimate

t
|R1(t,0)| < |R1(0,9)] e wot/d —l—/ ewo (t=7)/8 |v' ()| dr <
0
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o o\ (P=1)/p
< IRi(0,8)| =0t/ + (=) [1V/]| 220711y <

wo
o\ (—D/p

) N llwrso o £ € [0,7],
wWo

from which (4.71) follows. Theorem 4.5 is proved.
Proof of Lemma 4.11. Denote by A = A+ B : D(A) — H. Operator A is monotone.
Indeed, in virtue of conditions (HA), (HB) and /w > L we have

(.Aul —AuQ,ul — UQ> = |A1/2 (U1 — UQ)|2 + (B(ul) — B(uQ),ul — U;Q) >

< |Ri(0,6) e =t 4 C

> |AY? (g — o) P = L|AY? (uy — )| [ug — ug| >

(474) Z \/L;(f— L) |U1 — ’LLQ|2 Z O7 VU1,UQ € D(A)

We will show that the operator A is even maximal monotone in H. For this purpose we
consider the equation

(4.75) (M + A)u = f,

in H with f € H and A > 0.
Due to the condition (HA), there exists
A +A) Y :D(M+A)Y=Hr R(M+A)~"') C D(A) forany A > 0 and

T+ 4) s < 0 +w) 7
Then the equation (4.75) is equivalent to the equation
(4.76) w= (A +A)"" (f - B(u)).

Let us examine the equation (4.76) in the real Hilbert space V; = D(A'/?), endowed with
the scalar product

(u,v)y, = (AY2u, AY20), w0 € V.
The equation (4.76) can be written in the form
4.77) B(u) = u,
where B(u) = (M + A)7'(f — B(u)). The equality
(A+ A A wu) = Ju? + X (A" w,u), Vu€H,
implies
(A(A+ M) uyu) = [A(A+AD  u? + XAV (A+ A ), Vue H,

from which it follows that

JA(A+ A1)t ul <|ul, Yue H.
Consequently,

A2+ A) Yo < ATV
From condition (HB) follows that operator B is a contraction on V; for every f € H and
every A > L?. Indeed,

1B(u1) = Blua)llvy = | A2 (A + A)7H(B(u1) — B(u2))| <

< ATV2B ) = Blua)| < LATAAY A )| = LAy — e, Var,uz € Vo,
According to the fix point Banach’s Theorem, the equation (4.77) has a unique solution
u € Vp for each f € H. From (4.76) it follows that v € D(A). Thus, R(AI + A) D H
for A > L?. Therefore, according to Minty’s Theorem, A is a maximal monotone operator
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if Jw > L. Since, by virtue of (4.74), the operator A + B is coercive, it is surjective i.e.
R(A + B) = H. Hence there exists (A + B)~! : H — D(A). Then the inequality

(A(ul) — A(UQ),Ul — Ug) Z wo \ul — Ug‘z, Ui, u2 S D(A),
implies
4.78) AT ) = AT < A~ ol e B

It means that the equation Av(t) + B(v(t)) = f(t) has a unique solution v(t) € D(A) for
every f(t) € H and

[o()] < [o(0)] + — |f — FO)] < [ATH(F(O)] + wio £ (&) = f(0)]

Thus, if f € WYP(0,T; H), then v € WhP(0,T; H). Finally, using (4.78) and Holder:s
inequality, we get

t+h
vt 1) =) < e+ n = fop = | [ rmar <
M [T e epTon
Wo Jt

or

T—-h
/0 lu(t+h) —v(t)[P dt <
hpfl T—h T
= [/ Ay >lpd7+/h hlf’(t)lpdr+/Tih (T =) |f (D)l dr| <

we [T
<M / ()P dr.

wo

In this case (see Theorem 1.18 [1]) v € W1?(0,T; H) and

1
(4.79) 0" o 0.7:01) < o e 0,70y
From (4.78) and (4.79) follows (4.72). Lemma 4.11 is proved.

Remark 4.2. Under the conditions of Lemma 4.11, if f = 0, then from (4.79) follows that
v/(t) = 0. Concequently, in this case

l5(t) — v(t)| < |uo — (A+ B)~H(0)[e™*/°, ¢ e (0,T).
Remark 4.3. Under the conditions of Theorem 4.5 it follows that for every ¢, and T,
(4.80) Is(t) > o) in C([to, T|;H) asd—0,T >ty > 0.

If the concordance condition ug = (A+B)~! f(0) is satisfied, then I5(t) — v(t) in C([0,T]; H),
asd — 0.

Remark 4.4. The following simple example shows that it should not be expected that the
relationship (4.80) is fulfilled in the case when L > /w.

Example 4.1. Consider the Cauchy problem for the ordinary differential equation

oy'(t) +y(t) +aly(t) = f(t), t>0,
y(0) = vo-
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Ifyo >0, f € C([0,T)), f(t) >0fort € [0,7] and 1 + & < 0, then for every ¢t > 0 we have

¢
y(t) = e (104 +/ e (IFE=1/0 £y dr > C e HIY0 50, as 6 — 0.
0

Theorems 4.4 and 4.5 imply the following theorem.

Theorem 4.6. Let T > 0 and p > 1. Let us assume that the operators A and B satisfy conditions
(HA), (HB) and L < /w. Ifug € D(A), uy € D(AY?) and f € W'P(0,T; H), then there
exists constant C' = C(T, p,w, L) > 0 such that

l[ues — vllc om0y <
< hge t? 4 0 M [5*19(5,5) + 6w/ 1 € 0,7],6 € (0,1],¢ € (0, o 62),

ues and v are strong solutions to the problems (P.s) and (Py), respectively, wy = v/w(y/w — L),
ho = |uo — (A+ B)~1 f(0)| and M and ©(e, §) are from (4.20) and (4.21), respectively, and yo
is defined in (4.53). If f = 0, then

cl/4

—wot/d
|ltes — vllcqo.rm) < hoe™ 0 +C M S@E /P

te[0,T], &€ (0,1], e € (0,pu0%).
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