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Distance-transitive strongly regular graphs

MONTHER RASHED ALFURAIDAN

ABSTRACT. We present a complete description of strongly regular graphs admitting a distance-transitive
group of automorphisms. Parts of the list have already appeared in the literature; however, this is the first
time that the complete list appears in one place. The description is complemented, where possible, with the
discussion of the corresponding distance-transitive groups and some further properties of the graphs. We also
point out an open problem.

1. INTRODUCTION

A distance-transitive graphG is one about to which the automorphism group acts tran-
sitively on every ordered pairs of vertices at same distance. We only need to consider
connected graphs since any connected component of a disconnected distance-transitive
graph is itself distance-transitive. In fact, all the connected components, in such a graph,
are isomorphic. As a distance-transitive graph is vertex-transitive, it is natural to ask
whether the automorphism group of such a graph is vertex primitive or imprimitive. The
rank 3 graphs are the distance-transitive graphs of diameter two. Such graphs studied
carefully by Donald G. Higman in his breakthrough article [18], also see [10].

An enormous work has done into the classification of all finite distance-transitive graphs.
The classification obviously breakdowns into two portions—primitive and imprimitive.
The main portion of the classification is the primitive finite distance-transitive graphs,
which appears to be completely finished. For the imprimitive graphs, Derek Smith [29]
proved that the possibilities for nontrivial blocks of imprimitivity are strictly limited. In
this case, we can reduce the given imprimitive distance-transitive graph to a primitive di-
stance-transitive graph. Brouwer and Van Bon [7], Jurišić [24, 25], and Hemmeter [16, 17]
worked on the reverse of Smith’s theorem, characterizing any associated imprimitive di-
stance-transitive graphs for most of the known primitive distance-transitive graphs

In [6] J. I. Hall and the current author presented a detailed version of Smith’s theorem
which implies the primitive distance-transitive graph of diameter bigger than one and
valency bigger than two is the only core for any unknown imprimitive distance-transi-
tive graph. In [5] J. I. Hall and the current author nearly closed the classification of all
imprimitive distance-transitive graphs with primitive core of diameter bigger than two
by using the results of Brouwer and Van Bon [7] and Hemmeter [16, 17]. The missing
class of graphs is recently closed in [4].

In [2] and [3] the current author classify all imprimitive distance-transitive graphs with
primitive core of diameter two.

We are only considering finite graphs and groups.
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2. PRELIMINARIES

Let G be a connected graph of diameter d. Denote by Gi(x) the set of vertices of G at
distance i from the vertex x in G.

For y ∈ Gi(x) set

ax,yi = |Gi(x) ∩G1(y)|;
bx,yi = |Gi+1(x) ∩G1(y)|;
cx,yi = |Gi−1(x) ∩G1(y)|.

The graph G is a distance-regular graph if, for all 0 ≤ i ≤ d, each of the parameters ax,yi ,
bx,yi , and cx,yi depends not on the choice of x and y but only on i. In that case we will write

ax,yi = ai = ai(G);
bx,yi = bi = bi(G);
cx,yi = ci = ci(G).

Often one writes λ = a1 and µ = c2. Trivially a0 = c0 = bd = 0 and c1 = 1. We let
ki = |Gi(x)| (a constant) so that k0 = 1. Set k = k1(G) = b0, the valency of G. Then
k = ai + bi + ci for 0 ≤ i ≤ d. The sequence

i(G) = {b0, b1, ..., bd−1; c1, c2, ..., cd}
is called the intersection array of G and contains all the necessary parameter information
(see Proposition 4.1). Clearly a distance-transitive graph is distance-regular, but the con-
verse is in general false.

The distance regular graph of diameter two with intersection array
{k, k − λ− 1; 1, µ} = {b0, b1; c1, c2}

is the connected strongly regular graph G = (n, k, λ, µ). The complement of a strongly
regular graph with parameters (n, k, λ, µ) is strongly regular with parameters (n, n− k −
1, n− 2k + µ− 2, n− 2k + λ).

A Latin square of order n is an n×n array filled with n different entries, each occurring
exactly once in each row and exactly once in each column.

An orthogonal array OA(n,m) with parameters n and m is a n ×m2 array whose en-
tries are chosen from a set X with m points such that the m2 ordered pairs defined by any
two rows of the array are all distinct. A Latin square is therefore an OA(3,m).

Given OA(n,m), consider the graph G with vertex set the m2 columns of length n and
two vertices are connected by an edge if they have the same entries in one coordinate
position. Then G is strongly regular with parameters

(m2, (m− 1)n,m− 2 + (n− 1)(n− 2), n(n− 1)).
This graph is called a Latin square graph since an orthogonal arrayOA(n,m) is equivalent
to n − 2 mutually orthogonal Latin squares of order m. A strongly regular graph with
parameters

(m2, (m+ 1)n,−m− 2 + (n+ 1)(n+ 2), n(n+ 1))

is known as a negative Latin square graph.

3. THE FIRST STEP - O’NAN-SCOT THEOREM

The first analysis of finite primitive distance-transitive graphs using O’Nan-Scot theo-
rem was given by Praeger, Saxl and Yokoyama [28]. Their result is the first step toward
the classification of finite primitive DTG’s.
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Theorem 3.1. Let A act distance transitively on a primitive distance-transitive graph G. Then
one of the following holds.

• G is a Hamming graph H(n, q) or the complement of a Hamming graph H(2, q) and A
is a wreath product. (In this case, the graph G is well known but the possibilities for the
group A are not completely determined).

• A has an elementary abelian normal subgroup which is regular on V (G). (This case is
referred to as the affine type).

• A has a simple socle. That is, there is a simple nonabelian normal subgroup N of A such
that A canonically embeds in Aut(N) (that is, the centralizer CG(N) of N in A is trivial).
(This case is referred to as the simple socle or almost simple type).

As a summary, we have the following tree.

G primitive DTG
A = Aut(G)

? ? ?

A of affine type G is H(n, q) or H(2, q) A of simple socle type

FIGURE 1. primitive main tree

4. PRIMITIVE DTGS OF DIAMETER TWO OF AFFINE TYPE

In this section, we discuss the classification of the primitive affine DTGs of diameter
two.

The main example of graphs admitting distance-transitive action of affine type is the
Hamming graph H(n, q). The bilinear forms graph Hq(n,m) gives another classical ex-
ample of an affine DTG. Further examples can be constructed as follows.

The Hermitian forms graphs Her(n, q) (where n, q > 1) have as vertices the n × n
Hermitian matrices over Fq (where q = p2, p a prime power) with two matrices joined by
an edge if and only if their difference has rank 1. (see [9, sec. 9.5])

The alternating forms graphs Alt(n, q) (where n, q > 1) have as vertices the n × n
alternating matrices over Fq , that is, all n × n matrices (aij)n×n with aij = −aji, for
1 ≤ i, j ≤ n, and aii = 0 for all i, with two matrices joined by an edge if and only if their
difference has rank 1. (see [9, sec. 9.5])

Now let us consider the general classification scheme for the primitive DTGs of diam-
eter two of affine type. Let G be an affine DTG of diameter two with Aut(G) = A. Then
V (G) can be identified with a vector space V over the field Fs of order s for some power
s = rb of a prime r, maximal with respect to A0 ≤ GL(V ), where A0 is the stabilizer in A
of 0 ∈ V . And A acts as a primitive affine rank 3 permutation group on V . The follow-
ing theorem due to Liebeck [21] gives a complete classification of such actions. Not all of
them though lead to a distance-transitive graph. If each orbit of A is left invariant under
multiplication by −1, then it is distance-transitive.
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Theorem 4.2. LetA be a finite primitive affine permutation group of rank 3 and of degree n = pd,
with socle V , where V ∼= (Zp)d for some prime p, and let A0 be the stabilizer of the zero vector in
V . Then A0 belongs to one of the following classes (and conversely, each of the possibilities listed
below does give rise to a rank 3 affine group).

(A) Infinite classes. These are
(1) A0 ≤ ΓL1(pd): all possibilities for A0 are determined in [13, sec 3];
(2) A0 imprimitive: A0 stabilizes a pair {V1, V2} of subspaces of V , where V = V1 ⊕ V2 and

dim V1 = dim V2; moreover, (A0)Vi
is transitive on Vi\0 for i = 1, 2 (and hence A0 is

determined by Hering’s Theorem);
(3) tensor product case: for some a, q with qa = pd, consider V as a vector space Va(q) of

dimension a over GF (q); then A0 stabilizes a decomposition of Va(q) as a tensor product
V1 ⊗ V2 where dimGF (q)V1 = 2; moreover, AV2

0 B SL(V2), or AV2
0 = A7 < SL4(2) (and

p = q = 2, d = a = 8) , or dimGF (q)V2 ≤ 3;
(4) A0 B SLa(q) and pd = q2a;
(5) A0 B SL2(q) and pd = q6;
(6) A0 B SUa(q) and pd = q2a;
(7) A0 B Ω±

2a(q) and pd = q2a (and if q is odd, A0 contains an automorphism interchanging
the two orbits of Ω±

2a(q) on non-singular 1-spaces);
(8) A0 B SL5(q) and pd = q10 (from the action of SL5(q) on the skew square

∧2
(V5(q)));

(9) A0/Z(A0) B Ω7(q).Z(2,q−1) and pd = q8 (from the action of B3(q) on a spin module);
(10) A0/Z(A0) B PΩ+

10(q) and pd = q16 (from the action of D5(q) on a spin module);
(11) A0 B Sz(q) and pd = q4 ( from the embedding Sz(q) < Sp4(q) ).
(B) Extraspecial classes. Here A0 ≤ NGLd(p)(R) where R is an r-group, irreducible on V .

Either r = 3 and R ∼= 31+2 (extraspecial of order 27) or r = 2 and |R/Z(R)| = 22m with m = 1
or 2. If r = 2 then either |Z(R)| = 2 and R is one of the two extraspecial groups Rm

1 , Rm
2 of order

21+2m, or |Z(R)| = 4, when we write R = Rm
3 . The possibilities are listed in Table 1.

(C) Exceptional classes. Here the socle L of A0/Z(A0) is simple, and the possibilities are given
in Table 2.
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TABLE 1. (B) Extraspecial Classes

r pd R
3 26 31+2

34

72

132

172

2 192 R1
1 or R1

2

232 (i.e D8 or Q8)
36

292

312

472

34 R2
1

34 R2
2

2 54 R2
2

54 R2
3

74 R2
2

38 R3
2

TABLE 2. (C) Extraspecial Classes

L pd embedding of L
34

312

412

A5 74 A5 < PSL2(pd/2)
712

792

892

A6 26 A6 < PSL3(4)
54 A6 < PSp4(5)

A7 28 A7 < PSL4(4)
74 A7 < PSp4(7)

A9 28 A9 < Ω+
8 (2)

A10 28 A10 < Sp8(2)
PSL2(17) 28 PSL2(17) < Sp8(2)

PSL3(4) 36 PSL3(4) < PΩ−
6 (3)

PSU4(2) 74 PSU4(2) < PSL4(7)
M11 35 M11 < PSL5(3)
M24 211 M24 < PSL11(2)
Suz 312 Suz < PSp12(3)
G2(4) 312 G2(4) < Suz < PSp12(3)
J2 212 J2 < G2(4) < Sp6(4)

56 J2 < PSp6(5)

Hence as a summary we do have the following tables which gives us all the rank three
graphs corresponding to these actions.

TABLE 3. Aut(G) in class A of theorem

Type of A = Aut(G) n k λ
l µ

(A2): A0 imprimitive p2m 2(pm − 1) pm − 2
(pm − 1)2 2

(A3): tensor product q2m (q + 1)(qm − 1) qm + q2 − q − 2
q(qm − 1)(qm−1 − 1) q(q + 1)

(A4): A0 B SLa(q) q2a (q + 1)(qa − 1) qa + q2 − q − 2
q(qa − 1)(qa−1 − 1) q(q + 1)

(A5): A0 B SL2(q) q6 (q + 1)(q3 − 1) q3 + q2 − q − 2
q(q3 − 1)(q2 − 1) q(q + 1)

(A6): A0 B SUa(q), a even q2a (qa − 1)(qa−1 + 1) q2a−2 + qa − qa−1 − 2
qa−1(q − 1)(qa − 1) qa−1(qa−1 + 1)

(A6): A0 B SUa(q), a odd q2a (qa + 1)(qa−1 − 1) q2a−2 − qa + qa−1 − 2
qa−1(q − 1)(qa + 1) qa−1(qa−1 − 1)

(A7): A0 B Ω+
2a(q) q2a (qa − 1)(qa−1 + 1) q2a−2 + qa − qa−1 − 2

qa−1(q − 1)(qa − 1) qa−1(qa−1 + 1)

(A7): A0 B Ω−
2a(q) q2a (qa + 1)(qa−1 − 1) q2a−2 − qa + qa−1 − 2

qa−1(q − 1)(qa + 1) qa−1(qa−1 − 1)
(A8): A0 B SL5(q) q10 (q5 − 1)(q2 + 1) q5 + q4 − q2 − 2

q2(q3 − 1)(q5 − 1) q2(q2 + 1)
(A9): A0 BB3(q) q8 (q4 − 1)(q3 + 1) q6 + q4 − q3 − 2

q3(q4 − 1)(q − 1) q3(q3 + 1)
(A10): A0 BD5(q) q16 (q8 − 1)(q3 + 1) q8 + q6 − q3 − 2

q3(q8 − 1)(q5 − 1) q3(q3 + 1)
(A11): A0 B Sz(q) q4 (q2 + 1)(q − 1) q − 2

q(q2 + 1)(q − 1) q(q − 1)
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TABLE 4. Aut(G) in classes B of theorem

n = pd R k; l (n, k, λ, µ)
26 31+2 27; 36 (64,27,10,12)
34 D8 or Q8 32;48 (81,32,13,12)
72 D8 or Q8 24;24 (49,24,11,12)
132 D8 or Q8 72;96 (169,72,31,30)
172 D8 or Q8 96;192 (289,96,35,30)
192 D8 or Q8 144;216 (361,144,59,56)
232 D8 or Q8 264;264 (529,264,131,132)
36 D8 or Q8 104;624 (729,104,31,12)
292 D8 or Q8 168;672 (841,168,47,30)
312 D8 or Q8 240;720 (961,240,71,56)
472 D8 or Q8 1104;1104 (2209,1104,551,552)
34 R2

1 32;48 (81,32,13,12)
34 R2

2 16a; 16b (a+ b = 5) (81,16,7,2) or (81,32,13,12)
54 R2

2 240;384 (625,240,95,90)
54 R2

3 240;384 (625,240,95,90)
74 R2

2 480; 1920 (2401,480,119,90)
38 R3

2 1440;5120 (6561,1440,351,306)

TABLE 5. Aut(G) in class C of theorem

n = pd L k; l (n, k, λ, µ)
34 A5 40;40 (81,40,19,20)
312 A5 360,600 (961,360,119,110)
412 A5 480,1200 (1681,480,149,132)
74 A5 960;1440 (2401,960,389,380)
712 A5 840,4200 (5041,840,179,132)
792 A5 1560,4680 (6241,1560,419,380)
892 A5 2640,5280 (7921,2640,899,870)
26 A6 18;45 (64,18,2,6)
54 A6 144;480 (625,144,43,30)
28 A7 45;210 (256,45,16,6)
74 A7 720;1680 (2401,720,229,210)
28 A9 105;150 (256,105,44,42)
28 A10 45;210 (256,45,16,6)
28 L2(17) 102;153 (256,102,38,42)
36 L3(4) 224;504 (729,224,61,72)
74 U4(2) 240;2160 (2401,240,59,20)
35 M11 22;220 (243,22,1,2)
35 M11 110;132 (243,110,37,60)
211 M24 276;1771 (2048,276,44,36)
211 M24 759;1288 (2048,759,310,264)
312 Suz and G2(4) 65520;465920 (312, 65520, 8559, 8010)
212 J2 1575;2520 (4096,1575,614,600)
56 J2 7560,8064 (15625,7560,3655,3660)

5. PRIMITIVE DTGS OF DIAMETER TWO OF SIMPLE SOCLE TYPE

Using the complete classification of the simple socle type rank three groups, we will be
able to list all their corresponding primitive distance-transitive graphs of diameter two.



The classification of finite simple groups can be invoked to make further subdivision
of the possibilities for F ∗(A). (i) Alternating groups;

(ii) Groups of Lie type;
(iii) Sporadic groups.

5.1. The alternating simple socle. The complete list of primitive representations of rank
three of alternating groups given by Eiichi Bannai (see [8, table 2]) together with the result
of Martin W. Liebeck, Cheryl E. Praeger and Jan Saxl (see [23]) enable us to have the
following theorem.

Theorem 5.3. Let A be a finite primitive rank three permutation group of degree n. Assume that
the socle L of A is an alternating group, and let H be the stabilizer in L of a point. Then L is as in
Table 6 below; so are the subdegrees k, l and the corresponding strongly regular graph.

TABLE 6. Primitive distance-transitive actions of rank three
alternating group

L n k; l graph
A3 3 1; 1 K3

An, n ≥ 5 n(n−1)
2 2(n− 2); J(n, 2)

A4 3 1; 1 K3

A6 15 8;6 J(6, 2)
A8 35 16;18 AJ(8, 4)∗

A9 120 56;63 Σ120

A10 126 25,100 AJ(10, 5)∗∗

* The quotient Johnson graph AJ(8, 4).
** The quotient Johnson graph AJ(10, 5).

5.2. The simple socle of Lie type.

5.2.1. The classical groups. In [19], W. M. Kantor and R. A. Liebler gave the complete list of
the finite primitive permutation classical groups of rank three together with theirs subde-
grees of the two orbits. Hence we do have tables 7 & 8 below.

TABLE 7. Primitive distance-transitive action of rank three classical
group: exceptional classes

L H n k;l G = (n, k, λ, µ)

L2(8) : 3 7 : 6 36 14;21 (36,14,7,4)
L3(4) A6 56 10;45 (56,10,0,2)
S6(2) G2(2) 120 56;63 (120,56,28,24)
O7(3) G2(3) 1080 351;728 (1080,351,126,108)
U3(3) : 2 L3(2) : 2 36 14;21 (36,14,4,6)
U3(5) A7 50 7;42 (50,7,0,1)
U4(3) L3(4) 162 56;105 (162,56,10,24)
U6(2) U4(3) : 2 1408 567;840 (1408,567,246,216)

(*) Notice that the parameters µ of the polar graph NO±
2n(3) in O±

2n(3) and l of the polar
graph NO±

2n+1(8) in O2n+1(8) : 3 (Table 8 below) are not correct in Tables 21 and 22, resp.
of [11].
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TABLE 8. Primitive rank three classical group: Infinite classes

Group n Remark k λ
l µ

Ln(q) (qn+1−1)(qn−1)
(q+1)(q−1)2 n ≥ 4 q(q+1)(qn−1−1)

q−1
qn−1
q−1 + q2 − 2

q4(qn−1−1)(qn−2−1)
(q+1)(q−1)2 (q + 1)2

S2n(q) q2n−1
q−1 n ≥ 2 q q2n−2−1

q−1
q2n−2−1

q−1 − 2

q2n−1 q2n−2−1
q−1

O2n+1(q) q2n−1
q−1 n ≥ 2 q q2n−2−1

q−1
q2n−2−1

q−1 − 2

q2n−1 q2n−2−1
q−1

O±
2n(q) (qn∓1)(qn−1±1)

q−1 n ≥ 3 q(qn−1∓1)(qn−2±1)
q−1

q(qn−2∓1)(qn−2±q)
q−1 + q − 1

q2n−2 (qn−1∓1)(qn−2±1)
q−1

O+
10(q) (q8−1)(q3+1)

q−1
q(q5−1)(q2+1)

q−1
q2(q3−1)(q+1)

q−1 + q − 1
q6(q5−1)

q−1
(q3−1)(q2+1)

q−1

O±
2n(2) 22n−1 ± 2n−1 n ≥ 3 22n−2 − 1 22n−3 − 2

22n−2 ± 2n−1 22n−3 ∓ 2n−2

O2n+1(3) 3n(3n±1)
2 n ≥ 2 3n−1(3n∓1)

2
3n−1(3n−1∓1)

2

32n−1 ± 2.3n−1 − 1 3n−1(3n−1∓1)
2

O±
2n(3) 3n−1(3n∓1)

2 n ≥ 3 3n−1. 3
n−1∓1

2 3n−2. 3
n−1±1

2

32n−2 − 1 3n−1. 3
n−2∓1

2
∗

O2n+1(4) 22n−1(22n ∓ 1) n ≥ 2 (22n ± 1)(22n−2 ∓ 1) 24n−3 ∓ 3.22n−2 − 2
22n−2(22n ± 1) 22n−1(22n−2 ∓ 1)

O2n+1(8) : 3 23n−1(23n ∓ 1) n ≥ 2 (23n−3 ± 1)(23n ∓ 1) 26n−5 ∓ 23n−3 ± 23n − 2
(3.26n−3 ∓ 11.23n−3)∗ 23n−2(23n−3 ± 1)

U2n+1(q) (q2n−1)(q2n+1+1)
q2−1 n ≥ 1 q2(q2n−2−1)(q2n−1+1)

q2−1
q3(q2n−3+1)(q2n−3−q)

q2−1 + q2 − 1

q4n−1 (q2n−2−1)(q2n−1+1)
q2−1

U2n(q) (q2n−1)(q2n−1+1)
q2−1 n ≥ 2 q2(q2n−2+1)(q2n−1−1)

q2−1
q3(q2n−3−1)(q2n−3+q)

q2−1 + q2 − 1

q4n−1 (q2n−2+1)(q2n−1−1)
q2−1

U5(q) (q5 + 1)(q3 + 1) q3(q2 + 1) q3 − 1
q8 q2 + 1

U2n+1(2) 22n(22n+1+1)
3 n ≥ 2 (22n − 1)(22n−1 + 1) 3.24n−3 + 22n−1 − 2

22n−1. 2
2n−1
3 3.22n−2(22n−1 + 1)

U2n(2) 22n−1(22n−1)
3 n ≥ 2 (22n−1 + 1)(22n−2 − 1) 3.24n−5 − 22n−2 − 2

22n−2. 2
2n−1+1

3 3.22n−3(22n−2 − 1)

E6(q) (q12−1)(q9−1)
(q4−1)(q−1)

q(q8−1)(q3+1)
(q−1)

q9+q7−q4−2q+1
q−1

q8(q5−1)(q4+1)
(q−1)

(q4−1)(q3+1)
q−1

5.2.2. The exceptional groups. In [22], Martin W. Liebeck and Jan Saxl proved the following
result.

Theorem 5.4. Let A be a finite primitive rank three permutation group of degree n. Assume that
the socle L of A is an exceptional simple group of Lie type, and let H be the stabilizer in L of a
point. Then L and the subdegrees k, l are as in table 9 below.

5.3. The sporadic simple socle. In [22], Liebeck and Saxl mention that A. Brouwer gave
them the complete list of the finite primitive permutation sporadic groups of rank three
together with theirs subdegrees of the two orbits. Hence we do have the following result.

Theorem 5.5. Let A be a group satisfying T ≤ A ≤ Aut(T ) where T is a sporadic simple
group. Suppose that A acts distance-transitively on a primitive graph G of diameter two and the
permutation action of A on the vertex set of G is similar to its action on the cosets of a subgroup
B. Then either T also acts distance-transitively on G and the possibilities for T and T ∩ B are
given in the table 10 below, or A ∼= Aut(J2), B ∼= 21+4

− : S5 (also in the table). The graph G is
determined up to complement.
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TABLE 9. Primitive distance-transitive actions of rank
three exceptional group of Lie type

L n k; l (n, k, λ, µ)
G2(3) 351 126;224 (351,126,45,45)
G2(4) 416 100;315 (416,100,36,20)

2016 975;1040 (2016,975,462,480)
G2(8) 130816 32319;98496 (130816,32319,7742,8064)

E6(q) (q12−1)(q9−1)
(q4−1)(q−1)

q(q8−1)(q3+1)
(q−1) ;

q8(q5−1)(q4+1)
(q−1)

(n, k, q
9+q7−q4−2q+1

q−1 , (q
4−1)(q3+1)

q−1 )

TABLE 10. Primitive distance-transitive actions of rank three spo-
radic groups

Group n k; l Graph (n, k, λ, µ)

M11 55 18;36 J(11, 2) (55, 18, 9, 4)

M12 66 20;45 J(12, 2) (66, 20, 10, 4)

M22 77 60;16 (77, 60, 47, 45)

176 70;105 (176, 70, 18, 34)

M23 253 42;210 J(23, 2) (253, 42, 21, 4)

253 112;140 (253, 112, 36, 60)

M24 276 44;231 J(24, 2) (276, 44, 22, 4)
1288 792;495 (1288, 792, 476, 504)

J2 100 36;63 Hall-Janko graph (100, 36, 14, 12)

HS 100 77;22 Higman-Sims graph (100, 77, 60, 56)

McL 275 162;112 McLaughlin graph (275, 162, 105, 81)

Suz 1782 416;1365 Suzuki graph (1782, 416, 100, 96)

Co2 2300 1408;891 (2300, 1408, 840, 896)

Ru 4060 1755;2304 Rudvalis graph (4060, 1755, 730, 780)

Fi22 3510 693;2816 3-transpositions (3510, 693, 180, 126)

14080 3159;10920 (14080, 3159, 918, 648)

Fi23 31671 3510;28160 3-transpositions (31671, 3510, 693, 351)

137632 28431;109200 (137632, 28431, 6030, 5832)

Fi′24 306936 31671;275264 3-transpositions (306936, 31671, 3510, 3240)

6. PRIMITIVE DISTANCE-TRANSITIVE GRAPHS OF DIAMETER TWO

In Table 11 below we give a complete list of all primitive distance-transitive graphs G
of diameter two (except those arise from one dimensional affine groups, see [26, 31]) with
their complements. The appropriate section for the description of each graph being listed
is in the final column of the table.

Notice that graphs for SUa(q) (affine polar graphs V O±
2a(q)) ⊆ graphs for Ω+

2a(q) ∪
graphs for Ω−

2a(q)

For more details about the parameters of each graph see [15, 11]
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TABLE 11. Primitive distance-transitive graphs of diameter two

G = (n, k, λ, µ) Section

G = (n, k, λ, µ)

Hamming graphs H(2, q), q > 2 4
H(2, q), q > 2

Generalized quadrangle GQ(pm − 1, 1) = (p2m, 2(pm − 1), pm − 2, 2) 4
GQ(pm − 1, 1)

Bilinear forms Hq(m, 2) (q2m, (q + 1)(qm − 1), qm + q2 − q − 2, q(q + 1)) 4
Hq(m, 2)

Orthogonal array OA(q + 1, qm) = (q2m, (q + 1)(qm − 1), qm + q2 − q − 2, q(q + 1)) 4
OA(q + 1, qm)

Affine polar V O+
2a(q) = (q2a, (qa − 1)(qa−1 + 1), q2a−2 + qa − qa−1 − 2, qa−1(qa−1 + 1)) 4

V O
+

2a(q)

Affine polar V O−
2a(q) = (q2a, (qa + 1)(qa−1 − 1), q2a−2 − qa + qa−1 − 2, qa−1(qa−1 − 1)) 4

V O
−
2a(q)

Orthogonal array OA(qa−1 + 1, qa) = (q2a, (qa − 1)(qa−1 + 1), q2a−2 + qa − qa−1 − 2, qa−1(qa−1 + 1)) 4
OA(qa−1 + 1, qa)

Negative Latin Square (q2a, (qa + 1)(qa−1 − 1), q2a−2 − qa + qa−1 − 2, qa−1(qa−1 − 1)) 4
negative− Latin− square

Alternating forms Alt(5, q) = (q10, (q5 − 1)(q2 + 1), q5 + q4 − q2 − 2, q2(q2 + 1)) 4
Alt(5, q)

Orthogonal array OA(q3 + 1, q4) = (q8, (q4 − 1)(q3 + 1), q6 + q4 − q3 − 2, q3(q3 + 1)) 4
OA(q3 + 1, q4)

Orthogonal array OA(q3 + 1, q8) = (q16, (q8 − 1)(q3 + 1), q8 + q6 − q3 − 2, q3(q3 + 1)) 4
OA(q3 + 1, q8)

Hermitean forms Her(2, q2) = (q4, (q2 + 1)(q − 1), q − 2, q(q − 1)) 4
Her(2, q2)

Triangular graphs T (n) = (n(n−1)
2 , 2(n− 2), (n− 2), 4) 5.1

T (n)

E6,1 = ( (q12−1)(q9−1)
(q4−1)(q−1) ,

q(q8−1)(q3+1)
(q−1) , q

9+q7−q4−2q+1
q−1 , (q

4−1)(q3+1)
q−1 ) 5.2

E6,1

Grassmann Jq(n+ 1, 2) 5.2
Jq(n+ 1, 2)

Bn,1(q); Polar graphs in O2n+1(q) 5.2
Bn,1(q)

Cn,1(q); Polar graphs in Sp2n(q) 5.2
Cn,1(q)

Dn,1(q); Polar graphs in O+
2n(q) 5.2

Dn,1(q)
2Dn,1(q); Polar graphs in O−

2n(q) 5.2
2Dn,1(q)

half dual Polar graph D5,5(q) 5.2
D5,5(q)

NO−
2n(2); Polar graphs in O+

2n(2) 5.2
NO−

2n(2)

NO+
2n(2); Polar graphs in O−

2n(2) 5.2
NO+

2n(2)

NO±
2n+1(3); Polar graphs in O2n+1(3) 5.2

NO±
2n+1(3)

NO±
2n(3); Polar graphs in O±

2n(3) 5.2
NO±

2n(3)

NO∓
2n+1(4); Polar graphs in O±

2n+1(4) 5.2
NO∓

2n+1(4)

G = (n, k, λ, µ) G = (n, k, λ, µ) Section

NO±
2n+1(8); Polar graphs in O±

2n+1(8) 5.2 NO±
2n+1(8) 5.2

2A2n,1(q); Polar graphs in U2n+1(q2) 5.2 2A2n,1(q) 5.2
2A2n−1,1(q); Polar graphs in U2n(q2) 2A2n−1,1(q) 5.2

Dual Polar graph
[2
A4(q)

] [2
A4(q)

]
5.2

NU2n+1(2); Polar graphs in U2n+1(2) NU2n+1(2) 5.2
NU2n(2); Polar graphs in U2n(2) NU2n(2) 5.2
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G = (n, k, λ, µ) G = (n, k, λ, µ) Section
(64,27,10,12) (64,36,20,20) 4
(81,32,13,12) (81,48,27,30) 4
(49,24,11,12) (49,24,11,12) 4

(169,72,31,30) (169,96,53,56) 4
(289,96,35,30) (289,192,125,132) 4

(361,144,59,56) (361,216,127,132) 4
(529,264,131,132) (529,264,131,132) 4
(729,104,31,12) (729,624,531,552) 4
(841,168,47,30) (841,672,533,552) 4
(961,240,71,56) (961,720,535,552) 4

(2209,1104,551,552) (2209,1104,551,552) 4
(81,16,7,2) (81,64,49,56) 4

(625,240,95,90) (625,384,233,240) 4
(2401,480,119,90) (2401,1920,1529,1560) 4

(6561,1440,351,306) (6561,5120,3985,4032) 4
(81,40,19,20) (81,40,19,20) 4

(961,360,119,110) (961,600,349,360) 4
(1681,480,149,132) (1681,1200,851,870) 4
(2401,960,389,380) (2401,1440,859,870) 4
(5041,840,179,132) (5041,4200,3492,3540) 4
(6241,1560,419,380) (6241,4680,3499,3540) 4
(7921,2640,899,870) (7921,5280,3509,3540) 4

(64,18,2,6) (64,45,32,30) 4
(625,144,43,30) (625,480,365,380) 4

(256,45,16,6) (256,210,170,182) 4
(2401,720,229,210) (2401,1680,1169,1190) 4

(256,105,44,42) (256,150,86,90) 4
(256,102,38,42) (256,153,92,90) 4
(729,224,61,72) (729,504,351,342) 4
(2401,240,59,20) (2401,2160,1939,1980) 4

(243,22,1,2) (243,220,199,200) 4
(243,110,37,60) (243,132,81,60) 4
(2048,276,44,36) (2048,1771,1530,1540) 4

(2048,759,310,264) (2048,1288,792,840) 4
(312, 65520, 8559, 8010) (312, 465920, 408409, 408960) 4

(4096,1575,614,600) (4096,2520,1544,1560) 4
(15625,7560,3655,3660) (15625,8064,4163,4160) 4



32 M. R. Alfuraidan

G = (n, k, λ, µ) G = (n, k, λ, µ) Section
AJ(8, 4) = (35, 16, 6, 8) (35, 18, 9, 9) 5.1
Σ120 = (120, 56, 28, 24) (120,63,30,36) 5.1

AJ(10, 5) = (126, 25, 8, 4) (126,100,78,84) 5.1
(36,14,7,4) (36,21,10,15) 5.2
(56,10,0,2) (56,45,36,36) 5.2

(1080,351,126,108) (1080,728,484,504) 5.2
(36,14,4,6) (36,21,12,12) 5.2
(50,7,0,1) (50,42,35,36) 5.2

(162,56,10,24) (162,105,72,60) 5.2
(1408,567,246,216) (1408,840,488,520) 5.2

(351,126,45,45) (351,224,142,144) 5.2
(416,100,36,20) (416,315,234,252) 5.2

(2016,975,462,480) (2016,1040,544,528) 5.2
(130816,32319,7742,8064) (130816,98496,74240,73920) 5.2

(77, 60, 47, 45) (77,16,0,4) 5.3
(176, 70, 18, 34) (176,105,68,54) 5.3
(253, 112, 36, 60) (253,140,87,65) 5.3

(1288, 792, 476, 504) (1288,495,206,180) 5.3
Hall-Janko

(100, 36, 14, 12)
(100,63,38,42) 5.3

Higman-Sims
(100, 77, 60, 56)

(100,22,0,6) 5.3

McLaughlin
(275, 162, 105, 81)

(275,112,30,56) 5.3

Suzuki
(1782, 416, 100, 96)

(1782,1365,1044,1050) 5.3

(2300, 1408, 840, 896) (2300,891,378,324) 5.3
Rudvalis

(4060, 1755, 730, 780)
(4060,2304,1328,1280) 5.3

3-transpositions
(3510, 693, 180, 126)

(3510,2816,2248,2304) 5.3

(14080, 3159, 918, 648) (14080,10920,8408,8680) 5.3
3-transpositions

(31671, 3510, 693, 351)
(31671,28160,25000,25344) 5.3

(137632, 28431, 6030, 5832) (137632,109200,86600,86800) 5.3
3-transpositions

(306936, 31671, 3510, 3240)
(306936,275264,246832,247104) 5.3

7. OPEN PROBLEM

One of the most tantalizing classes of strongly regular graphs is the class of triangle
free strongly regular graphs, or tfSRG for short. This condition can be expressed in terms
of parameters as λ = 0. Apart from the degenerate cases of the complete graph Kn and
the complete bipartite graph Kn,n, only seven tfSRGs are known, and these include some
of the most famous graphs. The list of the seven graphs starts with the pentagon, corre-
sponding to (5, 2, 0, 1). Then there are the Petersen graph with parameters (10, 3, 0, 1), the
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Clebsch graph with parameters (16, 5, 0, 2), the Hoffman-Singleton graph with parame-
ters (50, 7, 0, 1), the Sims-Gewirtz graph with parameters (56, 10, 0, 2), theM22 graph with
(77, 16, 0, 4), and finally, the Higman-Sims graph with parameter set (100, 22, 0, 6). All
these graphs are known to be unique for the corresponding parameter sets, see [9, 10, 20]
for more on these graphs.

It is generally believed that no further tfSRG exists. This is a very difficult open problem
and nobody has a clear idea of a possible approach. Resolving the existence or uniqueness
question for tfSRG even for one new feasible set of parameters is considered to be a major
achievement. There are about 30 feasible arrays of tfSRGs till v = 2000. Finally, one of
the rare nonexistence result is about (324, 57, 0, 12), whose nonexistence was shown by
Gavrilyuk and Makhnev, see [14].
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