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Two parameter singular perturbation problems for
sine-Gordon type equations

ANDREI PERJAN and GALINA RUSU

ABSTRACT. In the real Sobolev space H1
0 (Ω) we consider the Cauchy-Dirichlet problem for sine-Gordon type

equation with strongly elliptic operators and two small parameters. Using some a priori estimates of solutions
to the perturbed problem and a relationship between solutions in the linear case, we establish convergence esti-
mates for the difference of solutions to the perturbed and corresponding unperturbed problems. We obtain that
the solution to the perturbed problem has a singular behavior, relative to the parameters, in the neighbourhood
of t = 0.

1. INTRODUCTION

Let Ω ⊂ Rn be an open bounded set with smooth boundary ∂Ω. Consider the real

Hilbert space L2(Ω), endowed with the usual inner product (u, v)L2(Ω) =

∫
Ω

u(x) v(x) dx

and the norm | · |, and the real Sobolev space H1
0 (Ω), endowed with the inner product

(u, v)H1
0 (Ω) =

∫
Ω

(
∇u(x), ∇v(x)

)
Rn dx and the norm || · ||.

We investigate the following boundary-value problem for sine-Gordon type equation ε ∂2
t uεδ(x, t) + δ ∂tuεδ(x, t) +Auεδ(x, t) + b sinuεδ(x, t) = f(x, t), (x, t) ∈ QT ,

uεδ(x, 0) = u0(x), ∂t uεδ(x, 0) = u1(x), x ∈ Ω,
uεδ|∂Ω = 0, t ≥ 0,

(Pεδ)

where T > 0, QT = Ω × (0, T ), f ∈ L2(QT ), u0 ∈ V = H1
0 (Ω), u1 ∈ H = L2(Ω), b ∈ R,

b 6= 0, ε, δ are two small parameters and A is a strongly elliptic operator of the type

(1.1) A : D(A) = H2(Ω) ∩H1
0 (Ω) 7→ L2(Ω), A u = −

n∑
i,j=1

∂xi

(
aij(x) ∂xj

u(x)
)
.

Namely, we suppose that the following conditions:

(HA)


aij ∈ C1(Ω), aij(x) = aji(x), ∀x ∈ Ω,

ω0 |ξ|2 ≤
n∑

i,j=1

aij(x) ξi ξj ≤ ω1 |ξ|2, ∀x ∈ Ω, ∀ξ ∈ Rn, 0 < ω0 ≤ ω1.

are fulfilled.
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The interest for the sine-Gordon equation is explained by the various applications in
differential geometry and engineering, including junctions between two superconduc-
tors, the motion of rigid pendular attached to a stretched wire, dislocations in crystals,
nonlinear optics. For example, the solution of the equation

utt(x, t)− uxx(x, t) + sinu(x, t) = 0

describes an angle of rotation of the pendulum in the case of mechanical transmission
line.

Some numerical results for two-parameter singularly perturbed boundary problems
for a linear case were established in [2], [5] and for the quasilinear case in [15]. Using
the theory of differential inequalities, in [4] a two parameter boundary value problem
for nonlinear equations of fourth order is considered. Some two parameter singular per-
turbations of linear boundary problems in abstract case have been carried out by W. M.
Greenlee in [3].

The behavior of solutions to the abstract Cauchy-Dirichlet problem for sine-Gordon
type equation with strongly elliptic operators and one parameter was established in [8].
In some previous works we obtained convergence estimates for abstract second order dif-
ferential equations with one parameter and: linear operators [6], depending on time linear
operators [10], Lipschitzian nonlinearities [8], monotone nonlinearities [9]; two small pa-
rameters and: linear operators [11], [12], depending on time linear operators [13], mono-
tone nonlinearities [14].

Using similar specific techniques, the functional framework of the Sobolev spaceH1
0 (Ω)

and the properties of the strongly elliptic operator, in this paper we investigate the behav-
ior of solutions uεδ to the problem (Pεδ) in two different cases:
(i) ε→ 0 and δ ≥ δ0 > 0, relative to the solutions to the following unperturbed system: δ ∂tlδ(x, t) +Alδ(x, t) + b sin lδ(x, t) = f(x, t), (x, t) ∈ QT ,

lδ(x, 0) = u0(x), x ∈ Ω,
lδ|∂Ω = 0, t ≥ 0;

(Pδ)

(ii) ε→ 0 and δ → 0, relative to the solutions to the following unperturbed system:{
Av(x, t) + b sin v(x, t) = f(x, t), (x, t) ∈ QT ,
v|∂Ω = 0, t ≥ 0.

(P0)

The problem (Pεδ) is the abstract model of singularly perturbed problems of hyperbolic-
parabolic type in the case (i) and of the hyperbolic-parabolic-elliptic type in the case (ii).

The organization of this paper is as follows. At the beginning of the next section we
present the theorems of existence and uniqueness of solutions to the problems (Pεδ), (Pδ)
and some a priori estimates of their solutions. Then we present a relationship between
solutions to the problem for the abstract linear second order differential equation and the
corresponding solution to the problem for the first order equation. In the section 3 we
present the main result of the paper. More precisely, we prove the convergence estimates
of the difference of solutions to the problems (Pεδ) and (Pδ) for ε→ 0, δ ≥ δ0 > 0 and also
to the problems (Pεδ) and (P0) for ε→ 0, δ → 0.

The framework of our investigations will be determined by conditions (HA) and also
by the following condition

(HSG): q0 = ω0 − λ−1
1 |b| > 0, where λ1 is the first eigenvalue of the spectral problem

−∆u = λu, u|∂Ω = 0.
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2. PRELIMINARIES

In this section we remind some results about solvability of problems (Pεδ), (Pδ) and
(P0). We prove some estimates of solutions to the problem (Pεδ) which are uniform rela-
tive to the parameters. Finally, we present a relationship between the system (Pεδ) and
the corresponding system, governed by the first order equation, in the linear case when
δ = 1. These estimates together with this relationship play a key role in establishing the
behavior of solutions to the problem (Pεδ) as ε→ 0 and δ → 0.

For this purpose we will define the abstract models associated with the problems (Pεδ),
(Pδ) and (P0). Since the solvability of these problems does not depend on the positive
values of the parameters ε and δ, we will put ε = δ = 1. Thus, if the dependency on x is
suppressed and ′ and ′′ stand the time derivatives, we get the following abstract models:

for (Pεδ)

(2.2)

{
u′′(t) + u′(t) +Au(t) + b sinu(t) = f(t), t ∈ (0, T ),

u(0) = u0 ∈ V, u′(0) = u1 ∈ H,

for (Pδ)

(2.3)

{
l′(t) +Al(t) + b sin l(t) = f(t), t ∈ (0, T ),

l(0) = u0 ∈ V,

and for (P0)

(2.4) Av + b sin v = f(t), t ∈ (0, T ).

In (2.2), (2.3), (2.4), by A is denoted the self-adjoint and positive definite extension on V
of the operator (1.1). This is possible, due the conditions (HA). The following theorems
were inspired by the work [1] and are completely proved in [7].

Theorem 2.1. Let T > 0. Assume that conditions (HA) are satisfied. If u0 ∈ V , u1 ∈ H
and f ∈ L1(0, T ;H), then there exists a unique function u ∈ L2(0, T ;V ), u′ ∈ L2(0, T ;H),
u′′ ∈ L2(0, T ;V ′) such that u satisfies the equation from (2.2) in the sence of distributions on
(0, T ) and the initial conditions from (2.2). This function is called the strong solution to the
problem (2.2).

If in adition, u0 ∈ D(A), u1 ∈ V and f ∈ W 1,1(0, T ;H)), then u ∈ W 2,∞(0, T ;H),
u′ ∈ L∞(0, T ;V ) and Au ∈ L∞(0, T ;H).

Theorem 2.2. Let T > 0. Assume that conditions (HA) are satisfied. If u0 ∈ V and
f ∈W 1,1(0, T ;H), then there exists a unique function l ∈W 1,2(0, T ;V ) such that l(t) ∈ D(A),
a. e. t ∈ (0, T ), l satisfies the equation from (2.3) in the sense of distributions on (0, T ) and
the initial conditions from (2.3). This function is called the strong solution to the problem (2.3).
Moreover the function t 7→

(
Al(t), l(t)

)
is an absolutely continuous function on [0, T ] and

d

dt

(
Al(t), l(t)

)
= 2

(
Al(t), l′(t)

)
, a. e. t ∈ [0, T ].

Theorem 2.3. Let T > 0 and p > 1. Suppose that conditions (HA) and (HSG) are ful-
filled. If f ∈ W 1,p(0, T ;H), then the equation Av + sin(v) = f has a unique strong solution
v ∈W 1,p(0, T ;H) and

(2.5) ||v||W 1,p(0,T ;V ) ≤
1

q0
||f ||W 1,p(0,T ;H).
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Proof. Denote byA = A+ sin(·) : D(A) 7→ H . OperatorA is monotone. Indeed, in virtue
of conditions (HA) and q0 > 0, we have(

Au1 −Au2, u1 − u2

)
=

∫
Ω

n∑
ij=1

aij(x) ∂xi
(u1 − u2) ∂xj

(u1 − u2) dx+

+b

∫
Ω

(u1 − u2)
(

sinu1 − sinu2

)
dx ≥

≥ ω0

∫
Ω

|∇(u1 − u2)|2 dx− 2 |b|
∫
Ω

|u1 − u2|
∣∣∣ sin(u1 − u2

2

)∣∣∣ dx ≥
(2.6) ≥ ω0

∫
Ω

|∇(u1 − u2)|2 dx− |b|
∫
Ω

|u1 − u2|2 dx ≥ q0 ||u1 − u2||2, ∀u1, u2 ∈ D(A).

We will show that the operator A is even maximal monotone in H . For this purpose we
consider the equation

(2.7)
(
λI +A

)
u = f,

in H with f ∈ H and λ > 0. Due to the condition (HA), there exists
(λI +A)−1 : D((λI +A)−1) = H 7→ R((λI +A)−1) ⊆ D(A) for any λ > 0 and

||(λI +A)−1||H→H ≤
(
λ+ ω0 λ1

)−1
.

Then the equation (2.7) is equivalent to the equation

(2.8) u =
(
λI +A

)−1 (
f − b sinu

)
.

In the real Hilbert space V the equation (2.8) can be written in the form

(2.9) B(u) = u,

where B(u) = (λI +A)−1(f − b sinu). The equality(
(A+ λI)A−1 u, u

)
= |u|2 + λ

(
A−1 u, u

)
, ∀u ∈ H,

implies(
A (A+ λI)−1 u, u

)
= |A (A+ λI)−1 u|2 + λ

∣∣A1/2 (A+ λI)−1 u
∣∣2, ∀u ∈ H,

from which it follows that

|A (A+ λ I)−1 u| ≤ |u|, ∀u ∈ H.
Consequently,

λω0 ||(A+ λ I)−1 u||2 ≤ λ
∣∣A1/2 (A+ λI)−1 u

∣∣2 ≤ |u|2, ∀u ∈ H
and we have

||(λI +A)−1||H→V ≤ (ω0 λ)−1/2.

Let us note that operatorB is a contraction on V for every f ∈ H and every λ > |b|2 (λ1 ω0)−1.
Indeed,

||B(u1)− B(u2)|| ≤ |b| ||(λI +A)−1
(

sinu1 − sinu2

)
|| ≤

≤ |b| (ω0 λ)−1/2| sinu1 − sinu2| ≤ |b| (ω0 λ)−1/2 |u1 − u2| ≤
≤ |b| (ω0 λλ1)−1/2 ||u1 − u2||, ∀u1, u2 ∈ V.

According to Banach’s Fixed Point Theorem, the equation (2.9) has a unique solution
u ∈ V for each f ∈ H . From (2.8) it follows that u ∈ D(A). Thus, R(λ I + A) ⊇ H for
λ > |b|2 (λ1 ω0)−1. Therefore, according to Minty’s Theorem, A is a maximal monotone
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operator if |b| < ω0 λ1. Since, by virtue of (2.6), the operator A is coercive, it is surjective
i.e. R(A) = H . Hence there exists A−1 : H 7→ D(A). Then the inequality (2.6) implies

(2.10)
∣∣∣∣A−1(f1)−A−1(f2)

∣∣∣∣ ≤ 1

q0
|f1 − f2|, f1, f2 ∈ H.

It means that the equation Av(t) = f(t) has a unique solution v(t) ∈ D(A) for every
f(t) ∈ H and

||v(t)|| ≤ ||v(0)||+ 1

q0

∣∣∣∣f(t)− f(0)
∣∣∣∣ ≤ ∣∣∣∣A−1(f(0))

∣∣∣∣+
1

q0
|f(t)− f(0)|

Thus, if f ∈ W 1,p(0, T ;H), then v ∈ Lp(0, T ;V ). Finally, using (2.10) and Hölder,s in-
equality, we get

||v(t+ h)− v(t)||p ≤ 1

qp0
|f(t+ h)− f(t)|p =

1

qp0

∣∣∣ ∫ t+h

t

f ′(τ) dτ
∣∣∣p ≤

≤ hp−1

qp0

∫ t+h

t

|f ′(τ)|p dτ t ∈ [0, T − h],

or ∫ T−h

0

||v(t+ h)− v(t)||p dt ≤ hp−1

qp0

[ ∫ h

0

τ |f ′(τ)|p dτ +

∫ T−h

h

h |f ′(t)|p dτ
]
+

+
hp−1

qp0

∫ T

T−h
(T − τ) |f ′(τ)|p dτ ≤ hp

qp0

∫ T

0

|f ′(τ)|p dτ.

In this case (see Theorem 1.18 [1]) v ∈W 1,p(0, T ;V ) and

(2.11) ||v′||Lp(0,T ;V ) ≤
1

q0
||f ′||Lp(0,T ;H).

From (2.10) and (2.11) follows (2.5). Theorem 2.3 is proved. �

Remark 2.1. λ1 is the exact constant in the Poincare-Fridriechs’s inequality. For example,
if Ω = (a, b) ⊂ R, then λ1 = π2/(b− a)2.

For the further consideration we rewrite the problems (Pεδ) and (Pδ) in the form:{
µU ′′µ (s) + U ′µ(s) +AUµ(s) + b sinUµ(s) = F (s), s ∈ (0, T/δ),

Uµ(0) = u0, U ′µ(0) = δu1,
(Pµ)

and {
L′(s) +AL(s) + b sinL(s) = F (s), s ∈ (0, T/δ),

L(0) = u0,
(P0)

where Uµ(s) = uεδ(δ s), L(s) = lδ(sδ), F (s) = f(sδ) and µ = ε/δ2.
In what follows we will prove some a priori estimates for solutions to the problems (Pµ)

and (P0). To this end we need the following Lemma of Gronwall-Bellman type.

Lemma 2.1. Let ψ ∈ L1(a, b) (−∞ < a < b < ∞) with ψ(s) ≥ 0 a. e. on (a, b). If
h ∈ C([a, b]) verifies

h2(t) ≤ c2 + 2

∫ t

a

ψ(s)h(s)ds, ∀t ∈ [a, b],

then

|h(t)| ≤ |c|+
∫ t

a

ψ(s)ds, ∀t ∈ [a, b],

also holds.
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Lemma 2.2. Suppose that conditions (HA) and (HSB) are fulfilled. If u0 ∈ D(A), u1 ∈ V ,
F ∈W 1,1(0,∞;H) then for any strong solution Uµ to the problem (Pµ) the following estimate

µ ‖U ′′µ‖L∞(0,s:H) + ‖U ′µ‖C([0,s]:H) + ‖U ′µ‖L2(0,s:V ) ≤

(2.12) ≤ C(q0)M0(s), s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0],

holds with µ0 =
(
ω0 λ1 − |b|

)
/
(
2 b2
)

andM0(s) = |Au0|+ ||u1||+ |F (0)|+ ||F ||W 1,1(0,s;H).

Proof. Let Uµh(s) = Uµ(s+ h)− Uµ(s) and denote by

E
(
Uµh, s

)
=
∣∣Uµh(s)

∣∣2 +
∣∣Uµh(s) + 2µU ′µh(s)

∣∣2 + 4µ
(
AUµh(s), Uµh(s)

)
+

+4µ

s∫
0

∣∣U ′µh(τ)
∣∣2 dτ + 4

s∫
0

(
AUµh(τ), Uµ(τ)

)
dτ.

If Uµ is a strong solution to the problem (Pµ), then

(2.13)
d

ds
E
(
Uµh, s

)
= 4

(
Fh(s)− b

(
sin
(
Uµ(s)

))
h
, Uµh(s) + 2µU ′µh(s)

)
, s ≥ 0.

Since∣∣∣b( sin
(
Uµ(s)

))
h
, Uµh(s) + 2µU ′µh(s)

)∣∣∣ ≤ µ ∣∣U ′µh(s)
∣∣2 + |b|λ−1

1 (1 + |b|µ)
∣∣∣∣Uµh(s)

∣∣∣∣2,
then integrating (2.13) on (0, s), we get

∣∣Uµh(s)
∣∣2 +

∣∣Uµh(s) + 2µU ′µh(s)
∣∣2 + 2 q0

s∫
0

∣∣∣∣Uµh(τ)
∣∣∣∣2 dτ ≤

≤ E(Uµh, 0) + 4

s∫
0

∣∣Fh(τ
∣∣ ∣∣Uµh(τ) + 2µU ′µh(τ)

∣∣ dτ, s ≥ 0, for µ ∈ (0, µ0].

Applying Lemma 2.1 to the last inequality, we obtain

∣∣Uµh(s)
∣∣+
∣∣Uµh(s) + 2µU ′µh(s)

∣∣+
( s∫

0

∣∣∣∣Uµh(τ)
∣∣∣∣2 dτ)1/2

≤

(2.14) ≤ C(q0)
[
E1/2(Uµh, 0) +

s∫
0

|Fh(τ)| dτ
]
, s ≥ 0, µ ∈ (0, µ0].

Under the conditions of this Lemma, due to the Theorem 2.1, we have that
U ′µ ∈ C([0, T ];H), ||Uµ|| ∈ C([0, T ]). Therefore, the following relations
(2.15)
|h−1Uµh(s)| → |U ′µ(s)|, h→ 0, in C([0, T ]),

|h−1Uµh(s) + 2µh−1U ′µh| → |U ′µ(s) + 2µU ′′µ (s)|, h ↓ 0, a.e. s ∈ (0, T ),∣∣∣∣h−1 Uµh(s)
∣∣∣∣→ ∣∣∣∣U ′µ(s)

∣∣∣∣, h ↓ 0, a.e. s ∈ (0, T ),

h−2E(Uµh, 0)→ |δ u1|2 +
∣∣2 (F (0)−Au0 − b sin(u0)

)
− δ u1

∣∣2 + 4µ δ2 ||u1||2, h ↓ 0

hold. Taking into account the relations (2.15), we divide (2.14) by h and then pass to the
limit in the obtained inequality, to get the estimate (2.12). Lemma 2.2 is proved. �
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To establish the relationship between solutions to the problems (Pµ) and (P0) in the
linear case we will define the kernel of transformation realizing this relationship.

For µ > 0 denote by

K(t, τ, µ) =
1

2
√
πµ

(
K1(t, τ, µ) + 3K2(t, τ, µ)− 2K3(t, τ, µ)

)
, ∀µ > 0,

where

K1(t, τ, µ) = exp
{3t− 2τ

4µ

}
λ
(2t− τ

2
√
µt

)
, K2(t, τ, µ) = exp

{3t+ 6τ

4µ

}
λ
(2t+ τ

2
√
µt

)
,

K3(t, τ, µ) = exp
{ τ
µ

}
λ
( t+ τ

2
√
µt

)
, λ(s) =

∫ ∞
s

e−η
2

dη.

In the following lemma we collected some properties of the kernel K(t, τ, µ).

Lemma 2.3. [6] The function K(t, τ, µ) is solution to the problem
Kt(t, τ, µ) = µKττ (t, τ, µ)−Kτ (t, τ, µ), ∀t > 0, ∀τ > 0,

µKτ (t, 0, µ)−K(t, 0, µ) = 0, ∀t ≥ 0,

K(0, τ, µ) =
1

2µ
exp

{
− τ

2µ

}
, ∀τ ≥ 0,

from C([0,∞)× [0,∞)) ∩ C2((0,∞)× (0,∞)) and possesses the following properties:

(i) K(t, τ, µ) > 0, ∀t ≥ 0, ∀τ ≥ 0, and
∫ ∞

0

K(t, τ, µ) dτ = 1, ∀t ≥ 0;

(ii) Let q ∈ [0, 1]. Then
∫ ∞

0

K(t, τ, µ) |t− τ |q dτ ≤ C
(
µ+
√
µ t
)q
, ∀µ > 0, ∀t ≥ 0;

(iii) Let p ∈ (1,∞] and f : [0, ∞)→ H , f(t) ∈W 1,p(0,∞;H). Then∣∣∣f(t)−
∫ ∞

0

K(t, τ, µ)f(τ)dτ
∣∣∣ ≤ C(p) ‖f ′‖Lp(0,∞;H)

(
µ+
√
µ t
) p−1

p , ∀µ > 0, ∀t ≥ 0.

Lemma 2.4. [6] Let b = 0. Assume that A : D(A) ⊂ H → H is a linear, self-adjoint, positive
definite operator and F ∈ L∞(0,∞;H). If Uµ is a strong solution to the problem (Pµ) with
Uµ ∈W 2,∞(0,∞;H), AUµ ∈ L∞(0,∞;H), then the function Wµ, defined by

Wµ(s) =

∫ ∞
0

K(s, τ, µ)Uµ(τ) dτ,

is the strong solution to the problem{
W ′µ(s) +AWµ(s) = F0(s, µ), a.e. s > 0, in H,

Wµ(0) = ϕµ,

where

F0(s, µ) =
1√
π

[
2 exp

{ 3s

4µ

}
λ
(√ s

µ

)
− λ
(1

2

√
s

µ

)]
u1 +

∫ ∞
0

K(s, τ, µ)F (τ) dτ,

ϕµ =

∫ ∞
0

e−τ Uµ(2µ τ) dτ.
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3. BEHAVIOUR OF SOLUTIONS TO THE PROBLEM (Pεδ )

In this section we will prove the main results concerning the behavior of the solutions
to the problem (Pεδ), in both cases: ε → 0 and δ ≥ δ0 > 0; ε → 0 and δ → 0, relative to
solution to the corresponding unperturbed problem.

Theorem 3.4. Let Ω ⊂ Rn be an open and bounded set with smooth boundary ∂Ω, T > 0 and
p ∈ (1,∞]. Assume that conditions (HA) and (HSG) are fulfilled. If u0 ∈ H2(Ω)

⋂
H1

0 (Ω),
u1 ∈ H1

0 (Ω) and f ∈W 1,p(0, T ;L2(Ω)), then there exists a constant
C = C(T, p, ω0, ω1, λ1, b) > 0 such that

(3.16) ||uεδ − lδ||C([0,T ];L2(Ω)) ≤ CM εβ δ−5/2, δ ∈ (0, 1], ε ∈
(
0, µ0 δ

2
]
,

(3.17) ||uεδ − lδ||C([0,T ];H1
0 (Ω)) ≤ CMΘ(ε, δ), δ ∈ (0, 1], ε ∈

(
0, µ0 δ

2
]
,

where uεδ and lδ are the strong solutions to the problems (Pεδ) and (Pδ), respectively, µ0 is defined
in (2.12),M = ||u0||H2(Ω) + ||u1||H1

0 (Ω) + ||f ||W 1,p(0,T ;L2(Ω)) and
(3.18)

β =

{
1/2, if f = 0,

(p− 1)/(2p), if f 6= 0,
Θ(ε, δ) =


ε1/4δ−3/2, if f = 0,

ε1/4δ−(3p+2)/(2p), if f 6= 0 and p ≥ 2,

ε(p−1)/(2p)δ−2, if f 6= 0 and p ∈ (1, 2).

Proof. During this proof we will agree to denote by C all constants C(T, p, ω0, ω1, λ1, b).
We will also use the previously agreed notations: D(A) = H2(Ω)

⋂
H1

0 (Ω), V = H1
0 (Ω)

and H = L2(Ω). For any f ∈ W 1,p(0, T ;H) let us define the function f̃ : [0,∞) 7→ H as
follows:

f̃(t) =


f(t), 0 ≤ t ≤ T ;
2T − t
T

f(T ), T < t ≤ 2T ;

0, t > 2T.

Then f̃(t) ∈W 1,p(0, T ;H) and, since W 1,p(0, T ;H) ↪→ C([0, T ];H) continuously, we get

(3.19) ||f̃ ||W 1,p(0,∞;H) ≤ C(p) max
{
T,

1

T

}
||f ||W 1,p(0,T ;H).

If we denote by Ũµ the unique strong solution to the problem (Pµ), defined on (0,∞)

instead of (0, S) with S = T/δ and f̃ instead of f , then, from Theorem 2.1 and Lemma 2.2,
it follows that Ũµ ∈W 2,∞(0,∞;H) ∩W 1,2(0,∞;V ), AŨµ ∈ L∞(0,∞;H).

Moreover, the estimate (3.19) implies

(3.20) ||F̃ ||W 1,p(0,∞;H) ≤ C(p, T ) δ−1/p ||f ||W 1,p(0,T ;H), p ∈ (1,∞], ∀δ ∈ (0, 1].

Due to the estimates (3.20) and Lemma 2.2, we obtain the following estimates

(3.21)
∣∣∣∣Ũ ′µ∣∣∣∣C([0,s];H)

+
∣∣∣∣Ũ ′µ∣∣∣∣L2(0,s;V )

≤ C δγM, s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0]

withM from(3.16), µ0 from (2.12) and

(3.22) γ =

{
0, if f = 0,

−1/p, if f 6= 0.

By Lemma 2.4, the function Wµ, defined by

Wµ(s) =

∫ ∞
0

K(s, τ, µ) Ũµ(τ) dτ,
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is a strong solution to the problem

(3.23)

{
W ′µ(s) +AWµ(s) = F̃0(s, µ), a.e. s > 0, in H,

Wµ(0) = ϕµ,

where

F̃0(s, µ) = δf0(s, µ)u1 +

∫ ∞
0

K(s, τ, µ) F̃ (τ) dτ −
∫ ∞

0

K(s, τ, µ)B(Ũµ(τ)) dτ,

(3.24) f0(s, µ) =
1√
π

[
2 exp

{ 3s

4µ

}
λ
(√ s

µ

)
− λ
(1

2

√
s

µ

)]
, ϕµ =

∫ ∞
0

e−τ Ũµ(2µτ) dτ.

Denote byR(s, µ) = L̃(s)−Wµ(s), where L̃ is the strong solution to the problem (P0) with
F̃ instead of F, T = ∞ and Wµ is the strong solution to the problem (3.23). Then, due to
Theorem 2.2, R(·, µ) ∈W 1 ,∞

loc (0,∞; H) and R is a strong solution in H to the problem

(3.25)
{
R′(s, µ) +AR(s, µ) + b sin(L̃(s))− b sin(Wµ(s)) = F(s, µ), a. e. s > 0,
R(0, µ) = u0 −Wµ(0),

where
F(s, µ) = F̃ (s)−

∫ ∞
0

K(s, τ, µ)F̃ (τ) dτ − δ f0(s, µ)u1+

(3.26) +b sin(Ũµ(s))− b sin(Wµ(s)) + b

∫ ∞
0

K(s, τ, µ)
[

sin(Ũµ(τ))− sin(Ũµ(s))
]
dτ.

In what follows we need the following two Lemmas, which will be proved after the
proof of the Theorem 3.4. �

Lemma 3.5. Assume the conditions of Theorem 3.4 are fulfilled. Then for any δ ∈ (0, 1] and any
µ ∈ (0, µ0] the following estimates:

(3.27) ||Ũµ −Wµ||C([0, s];H) ≤ CMµ1/2 δγ (1 +
√
s), s ≥ 0,

(3.28)
∣∣∣∣Ũµ −Wµ

∣∣∣∣
C([0, s];V )

≤ CMµ1/4 δγ (1 + s1/4), s ≥ 0.

are valid withM from (3.16) and γ from (3.22).

Lemma 3.6. Assume that the conditions of Theorem 3.4 are fulfilled. Then for the strong solution
to the problem (3.25) the following estimates

(3.29) ||R||C([0, s];H) ≤ CMµβ δγ (1 + s3/2), s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0],

(3.30) ||R||C([0, s];V ) ≤ CMµβ δγ (1 + s), s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0],

are true withM from (3.16), β from (3.18), γ from (3.22) and µ0 from (2.12).

Finally, from these lemmas we deduce that

||Ũµ − L̃||C([0,s];H) ≤ ||Ũµ −Wµ||C([0,s];H) + ||R||C([0,s];H) ≤

≤ CMµβ δγ
(
1 + s3/2

)
, s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0],

Since Uµ(s) = Ũµ(s), L(s) = L̃(s), for all s ∈ [0, T/δ], Uµ(s) = uεδ(δ s) and L(s) = lδ(δ s),
then we have

|uεδ(t)− lδ(t)| = |uεδ(δs)− lδ(δs)| =
∣∣Ũµ(s)− L̃(s)

∣∣ ≤
(3.31) ≤ CMµβ δγ−3/2 = CM εβ δ−5/2, t ∈ [0, T ], δ ∈ (0, 1], ε ∈ (0, µ0 δ

2].

Concequently, from (3.31) follows the estimate (3.16).
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In the same way, using (3.28) and (3.30) we get

||uεδ(t)− lδ(t)|| = ||uεδ(δs)− lδ(δs)|| =
∣∣∣∣Ũµ(s)− L̃(s)

∣∣∣∣ ≤
≤ ||Ũµ −Wµ||C([0,s];V ) + ||R||C([0,s];V ) ≤

≤ CMµβ1 δγ−1 ≤ CMΘ(ε, δ), t ∈ [0, T ], δ ∈ (0, 1], ε ∈ (0, µ0 δ
2],

where

β1 =

{
1/4, if f = 0,

min
{

1/4, (p− 1)/(2p)
}
, if and f 6= 0.

Theorem 3.4 is proved.
Proof of Lemma 3.5. Proof of the estimate (3.27). Using properties (i) and (ii) from

Lemma 2.3 and the estimate (3.21), we get

|Ũµ(s)−Wµ(s)| ≤
∫ ∞

0

K(s, τ, µ)
∣∣Ũµ(s)− Ũµ(τ)

∣∣ dτ ≤
≤
∫ ∞

0

K(s, τ, µ)
∣∣∣ ∫ s

τ

∣∣Ũ ′µ(ξ)
∣∣ dξ∣∣∣ dτ ≤ CM δγ

∫ ∞
0

K(s, τ, µ) |τ − s| dτ ≤

≤ CMµ1/2 δγ (1 +
√
s), s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0].

Thus, the estimate (3.27) is proved.
Proof of the estimate (3.28). In the same way, using properties (i) and (ii) from Lemma 2.3

and the estimate (3.21), we get∣∣∣∣Ũµ(s)−Wµ(τ)
∣∣∣∣ ≤ ∫ ∞

0

K(s, τ, µ)
∣∣∣∣Ũµ(s)− Ũµ(τ)

∣∣∣∣ dτ ≤
≤
∫ ∞

0

K(s, τ, µ)
∣∣∣ ∫ s

τ

∣∣∣∣Ũ ′µ(ξ)
∣∣∣∣ dξ∣∣∣ dτ ≤ ∫ ∞

0

K(s, τ, µ)
∣∣∣ ∫ s

τ

∣∣∣∣Ũ ′µ(ξ)
∣∣∣∣2 dξ∣∣∣1/2 |τ−s|1/2 dτ ≤

≤ CM δγ
∫ ∞

0

K(s, τ, µ) |τ−s|1/2 dτ ≤ CMµ1/4 δγ (1+s1/4), s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0].

Thus, the estimate (3.28) is proved. Lemma 3.5 is proved. �
Proof of Lemma 3.6. Proof of the estimate (3.29). Multiplying scalarly in H the equation

(3.25) by R and then integrating on (0, s) the obtained equality, we deduce

|R(s, µ)|2 +2 q0

∫ s

0

(
AR(ξ, µ), R(ξ, µ)

)
dξ ≤ |R(0, µ)|2 +2

∫ s

0

|F(ξ, µ)| |R(ξ, µ)| dξ,∀s ≥ 0,

where F(ξ, µ) is defined by (3.26). Applying Lemma 2.1 to the last inequality, we get

(3.32) |R(s, µ)| ≤ |R(0, µ)|+
∫ s

0

|F(ξ, µ)| dξ, ∀s ≥ 0.

In what follows, we will estimate the right side of (3.32). Using (3.21), we get∣∣R(0, µ)
∣∣ ≤ ∫ ∞

0

e−τ
∣∣∣Ũµ(2µτ)− u0

∣∣∣ dτ ≤ ∫ ∞
0

e−τ
∫ 2µτ

0

∣∣Ũ ′µ(ξ)
∣∣ dξ dτ ≤

(3.33) ≤ CMµ δγ
∞∫

0

τ e−τ dτ = CMµ δγ , δ ∈ (0, 1], µ ∈
(
0, µ0

]
.

Let us estimate
∣∣F(t, µ)

∣∣. Using the property (iii) from Lemma 2.3 and (3.20), we have∣∣∣F̃ (s)−
∫ ∞

0

K(s, τ, µ)F̃ (τ) dτ
∣∣∣ ≤ C ‖F̃ ′‖Lp(0,∞ ;H) (µ+

√
µ s)(p−1)/p ≤
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(3.34) ≤ C ‖f̃ ′‖Lp(0,T ;H)

(
δ (µ+

√
µ s)

)(p−1)/p
, s ≥ 0, δ ∈ (0, 1], µ > 0.

Since eξλ(
√
ξ) ≤ C, ∀ξ ≥ 0, then the following estimates∫ s

0

exp
{ 3ξ

4µ

}
λ
(√ ξ

µ

)
dξ ≤ C µ

∫ ∞
0

e−ξ/4 dξ ≤ Cµ, s ≥ 0, µ > 0,

∫ s

0

λ
(1

2

√
ξ

µ

)
dξ ≤ µ

∫ ∞
0

λ
(1

2

√
ξ
)
dξ ≤ C µ, s ≥ 0, µ > 0,

hold. Consequently,

(3.35)
∣∣∣δ ∫ s

0

f0(ξ, µ)u1dξ
∣∣∣ ≤ C δ µ|u1|, s ≥ 0, µ > 0, δ > 0.

Using the estimates (3.27), we get the following estimates∣∣ sin(Ũµ(s))− sin(Wµ(s))
∣∣ ≤ |Ũµ(s)−Wµ(s)| ≤

(3.36) ≤ CMµ1/2 δγ (1 +
√
s) s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0],∫ ∞

0

K(s, τ, µ)
∣∣ sin(Ũµ(τ))− sin(Ũµ(s))

∣∣ dτ ≤
(3.37) ≤ CMµ1/2 δγ (1 +

√
s) s ≥ 0, δ ∈ (0, 1], µ ∈ (0, µ0].

Using (3.34), (3.35), (3.36) and (3.37), from (3.26) we obtain

(3.38)
∣∣F(s, µ)

∣∣ ≤ CM δγ µβ (1 +
√
s), s ≥ 0, δ ∈ (0, 1], µ ∈

(
0, µ0

]
.

Consequently,

(3.39)
∫ s

0

∣∣F(τ, µ)
∣∣ dτ ≤ CM δγ µβ s (1 +

√
s), s ≥ 0, δ ∈ (0, 1], µ ∈

(
0, µ0

]
.

From (3.32), using (3.33) and (3.39) we get the estimate (3.29).
Proof of the estimate (3.30). From Theorem 2.2 it follows that R ∈W 1,2

loc (0,∞;V ),
R(s, µ) ∈ D(A), a. e. s > 0 and AR ∈ L2

loc(0,∞;H).
Moreover the function s 7→

(
AR(s, µ), R(s, µ)

)
is an absolutely continuous function on

[0, S] for any S > 0 and

(3.40)
d

ds

(
AR(s, µ), R(s, µ)

)
= 2

(
AR(s, µ), R′(s, µ)

)
, a. e. s > 0.

Note also that

(3.41)
∣∣AR(s, µ)

∣∣2 ≥ ω0 λ1

(
AR(s, µ), R(s, µ)

)
, a. e. s > 0,

(3.42)(
AR(s, µ), η(s)

)
≤
(
AR(s, µ), R(s, µ)

)1/2 × (Aη(t), η(t)
)1/2

, η ∈ V, a. e. s > 0.

Therefore ∣∣AR(s, µ)
∣∣2 − b (AR(s, µ), sin

(
L̃(s)

)
− sin

(
Wµ(s)

))
≥

≥
∣∣AR(s, µ)

∣∣2 − |b| ∣∣AR(s, µ)
∣∣ ∣∣R(s, µ)

∣∣ ≥ q0

ω0

∣∣AR(s, µ)
∣∣2 a. e. s > 0.

We multiply the equation from (3.25) by AR(s, µ) and then integrate on (0, s) to get (by
using the above facts)(

AR(s, µ), R(s, µ)
)

+ 2
q0

ω0

∫ s

0

∣∣AR(ξ, µ)|2 dξ ≤
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≤
(
AR(0, µ), R(0, µ)

)
+ 2

∫ s

0

|F(ξ, µ)|
∣∣AR(ξ, µ)

∣∣ dξ, ∀s ≥ 0,

or ∣∣∣∣R(s, µ)
∣∣∣∣2 ≤ ω−1

0

(
AR(s, µ), R(s, µ)

)
≤

≤ ω−1
0

(
AR(0, µ), R(0, µ)

)
+ (2q0)−1

∫ s

0

|F(ξ, µ)|2 dξ, ∀s ≥ 0,

The last inequality implies that

(3.43)
∣∣∣∣R(s, µ)

∣∣∣∣ ≤ C [∣∣∣∣R(0, µ)
∣∣∣∣+ ||F||L2(0,s:H)

]
, ∀s ≥ 0.

In what follows we will estimate all the terms from the right side of inequalities (3.43).
Similarly as the estimate (3.33) was obtained, we deduce that∣∣∣∣R(0, µ)

∣∣∣∣ ≤ ∫ ∞
0

e−τ
∫ 2µτ

0

∣∣∣∣Ũ ′µ(ξ)
∣∣∣∣ dξ dτ ≤ ∫ ∞

0

e−τ
∣∣∣∣Ũ ′µ∣∣∣∣L2(0,2µ τ ;H)

(2µ τ)1/2 dτ ≤

(3.44) ≤ CMµ1/2 δγ
∞∫

0

τ e−τ dτ = CMµ1/2 δγ , δ ∈ (0, 1], µ ∈
(
0, µ0

]
.

Using (3.38), we have

(3.45)
∣∣∣∣F(·, µ)

∣∣∣∣
L2(0,s;H)

≤ CM δγ µβ s1/2 (1 + s1/2), s ≥ 0, δ ∈ (0, 1], µ ∈
(
0, µ0

]
.

Finally, using (3.44) and (3.45), from (3.43) we get (3.30). Thus, Lemma 3.6 is proved.
In what follows we will investigate the behavior of solutions to the problem (Pδ) as

δ → 0. �

Theorem 3.5. Let Ω ⊂ Rn be an open and bounded set with boundary ∂Ω ∈ C1, T > 0 and
p ∈ (1,∞]. Assume that conditions (HA) and (HSG) are fulfilled. If u0 ∈ H2(Ω)

⋂
H1

0 (Ω) and
f ∈W 1,1(0, T ;L2(Ω)), then there exists a constant C = C(T, p, ω0, ω1, λ1, b) > 0 such that

(3.46) ||lδ(t)− v(t)||L2(Ω) ≤ ||h0||L2(Ω) e
−λ1 q0 t/δ +CM δ(p−1)/p, t ∈ (0, T ], δ ∈ (0, 1),

(3.47) ||lδ(t)−v(t)||H1
0 (Ω) ≤ ||h0||H1

0 (Ω) e
−λ1 q0 t/δ+CM δ(p−1)/p, t ∈ (0, T ], δ ∈ (0, 1),

where lδ and v are the strong solutions to the problems (Pδ) and (P0), respectively,
and h0 = u0 − (A+ sin(·))−1f(0).

Proof. Proof of the estimate (3.46). Denote by R1(t, δ) = lδ(t) − v(t), where lδ is the
strong solution to the problem (Pδ) and v is the strong solution to the problem (P0). Then
R1(t, δ) is the strong solution to the problem

(3.48)

{
δ R′1(t, δ) +AR1(t, δ) = −δ v′(t)− b sin(lδ(t)) + b sin

(
v(t)), t ∈ (0, T ),

R1(0, δ) = u0 − (A+ sin(·))−1f(0).

Multiplying equation from (3.48) scalarly in H by R1, we obtain the equality

δ
d

dt
|R1(t, δ)|2 + 2

(
AR1(t, δ), R1(t, δ)

)
=

= −2 δ
(
v′(t), R1(t, δ)

)
+ 2 b

(
sin(v(t))− sin(lδ(t)), R1(t, δ)

)
, t ∈ (0, T ).

Then, using conditions (HA) and (HSG), we get

δ
d

dt
|R1(t, δ)|2 + 2 (ω0 λ1 − |b|) |R1(t, δ)|2 ≤ 2 δ |v′(t)| |R1(t, δ)|, t ∈ (0, T ).
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From the last inequality we get

d

dt

∣∣R1(t, δ) eλ1 q0 t/δ
∣∣2 ≤ 2 |v′(t) eλ1 q0 t/δ| |R1(t, δ) eλ1 q0 t/δ|, t ∈ (0, T ).

Integrating this inequality on (0, t), we obtain∣∣R1(t, δ) eλ1 q0 t/δ
∣∣2 ≤ |R1(0, δ)|2 + 2

∫ t

0

|v′(τ) eλ1 q0 τ/δ| |R1(τ, δ) eλ1 q0 τ/δ| dτ, t ∈ [0, T ].

Applying Lemma 2.1 to the last inequality and using (2.5), we get the estimate

|R1(t, δ)| ≤ |R1(0, δ)| e−λ1 q0 t/δ +

∫ t

0

e−λ1 q0 (t−τ)/δ |v′(τ)| dτ ≤

≤ |R1(0, δ)| e−λ1 q0 t/δ +
( δ

λ1 q0

)(p−1)/p

||v′||Lp(0,T ;H) ≤

≤ |R1(0, δ)| e−λ1 q0 t/δ + C
( δ

λ1 q0

)(p−1)/p

||f ||W 1,p(0,T ;H), t ∈ [0, T ].

from which follows (3.46). �
Proof of the estimate (3.47). As in the proof of the estimate (3.30), from Theorem 2.2 it

follows that R1 ∈W 1,2
loc (0,∞;V ), R1(t, δ) ∈ D(A), a. e. t > 0, AR1 ∈ L2

loc(0,∞;H) and the
function t 7→

(
AR1(t, δ), R1(t, δ)

)
is an absolutely continuous function on [0, T ] for any

T > 0. Moreover the relationships (3.40), (3.41), (3.42) are true, in which R(s, µ) and η(t)
are replaced by R1(t, δ) and by v′(t), respectively. Therefore∣∣AR1(t, δ)

∣∣2 − b (AR1(t, δ), sin
(
lδ(t)

)
− sin

(
v(t)

))
≥

(3.49) ≥ q0

ω0

∣∣AR1(t, δ)
∣∣2 ≥ q0 λ1

(
AR1(t, δ), R1(t, δ)

)
, a. e. t > 0,

and, due to the estimate (2.5),∣∣(v′(t), AR1(t, δ)
)∣∣ ≤ (AR1(t, δ), R1(t, δ)

)1/2 (
Av′(t), v′(t)

)1/2 ≤
(3.50) ≤ ω1/2

1

(
AR1(t, δ), R1(t, δ)

)1/2 ||v′(t)||, a. e. t > 0.

Denote y(t) =
(
AR1(t, δ), R1(t, δ)

)1/2. Multiplying in H the equation from (3.48) by AR1

and using (3.49) and (3.50), we get the inequality

d

dt

∣∣eq0λ1t/δ y(t)
∣∣2 ≤ 2

ω
1/2
1

q0
e2 q0λ1t/δ y(t) ||v′(t)||, a. e. t > 0,

from which after integration, we obtain∣∣eq0λ1t/δ y(t)
∣∣2 ≤ |y(0)|2 + 2

ω
1/2
1

q0

∫ t

0

eq0λ1s/δ y(s) eq0λ1s/δ ||v′(s)|| ds, t > 0.

Applying Lemma 2.1 and the estimate (2.5), from the last inequality we get

y(t) ≤ e−q0λ1t/δ y(0) + C

t∫
0

e−q0λ1(t−s)/δ ||v′(s)|| ds ≤

≤ y(0) e−q0 λ1 t/δ +
( δ

λ1 q0

)(p−1)/p

||v′||Lp(0,T ;H) ≤

(3.51) ≤ y(0) e−q0 λ1 t/δ + C
( δ

λ1 q0

)(p−1)/p

||f ||W 1,p(0,T ;H), t ∈ [0, T ].
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As
||R1(t, δ)|| ≤ (ω0)−1/2 y(t) and y(0) ≤ (ω1)1/2||R1(0, δ)||,

then the inequality (3.51) implies (3.47).
Theorem 3.5 is proved.

�
From Theorems 3.4 and 3.5 immediately follows the following theorem.

Theorem 3.6. Let Ω ⊂ Rn be an open and bounded set with boundary ∂Ω ∈ C1, T > 0 and
p ∈ (1,∞]. Assume that conditions (HA) and (HSG) are fulfilled. If u0 ∈ H2(Ω)

⋂
H1

0 (Ω),
u1 ∈ H1

0 (Ω) and f ∈W 1,p(0, T ;L2(Ω)), then there exists a constant
C = C(T, p, ω0, ω1, λ1, b) > 0 such that

||uεδ − v||C([0,T ];L2(Ω)) ≤ ||h0||L2(Ω) e
−λ1 q0 t/δ + CM

[
εβ δ−5/2 + δ(p−1)/p

]
,

||uεδ − v||C([0,T ];H1
0 (Ω)) ≤ ||h0||H1

0 (Ω) e
−λ1 q0 t/δ + CM

[
Θ(ε, δ) + δ(p−1)/p

]
,

δ ∈ (0, 1], ε ∈
(
0, µ0δ

2
]
,where uεδ and v are the strong solutions to the problems (Pεδ) and (P0),

respectively,M is from (3.16), Θ and β are from (3.18), h0 is from (3.47) and µ0 is from (2.12).

4. CONCLUSIONS

1. Under the conditions of Theorem 3.4 for δ ≥ δ0 > 0, it follows that

(4.52) ||uεδ − lδ||C([0,T ];L2(Ω)) ≤ CM εβ ,

and

(4.53) ||uεδ − lδ||C([0,T ];H1
0 (Ω)) ≤ CMΘ(ε, 1),

with C = C(T, p, ω0, λ1, b, δ0) > 0,M from (3.16), β and Θ(ε, 1) from (3.18).
Consequently, for δ ≥ δ0 > 0, the solutions uεδ to the problem (Pεδ) have a regular
behavior, as ε → 0, relative to the solution lδ to the problem (Pδ) in the neighbor-
hood of t = 0 in the considered spaces.

2. Under the conditions of Theorem 3.5 it follows that for every t0 > 0 and T > t0,

lδ → v in C([t0, T ];H1
0 (Ω)) as δ → 0.

If the concordance condition f(0) = Au0 + b sinu0 is satisfied, then

lδ → v in C([0, T ];H1
0 (Ω)) as δ → 0.

If the concordance condition f(0) = Au0 + b sinu0 is not satisfied, the solutions lδ
to the problem (Pδ) have a singular behavior, as δ → 0, relative to the solution v
to the problem (P0) in the neighborhood of t = 0.

3. Under the conditions of Theorem 3.6 it follows that for every t0 > 0 and T > t0,

uεδ → v in C([t0, T ];L2(Ω)) as εβ δ−5/2 + δ(p−1)/p → 0,

and

uεδ → v in C([t0, T ];H1
0 (Ω)) as Θ(ε, δ) + δ(p−1)/p → 0.

If the concordance condition f(0) = Au0 + b sinu0 is satisfied, then

uεδ → v in C([0, T ];L2(Ω)) as εβ δ−5/2 + δ(p−1)/p → 0,

and

uεδ → v in C([0, T ];H1
0 (Ω)) as Θ(ε, δ) + δ(p−1)/p → 0.

If the concordance condition f(0) = Au0 + b sinu0 is not satisfied, the solutions
uεδ to the problem (Pεδ) have a singular behavior, as ε → 0, δ → 0, relative to the
solution v to the problem (P0) in the neighborhood of t = 0.



Two parameter singular... 215

Acknowledgements. The second author Researches supported by the Project
20.80009.5007.25

REFERENCES

[1] Barbu, V. Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer-Verlag, New York,
2010.

[2] Brdar, M.; Zarin, H. A singularly perturbed problem with two parameters on a Bakhvalov-type mesh. J.
Comput. Appl. Math. 292 (2016), no. 3, 307–319.

[3] Greenlee, W. On Two Parameter Singular Perturbation Of Linear Boundary Value Problems. Proceedings of
the American Mathematical Society 27 (1971), no. 2, 268–274.

[4] Jiaqi, M. Singularly Perturbed Solution of Boundary Value Problem for Nonlinear Equations of Fourth
Order With Two Parameters. Advances in Mathematics 39 (2010), no. 6, 736–740.

[5] Linss, T. A posteriori error estimation for a singularly perturbed problem with two small parameters. Int. J.
Numer. Anal. Model. 39 (2010), no. 6, 491–506.

[6] Perjan, A. Linear singular perturbations of hyperbolic-parabolic type. Bul. Acad. Stiinte Repub. Mold. Mat.
42 (2003), no. 2, 95–112.

[7] Perjan, A. Singularly perturbed boundary value problems for evolution differential equations D. Sc. Thesis,
Moldova State University, 2008. (In Romanian)

[8] Perjan, A.; Rusu, G. Convergence estimates for abstract second-order singularly perturbed Cauchy prob-
lems with Lipschitzian nonlinearities. Asymptot. Anal. 74 (2011), no. 3-4, 135–165.

[9] Perjan, A.; Rusu, G. Convergence estimates for abstract second order singularly perturbed Cauchy prob-
lems with monotone nonlinearities. Ann. Acad. Rom. Sci. Ser. Math. Appl. 4 (2012), no. 2, 128–182.

[10] Perjan, A.; Rusu, G. Limits of solutions to the singularly perturbed abstract hyperbolic-parabolic system.
Bul. Acad. Stiinte Repub. Mold. Mat. 49 (2014), no. 3, 49–64.

[11] Perjan, A.; Rusu, G. Convergence estimates for abstract second-order singularly perturbed Cauchy prob-
lems with Lipschitz nonlinearities. Asymptot. Anal. 97 (2016), no. 3-4, 337–349.

[12] Perjan, A.; Rusu, G. Singularly perturbed problems for abstract differential equations of second order in
Hilbert spaces. in: New trends in differential equations, control theory and optimization Word Scientific, New
Jersey (2016), 277–293.

[13] Perjan, A.; Rusu, G., Abstract linear second order differential equations with two small parameters and
depending on time operators. Carpathian J. Math. 33 (2017), no. 2, 233 –246.

[14] Perjan, A.; Rusu, G. Convergence estimates for abstract second order differential equations with two small
parameters and monotone nonlinearities. Topol. Methods Nonlinear Anal. 54 (2019), no. 2B, 1093–1110.

[15] Vulanovic, R. A Higher-Order Scheme for Quasilinear Boundary Value Problems with Two Small Parame-
ters. Computing 67 (2001), 287–303.

DEPARTMENT OF MATHEMATICS

MOLDOVA STATE UNIVERSITY

A. MATEEVICI 60, MD 2009, CHIŞINĂU, REPUBLIC OF MOLDOVA
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