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Center problem for cubic differential systems with the line
at infinity of multiplicity four

ALEXANDRU SUBA

ABSTRACT. In this paper the center problem for cubic differential systems with the line at infinity of multi-
plicity four is solved.

1. INTRODUCTION
Consider the real cubic system of differential equations

i =y+ax? 4 cxy + fy? + ka® + maPy + pry? +ry® =p(x,y),
(1.1) = —(x + g2 + doy + by? + sx3 + g2’y + nay® + ly3) = ¢ (x,y),
ged(p,q) =1, (k,I,m,n,p,q,7,5) # 0.

The critical point (0, 0) of the system (1.1) is either a focus or a center. The problem of
distinguishing between a center and a focus is called the center problem. It is well known
that (0,0) is a center if and only if the Lyapunov quantities L1, Lo, ..., L;, ... vanish (see,
for example, [2], [6], [7], [8]). Also, the critical point (0, 0) is a center if the system (1.1) has
an axis of symmetry ([7]) or an analytical integrating factor in a neighborhood of (0, 0).

We suppose that the infinity is non-degenerate for (1.1), i.e.

(1.2) szt + (k + q)zPy + (m +n)x®y* + (I + p)wy® +ry* £ 0.
The homogeneous system associated to the system (1.1) has the form
i =yZ?+ (ax® + cxy + fy*)Z + kz® + ma*y + pry* + ry® = P (2,y, 2),
§=—(22%+ (g2% + doy + by®) Z + 523 + qzy + nay? +1y?) = Q (v,y, Z) .
Denote X = p (z,y) 35 + a4 (,9) 55s Xoo = P (2,4, 2) 55 + Q(2,y,7) & and Eog = P -
X (Q) — Q - Xoo(P). The polynomial E., has the form E., = Cs(z,y) + Cs(z,y)Z +
Cy(z,y) 2% + -+ + Cs(z,y)Z5, where Cj(z,y), j = 2,...,8, are polynomial in z and y.
We say that the line at infinity Z = 0 has multiplicity v it C3(z,y) = 0,...,Cy(x,y) =
0, Cpy1(w,y) # 0, i.e. v — 1is the greatest positive integer such that Z*~! divides E.. In
particular, Z = 0 has multiplicity four if the identity in Z:

(1.3) Co(z,y) + C3(2,9)Z + Cy(z,y)Z* =0

holds, i.e. Ca(z,y) = 0, Cs3(x,y) = 0and Cy(x,y) = 0. If Ca(z,y) # 0, then we say that
Z = 0 has the multiplicity one.

The algebraic line f(x,y) = 0 is called invariant for (1.1) if there exists a polynomial
K € C[z,y] such that the identity X(f) = f - K(z,y) holds. Some notions on multiplic-
ity (algebraic, integrable, infinitesimal, geometric) of an invariant algebraic line and its
equivalence for polynomial differential systems are given in [1].
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The cubic differential systems with multiple invariant straight lines (including the line
at infinity) was studied in [5], [11], [14], and the center problem for (1.1) with invariant
straight lines was considered in [2], [3], [4], [9], [10], [12], [13].

In this paper the main result is following;:

Theorem 1.1. The cubic system (1.1) with the line at infinity of multiplicity four has at the origin
a center if and only if the first three Lyapunov quantities vanish L1 = Ly = L3 = 0.

2. CLASSIFICATION OF CUBIC SYSTEMS WITH MULTIPLE LINE AT INFINITY
Let X = (‘Tay)7 A2 = (CL,b,C,d, fvg)7 A3 = (kal7m7napaQ7T75)7 By = (A7B703D3F7 G)7

U = (u,0), Bs = (K,L,M,N,P,Q,R,S) and X — 2-'M\U, Ay = 2-3MoBs, A5 —
274 M3Bs, where

—1 T =1 1 —1 1
-1 -1 1 1 -1 -1
1 1 -2 -2 0 0 2 2
Ml(z —i>’ M= 9i 2 0 0 2 -2 |
) -t =1 1 ) —1
1 1 1 1 1 1
—1 ) e ) 1
) -3 =1 1 i =1 —1 1

-3 -3 -1 -1 1 1 3 3
-3 -3 1 1 1 1 -3 =3
3 =3 - i —t i 3 =3 |’
=31 3 —i 1 1 =i 3 =37
1 1 -1 -1 1 1 -1 -1
1 1 1 1 1 1 1 1

det ./\/11 = —Qi, det ./\/lg = _292-7 det./\/l3 = 216, ’L'2 =—1.

We remark that, in general, the elements of U, B2, B3 are complex and v = @, B =
A D=C,G=F,L=K,N=M,Q=P,S=R.

Inu,v, A, B, ..., R, S the non-identity (1.2) and the identity (1.3), up to a non zero factor,
look as

M3z =

Cs(u,v) = Ku* + (M + S)uv + (P + Q)u*v? + (N + R)uv® + Lv* #0
and
Moy (u,v) + Ms(u,v)Z + My(u,v)Z* =0,

respectively, where

MQ(U, U):Q_loc?)(ua U)(N2(ua U) + NQ(U’a U))) Mj(u7 U):2j_12(Nj(u7 U) + Nj (ua U))mj:?)a 4,
Na(u,v) = (KQ — MS)u* + 2(KN — PS)uv + (3KL + MN — PQ — 3RS)u?v?/2;
N3(u,v) = (K(DK +2AQ — CS) — GK(M — S) — AS(M + 9))u” + (M(DK — GM)
+Q(CK + AM) — S(GM + AQ) + 2K(BK +2AN + G(Q — P)+ S(D — F))

—2S(AP + C(M + 9)))ubv + 3((M(AN — GP) + K(2AL + BM + CN + GN + DQ
—GR+ BS)—S(FM +CP+GP+CQ + AR+ FS)))u’v? + (2P(AN — GP)
+Q(DM + AN —CP -2GP -CQ — AR)+ K(5CL+4GL +4DN +2FN +2BP
+4BQ — DR) + M(5AL + BM +2CN + GN — DP — F'QQ — 4GR) + S(AL + BM
—2CN —2DP — 4AFP — 5FQ — 4CR — 5GR))u*v?;



Center problem for cubic differential systems with the line at infinity of multiplicity four 219
Ni(u,v) = (A2Q + K(G(G — C) — 2M +28) + A(2DK — CS — G(M + 8)))u®
+(A(DM +2AN —2GP 4+ CQ) —2M(CG + M)+ K(4AB+ CD +3DG — 2FG — 4P
+8Q) — S(C? + 2AF + 3CG + 4M + 65))u’v + (B(3C + 4G)K + D(2DK + GM)
~G?P —2M (3P — Q) + 2K(7N — 3R) — 10S(P + Q) — FG(3M +5S) + A(BAL + 3BM
+3CN + GN + DQ — 3GR + BS) — C(3GP + 2GQ + 2DS + 3FS))u*v?
+(10KL —2P(2P 4+ Q) + 4M(N — 2R) + A(5CL 4+ 2GL + 2DN + 2FN + BP
+BQ — DR) + C(CN — GN — DP — FQ — 4GR) — 8RS — 2F(2GP + FS))u3v3.

The identity Na(u,v) + N2(u,v) = 0 gives us the following three set of conditions:

(2.4) K=L=R=5=0,P=aM,Q=N/a, MN #0, « € C, aa = 1;
(2.5) M=N=P=Q=0,R=8K,S=L/3, KL#0,3€C, =1,

(2.6) P=4N,Q=M/y, R=~L,S=K/y, KLMN #0,v€C, vy=1.
Lemma 2.1. The line at infinity has the multiplicity at least two for cubic system {(1.1),(1.2)} if
and only if the coefficients of {(1.1),(1.2)} verify one of the set of conditions (2.4), (2.5) and (2.6).
Under the conditions (2.4), (2.5) and (2.6) we have respectively:
M3(u,v) = —uv(u + av)(FN — aBM)(2Nuv + aMu? + aNv?*)v? + (CN — aDM)-
(N — a®?M)uv? — a(AN — aGM)(Mu? + Nv? + 2aMuv)u?)/a? =0 =
27) K=L=R=S8=0,F=B/a,G=aA,N=a’M,P=aM,Q=aM,M # 0,ca=1;
K=L=R=S8=0,D=CN/(aM), F =aBM/N, G = AN/(aM),
P=aM,Q=N/a,M(N —a?M) #0,aa = 1;
M;3(u,v) = —(u® + Bv3)(v(2u® — Bv*)(CL? — BDKL + SFKL — 3?BK?
+u(u?® — 26v3) - (AL? + BCKL — BGKL — 3>DK?)
+3u?v?(FL? — BBKL — B?AKL + B3GK?))/3?> =0 =
M=N=P=Q=0,C=pDK/L, F =pBK/L,
G =AL/(BK), R=BK,S =L/, BB =1;

2.8)

(2.9)

M=N=P=Q=0, F=D+ (#BK? - CL?)/(BKL),
G=C+ (AL2 752DK2)/(6KL)7 R:ﬂKa S = L//Ba L3 7B4K3 = 07 63: 17

My(u,v) = (Ku® + Mu2o 4 ANw? 1LY (1K (vD — C) — (A —AG)(K — /M)
—2(v*N(vG — A) + K(C —vD +~vF — v?B))uv + (v(A — vG)(N + 3yL)
—(F =vB)(3K +yM) — (C = yD)(M — +*N))u*v® = 2(M(F — yB) — vL(A
+vC — vG = ¥2D))uv® + v(CL — yDL — (F — yB)(N —yL))v!)/4* =0 =

D=C/y,F =By,G=A/v,P=9N,R=1L,
Q=M/v,S=K/y,KM # 0,v7 = 1;

(2.10)

(2.11)

D = (CLy* + (F = By)(K = M))/(Ly"),G = (K(By — F) + AL¥*)/(L~?),
212) N = (=K +My+Ly")/7*,P= (=K + My + Ly*)/7*,R = Ly,
Substituting (2.7), (2.8) and (2.9) in the polynomial M, (u, v) we obtain, respectively,

My(u,v) = Muv(uda(AD — 2M — ACa)(u + 2va) — v3a(2u + va)(BD — BCa + 2Ma?)
—u?v?(4Ma? + (D — Ca)(B — Da + Ca? — Aa?))/a # 0;

My(u,v) = —2uv(u + va)(N?v3a + Nuv? (2N — Ma?) — Mu?va(N — 2Ma?)
+M?u3a?)/a? £ 0;

My(u,v) = 2(u® + v38) (K Lu®B — 3L%u?v — 3K?uv?B® + KLv3p?) /3% # 0.
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Similarly, it can be verified that the polynomial M, (u,v) is not identical zero in the case
(2.10). For this it is sufficient to examine separately the identity Mj(u,v) = 0 in cases
DL? — CK?B%* =0and DL? — CK?3% 0.

In this way we have proved the following Lemma.

Lemma 2.2. The line at infinity has the multiplicity at least three for cubic system {(1.1),(1.2)} if
and only if the coefficients of {(1.1),(1.2)} verify one of the set of conditions (2.7) — (2.12). In the
cases (2.7) — (2.10) the multiplicity is exactly three.

To obtain the cubic systems (1.1) which have the line at infinity of multiplicity four we
will investigate the identity My(u,v) = 0 in each of the series of conditions (2.11) and
(2.12):

My(u,v) o 2(Ku? + Mu?v + Nuv?y + Lvdy) (v (K — M~y) — u*v(3K — M~y
' +2N~3) —uwv?(2M — Ny? + 3L~3) — v3y(N — Ly))/y? =0 =

2.13) D =CS/K,F =BK/S,G=AS/K,L = —5%/K3,
' M=SN=R=-5/K2Q=-P=5%K;

My(u,v) o1 = (Ku?y — Kuv + Muvy + Lv?y?) (uty?(K%(F — By)? + (AK L~?
+CKLy3 — ALM~3)(F — By) + 2L?y*(K — M~)) — 2u®vy(2L?~°(M + L~3)
+(F = By)(K(F = By)(K — My) = KLy*(C + Fy) = ALy*(K — My — Ly")))
+ulv? (K% — 2K M~y + M?y2 + 5K Ly* + LM~°)(F — Bv)? + Ly?(AK + CK~
—~AM~ + 3BK~3 — 4ALy* + BM~* — CL~Y°)(F — By) — 4L*7°(K + M~y + 2L~*))
—2Luvy3((FK — BKy — 2F M~ + ALY? + BM~? + CL~3)(F — By) + 2Lv*(M
+L~?)) — Lv*y?((FK — FM~ + CLy® — FLy* + BL~°)(F — By)
—2Ly(K — My)))/(L*y") =0 =

A=2(K3L+ 5%/(S*(BK — FS)) — S(BK — 2FS)/(KL),R = KL/S,

C =2(K3L + §%)/(KS(BK — FS)) — (BK*L — 2FK3LS — FS%) /(K2LS?),
(2.14) D = (FK2L + BS®)/(K2L) + 2(K°L + $%)/(K2(BK — F5)),

G = FS®/(K2L) + 2(K*L + S%)/(KS(BK — FS)), M = (K*L + 254) /53,

N = (2K3L + §%)/(K2S), P = (2K3L 4+ 5%)/(K5%),Q = (K*L + 25%) /(K S?).

Lemma 2.3. The line at infinity has the multiplicity at least four for cubic system {(1.1),(1.2)} if
and only if the coefficients of {(1.1),(1.2)} verify one of the set of conditions (2.13) and (2.14).

3. PROOF OF THE THEOREM 1.1

Lemma 3.4. The following four sets of conditions are sufficient conditions for the origin (0,0) to
be a center for system (1.1):

(3.15) C=4K S3/(AS*~BK?), D=4S*/(AS*~BK?®),F = BK/S,G = AS/K,M = S,
' L=—S%/K3 N=R=-S3/K? Q= —P = S?/K,B*K% + 4K?5° — A2S6 = 0;

A=2(K3L+5%/(S*(BK — FS))— S(BK —2FS)/(KL),R=KL/S,

C =2(K3L+ S /(KS(BK — FS)) — (BK*L —2FK?LS — FS°)/(K?LS?),

D= (FK?L+ BS3)/(K?L) +2(K3L + S*)/(K*(BK — FS)),

G=FS?/(K?L) +2(K3L+ S*)/(KS(BK — FS)),M = (K3L +25%)/53,

N = (2K3L+ 8% /(K?S),P = (2K3*L + 5%)/(K5?%),Q = (K3L + 25%) /(K S?),

(BKSL? —2FK®°L2?S + BS®)(BK — FS) +2LS(K3L + 5%)? = 0;

(3.16)
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A= (25% — F2K?)/(FS?), B = S(F2K? — 28%)/(FK?), C = 25%/(FK),
(3.17) D= -283/(FK?), G = —FK/S, L = S*/K?® M = 3S,N = 3S3/K?,
P =38%/K,Q=3S?/K, R = S°/K?

A= (28% — F2K?)/(FS?), B = S(F?K? + 253)/(FK?), C = —25%/(FK),
(3.18) D =-2S83/(FK?),G=—-FK/S, L =—-S*/K3 M =28, N=-S53/K2,
P=-S*/K, Q=25%/K, R=—S53/K2.

Proof. When one of the condition (3.15), (3.16) holds the system (1.1) has an affine invari-
ant straight line /; and a Darboux integrating factor of the form pu(z,y) = 1/1;.

In the case (3.15): I; = 25%(BK?3 — AS®) + (B2K* — ABKS? +25%)((S — K)z +i(K +
S)y), i? = —1.

In the case (3.16): I; = 4K2LS(K3L 4+ S*) + (BK — FS)(K3L — S*)((K2L + S®)z +
i(K2L — S3)y), i? = —1.

Under the conditions (3.17) the equalities CF — DG = AD?® — BC® = AF?® — BG? =
A*L3 — B*K® = A?N3 — B2M3 = A?R3? — B?S83 = C*L — D*K = C?N — D’M =
C?R—D?S =F*K -G*L=F*M —-G?N =F*S—-G?R=KN? - LM?=KR?> - LS* =
MR- NS = P—Q = 0hold. Therefore, the system {(1.1),(3.17)} has an axis of symmetry
and the origin is a center ([7]).

In the case (3.18) the system (1.1) has the integrating factor of the Darboux form:

plw,y) = Lily® 1510,
where

l1 =2F — (S*(Kz + Sz — iKy +1iSy))/K?, Iy = Explz + Sz/K — iy +iSy/K],
I3 = Exp[16S?%z/K? — (F(K — S)(Kx + Sz — iKy +iSy)?)/K?],

ly = Exp[6S(Kx — Sx —iKy — iSy)(Kz + Sz — iKy + iSy)/K?

+F(Kx + Sz — iKy +iSy)3/K3], i = -1
as = FE(K + 8)/(2S(K — 5)), ag = FK3/(85%(S — K)), as = —K/24.
(I

To prove the Theorem 1.1, we compute the first three Lyapunov quantities Ly, Lo, L3
for each sets of conditions (2.13) and (2.14). In the expressions for L;, we will neglect the
non-zero factors.

In the case (2.13) the first Lyapunov quantity is L; = 4KS*+C(BK?*—AS3)and L, =0
gives C = —4K S3)/(BK? — AS?). Substituting the expression of C in Ly and L3 we obtain
Lo = g192 and L3 = g193, where g1 = B2K54+4K255 —A256, go = B2K5%—16K255— 4256
and g3 = (61AB3K"+339B2K%5? - 122A?B? K53+ 6143BK S®+1512K257 —339A258%).
go + 4320K4512.

If ¢ = 0, then Lemma 3.4, (3.15). Taking into account that K'S # 0, the system of
equalities {g2 = 0, g3 = 0} do not have solutions.

In the case (2.14) the first Lyapunov quantity is L1 = f1f2, where f; = (BK®L? —
2FK5L2S + BS®)(BK — FS) 4+ 2LS(K3L + $4)2 and fo = BFK +2KL — F2S.If f; =0,
then Lemma 3.4, (3.16). Assume that f; # 0 and let fo = 0. Then we find that B =
(F2S —2KL)/(FK)and Ly = (K3L — S*)(K3L + S*). If K3L — S* = 0, then Lemma 3.4,
(3.17), and if K3L + S* = 0, then Lemma 3.4, (3.18). Theorem 1.1 is proved.

From the proof of Theorem 1.1 it results the following statement:

Theorem 3.2. The cubic system (1.1) with the line at infinity of multiplicity four has a center at
the origin if and only if the coefficients of (1.1) verify one of the sets of conditions (3.15)—(3.18).

Example 3.1. Consider the cubic system
i =y, y=(—4z+ 322 + 4wy + 22%y — 5y?) /4.
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For this system the line at infinity has multiplicity four: E,, = —Z3(222%y(3z% + 5y?) + (92* +
da3y + dxy3 — 25y*) Z — 8(3x + 2y) (2 + y?) Z% + 16(2? + y*) Z3) /16. The first two Lyapunov
quantities vanish (L1 = Lo = 0) and the third one is Ls = 75/1024 # 0. Therefore, the origin is
a focus of multiplicity three.
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