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Well-posedness of a nonlinear second-order anisotropic
reaction-diffusion problem with nonlinear and
inhomogeneous dynamic boundary conditions

MITROFAN M. CHOBAN and COSTICĂ N. MOROŞANU

ABSTRACT. The paper is concerned with a qualitative analysis for a nonlinear second-order boundary value
problem, endowed with nonlinear and inhomogeneous dynamic boundary conditions, extending the types of
bounday conditions already studied. Under certain assumptions on the input data: f1 (t, x), w(t, x) and u0(x),
we prove the well-posedness (the existence, a priori estimates, regularity and uniqueness) of a classical solution
in the Sobolev space W 1,2

p (Q). This extends previous works concerned with nonlinear dynamic boundary
conditions, allowing to the present mathematical model to better approximate the real physical phenomena (the
anisotropy effects, phase change in Ω and at the boundary ∂Ω, etc.).

1. INTRODUCTION

For the unknown function u(t, x) (hereafter, u), consider the following nonlinear second-
order parabolic problem in Q = (0, T ] × Ω, with T > 0 and a bounded domain Ω ⊂ IRn,
n ∈ {1, 2, 3} of Lebesgue measures |Ω|, whose boundary ∂Ω = Γ is sufficiently smooth

(1.1)



p1

∂

∂t
u(t, x)− Φ(t, x, ux(t, x))div

(
Ψ(t, x, ux(t, x))∇u(t, x)

)
+ p

2
u(t, x) = f

1
(t, x) in Q

∂

∂n
u+ p

1

∂

∂t
u−∆

Γ
u+ p

3
u+ g(t, x, u) = w(t, x) on Σ

u(0, x) = u0(x) on Ω,

where:
• t ∈ (0, T ], x = (x1, ..., xn) ∈ Ω, Σ = (0, T ]× Γ;
• u(t, x) is the unknown function and ∇u(t, x) = ux(t, x) (∇u = ux in short) is the

gradient of u(t, x) in x, that is

∇u =

(
∂

∂x1
u,

∂

∂x2
u, · · · , ∂

∂xn
u

)
. We set

∂

∂xi
u = uxi , i = 1, 2, ..., n, and so

u
x

=
(
u

x1
, u

x2
, · · · , u

xn

)
;

• ∂
∂tu(t, x) is the partial derivative of u(t, x) with respect to t;

• p
1
, p

2
, p

3
are positive values;
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• Φ
(
t, x, ux(t, x))

)
- is a positive and bounded nonlinear real function of class C1(Q)

with bounded derivatives, having the role of controlling the speed of the diffusion
process;

• Ψ(t, x, ux(t, x)) - is the non-constant mobility (attached to the solution u(t, x) of
(1.1));

• f
1
(t, x) ∈ Lp(Q) is the distributed control (a given function), where

(1.2) p ≥ 2;

• n=n(x) is the outward unit normal vector to Ω at a point x ∈ ∂Ω. ∂
∂n denotes

differentiation along n;

• ∆
Γ

is the Laplace-Beltrami operator;
• g : Σ×IR→ IR is a Carathéodory function, that is, g(·, ·, z) : Σ→ IR is measurable,
∀z ∈ IR, and g(t, x, ·) : IR → IR is continuous, ∀(t, x) ∈ Σ, with g(·, ·, 0) ∈ L∞(Σ)
(see [12] and reference therein). Moreover, the following hypotheses are assumed
to be satisfied:

g
1
:
(
g(t, x, z1)− g(t, x, z2)

)
(z1 − z2) ≥ b

1
(z1 − z2)2, ∀(t, x) ∈ Σ,

z1, z2 ∈ IR, for a constant b1 > 0;

g
2
: there is a function Ḡ : Σ× IR2 → IR verifying the relations(

g(t, x, z1)− g(t, x, z2)
)2

≤ Ḡ(t, x, z1, z2)(z1 − z2)2,

Ḡ(t, x, z1, z2) ≤ b
2
(1 + |z

1
|2(r′−1) + |z

2
|2(r′−1)), ∀(t, x) ∈ Σ,

z
1
, z

2
∈ IR, for a constant b

2
> 0 and r′ ≥ 1 such that

(see relation (3.19) below)

(1.3)
n+ 2

n+ 2− 2p
≥ r′ if

1

p
− 2

n+ 2
> 0;

g3 : g(t, x, z)z ≥ b3z
2, ∀(t, x) ∈ Σ, z ∈ IR, with b3 > 0.

• w(t, x) ∈W 1− 1
2p ,2−

1
p

p (Σ) is the boundary control (a given function);

• u0(x) ∈W 2− 2
p

∞ (Ω), verifying

∂
∂nu0 −∆

Γ
u0 + p

3
u0 + g(0, x, u0) = w(0, x).

Lemma 1.1. Assumption g2 implies that g(t, x, z) fulfills the polynomial growth condition

(1.4) |g(t, x, z)| ≤ b
4
(1 + |z|r

′
), ∀(t, x) ∈ Σ, z ∈ IR,

where b4 is a positive constant.

Proof. Indeed, setting z1 = z and z2 = 0 in g
2
, we get

|g(t, x, z)| ≤ |g(t, x, 0)|+ Ḡ(t, x, z, 0)
1
2 |z|

≤ |g(t, x, 0)|+ b
1
2
2

(1 + |z|2(r′−1))
1
2 |z|, ∀z ∈ IR.

Since g(t, x, 0) ∈ L∞(Σ), estimate (1.4) follows. �
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For reader’s benefit, we will write problem (1.1) in the equivalent form

(1.5)



p
1

∂

∂t
u(t, x)−Φ (t, x, ux(t, x))

∂

∂uxj

(
Ψ(t, x, ux(t, x))uxi

)
uxjxi

= A(t, x, uxi)− p2u(t, x) + f1(t, x) in Q

∂

∂n
u+ p1

∂

∂t
u−∆Γu+ p3u+ g(t, x, u) = w(t, x) on Σ

u(0, x) = u0(x) on Ω,

with

(1.6) A(t, x, uxi
) = Φ (t, x, ux(t, x))

∂

∂xi
(Ψ(t, x, ux(t, x))uxi

)

and

uxi
= ∂

∂xi
u(t, x), uxjxi

= ∂2

∂xj∂xi
u(t, x), i, j = 1, ..., n.

It is easy to recognize (1.5) as being a quasi-linear one of type (2.4) in [4, p. 3 and p. 11],
with

aij(t, x, ux(t, x)) = ∂
∂uxj

Ψ(t, x, ux(t, x))uxi , i = 1, ..., n,

and
a(t, x, u(t, x), ux(t, x)) = −A(t, x, ux(t, x)) + p2u(t, x)− f(t, x),

while the boundary conditions (1.5)2 are of second type, with
∂
∂nu(t, x) = aij(t, x, u, ux)uxj cos αi,

αi being the angle formed by the outward unit normal vector n(x) to Ω at x ∈ ∂Ω with the
xi axis, and

(1.7) ψ(t, x, u)|
Σ

= p
1

∂

∂t
u−∆

Γ
u+ p

3
u+ g(t, x, u)− w(t, x)

(see [4, p. 475, relation (7.2)]).
In addition, unless otherwise stated, we assume that equations (1.1)1 [or (1.5)1] are

uniformly parabolic, which means fulfilment of the conditions

(1.8) ν
1
(|u|)ζ2 ≤ ∂

∂zj
Ψ(t, x, z)ζiζj ≤ ν2

(|u|)ζ2

for arbitrary u and z and ζ = (ζ1, ..., ζn) an arbitrary real vector, where ν
1
(s) and ν

2
(s) are

positive (nonincreasing and nondecreasing, respectively) continuous functions of s ≥ 0.
In the present paper we study the solvability of the nonlinear second-order boundary

value problems of the form (1.1) or (1.5) in the class W 1,2
p (Q). The new mathematical

formulation expressed by (1.1) is characterized by the presence of some new physical pa-
rameters: p1 , p2 , p3 , Φ

(
t, x, ux(t, x)

)
, Ψ(t, x, ux(t, x))), the principal part being in divergence

form and by considering a linear reaction term (see [1]). The most important novelty in
our paper concerns the inhomogeneous dynamic boundary conditions of nonlinear type,
untreated until now (in this new context) in the mathematical literature. Thus, significant
aspects of the delicate physical features are expected to be reflected more accurately. In
this regard, as applications of problem (1.1) or (1.5), we indicate the moving interface prob-
lems, e.g. phase separation and transition (see [2], [6], [8], [12], [13]), anisotropy effects (see [1],
[7]), image denoising and segmentation (see [1], [7] and references therein), etc.
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2. PRELIMINARIES AND MAIN RESULT

In order to approach the parabolic nonlinear problem (1.1), we will use the same idea
as in [2], [6], [8] [9], [10] and [11]. In this respects, let ζ = u be a further variables such that
ζ(0, x) = u0(x) on Γ (see also [4, p. 449, relation (6.2)]), while for the remaining data in
(1.1) we will keep the same meanings already formulated in introduction. Corresponding,
the boundary conditions in (1.1)2 will be approached in the following by

(2.9)



u(t, x) = ζ(t, x) on Σ

∂

∂ν
u+ p

1

∂

∂t
ζ −∆

Γ
ζ + p

3
ζ + g(t, x, ζ) = w(t, x) on Σ

ζ(0, x) = ζ0(x) x ∈ Γ,

where ζ0(x) ∈ W 2− 2
p

∞ (Γ). Accordingly, the nonlinear second-order boundary value prob-
lem (1.5) can be rewritten suitably as follows

(2.10)



p
1

∂

∂t
u(t, x)−Φ(t, x, u

x
(t, x))

∂

∂uxj

(Ψ(t, x, u
x
(t, x))uxi

)uxjxi

= A(t, x, uxi
)− p

2
u(t, x) + f

1
(t, x) in Q

u(t, x) = ζ(t, x) on Σ

∂

∂n
u+ p

1

∂

∂t
ζ −∆

Γ
ζ + p

3
ζ + g(t, x, ζ) = w(t, x) on Σ

u(0, x) = u0(x) on Ω

ζ(0, x) = ζ0(x) x ∈ Γ,

where u0(x) = ζ0(x) on Γ and ζ0(x) ∈W 2− 2
p

∞ (Γ).

Definition 2.1. Any solution
(
u(t, x), ζ(t, x)

)
of the nonlinear second-order boundary

value problem (2.10) is called the classical solution if it is continuous in Q̄, have
continuous derivatives ut, ux, uxx in Q and ζt, ζx, ζxx on Σ, satisfy the equation (2.10)1 at
all points (t, x) ∈ Q and satisfy conditions (2.10)2−3 and (2.10)4−5 on the lateral surface Σ
of the cylinder Q and for t = 0, respectively.

Our main results regarding the existence, uniqueness and regularity of solutions to
problem (2.10) (practically, well-posedness of the solutions to the nonlinear second-order
boundary value problem (1.1) or (1.5)) is the following

Theorem 2.1. Suppose
(
u(t, x), ζ(t, x)

)
∈ C1,2(Q)× C1,2(Σ) is a classical solution of problem

(2.10) and for positive numbers M , M0, m1, M1, M2, M3, M4 and M5 one has

I1. |u(t, x)| < M for any (t, x) ∈ Q and for any z(t, x), the map ψ(t, x, z) is continuous,
differentiable in x, its x-derivatives are measurable bounded, satisfies (1.8), and

(2.11) 0 < Ψmin ≤ Ψ(t, x, ux(t, x)) < Ψmax, for (t, x) ∈ Q,
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(2.12)

n∑
i=1

|Ψ(t, x, z)uxi
|(1 + |z|)

+

n∑
i,j=1

∣∣∣∣ ∂∂xj (Ψ(t, x, z)uxi
)

∣∣∣∣+ |u(t, x)| ≤M0(1 + |z|)2.

I2. Φ(t, x, ux(t, x)) is a positive and bounded nonlinear real function of classC1(Q) with bounded
derivatives and

m1 ≤ Φ(t, x, ux(t, x)) ≤M1 .

In addition, for any sufficiently small ε > 0, the functions u(t, x) and Ψ(t, x, ux(t, x)) satisfy the
relations

‖u‖
Ls(Q)

≤M2 , ‖Ψ(t, x, ux(t, x))uxi‖Lr(Q)
< M3 , i = 1, ..., n,

where

r =

{
max{p, 4} p 6= 4
4 + ε p = 4,

s =

{
max{p, 2} p 6= 2
2 + ε p = 2.

I3. The hypotheses g
1
-g

3
are fulfilled.

Then, ∀f
1
∈ Lp(Q), u0 ∈ W

2− 2
p

∞ (Ω), ζ0(x) ∈ W 2− 2
p

∞ (Γ), w ∈ W 1− 1
2p ,2−

1
p

p (Σ), with p 6= 3
2 ,

there exists a unique solution (u, ζ) ∈W 1,2
p (Q)×W 1,2

p (Σ) to (2.10) and satisfies

(2.13)
‖u‖W 1,2

p (Q)+‖ζ‖W 1,2
p (Σ) ≤ C

[
1+‖u0‖

W
2− 2

p
∞ (Ω)

+‖ζ0‖
W

2− 2
p

∞ (Γ)

+‖f
1
‖

Lp(Q)
+‖w‖

Lp(Σ)
+‖w‖

W
1− 1

2p
,2− 1

p
p (Σ)

]
where the constant C > 0 is independent of u, ζ, f1 and w.

If (u1, ζ1), (u2, ζ2) are two solutions to (2.10) corresponding to (u1
0, ζ

1
0 ), (u2

0, ζ
2
0 )∈W 2− 2

p
∞ (Ω)×

W
2− 2

p
∞ (Γ), f1

1
, f2

1
, w1 and w2, respectively, such that

(2.14) ‖u1‖W 1,2
p (Q), ‖u2‖W 1,2

p (Q) ≤M4,

(2.15) ‖ζ1‖W 1,2
p (Σ), ‖ζ2‖W 1,2

p (Σ) ≤M5,

then the following estimate holds

(2.16)

max
(t,x)∈Q

|u1 − u2|+ max
(t,x)∈Σ

|ζ1 − ζ2|

≤ C1e
CTmax

{
max

(t,x)∈Ω
|u1

0 − u2
0|, max

(t,x)∈Γ
|ζ1

0 − ζ2
0 |,

max
(t,x)∈Q

|f1
1
− f2

1
|, max

(t,x)∈Σ
|w1 − w2|

}
,

where the positive constants C1 > 0, C > 0, are independent of
{
u1, ζ1, f1

1
, w1, u1

0, ζ
1
0

}
and{

u2, ζ2, f2
1
, w2, u2

0, ζ
2
0

}
. In particular, the uniqueness of solution to problem (2.10) holds.

As far as the techniques used in the paper are concerned, it should be noted that we
derive the a priori estimates in Lp(Q) and Lp(Σ). Moreover, basic tools in our approach
are:
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• the Leray-Schauder degree theory (see [8, p. 221] and reference therein);

• the Lp-theory of linear and quasi-linear parabolic equations [4];

• Green’s first identity

(2.17)

−
∫
Ω

y divz dx =

∫
Ω

∇y · z dx−
∫
∂Ω

y
∂

∂n
z dγ,

−
∫
Ω

y∆z dx =

∫
Ω

∇y · ∇z dx−
∫
∂Ω

y
∂

∂n
z dγ,

for any scalar-valued function y and z, a continuously differentiable vector field in n di-
mensional space;

• the Lions and Peetre embedding Theorem [5, p. 24] to ensure the existence of a con-
tinuous embedding W 1,2

p (Q) ⊂ Lµ(Q), where the number µ is defined as follows (see
(1.2))

(2.18) µ =



∞ if
1

p
− 2

n+ 2
< 0,

any number ≥ p if
1

p
− 2

n+ 2
= 0,

p (n+ 2)

n+ 2− 2p
if

1

p
− 2

n+ 2
> 0.

For a given positive integer k and 1 ≤ p ≤ ∞, we denote by W k,2k
p (Q) the Sobolev

space on Q:

W k,2k
p (Q) =

{
y ∈ Lp(Q) :

∂i

∂ti
∂j

∂xj
y ∈ Lp(Q), for 2i+ j ≤ 2k

}
,

i.e., the spaces of functions whose t-derivatives and x-derivatives up to the order k and

2k, respectively, belong to Lp(Q). Also, we will use the Sobolev spaces W i
p(Ω), W

i
2 ,i
p (Σ)

with nonintegral i for the initial and boundary conditions, respectively (see [4, p. 70 and
p. 81]).

Also, we shall use the set C1,2(D̄) (C1,2(D)) of all continuous functions in D̄ (in D)
having continuous derivatives ut, ux, uxx in D̄ (in D) (D = Q or D = Σ), as well as the
Sobolev spaces W l

p(Ω), W l,l/2
p (Σ) with nonintegral l for the initial and boundary condi-

tions, respectively (see [4, p. 8, p. 70 and p. 81]).
In the following we will denote by C several positive constants, being understood that

the extra dependencies will be set out on occurrence.

3. PROOF OF THE MAIN RESULT - Theorem 2.1

To prove this theorem, we use the Leray-Schauder principle. Let p′ chosen as follows

(3.19) µ ≥ p′ =


any number ≥ pr′ if

1

p
− 2

n+ 2
≤ 0,

any number in

[
pr′,

p(n+ 2)

n+ 2− 2p

]
if

1

p
− 2

n+ 2
> 0.

Notice that (3.19) makes sense due to (1.3).
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Consider the Banach space B = W 0,1
p (Q) × Lp

′
(Σ) endowed with the norm ‖ · ‖B ,

expresed by
‖(ϕ, ϕ̄)‖B = ‖ϕ‖Lp(Q) + ‖ϕx‖Lp(Q) + ‖ϕ̄‖Lp′ (Σ),

and a nonlinear operator H : B × [0, 1]→ B defined by

(3.20) (u, ζ)=H(ϕ, ϕ̄, λ)=
(
u(ϕ, ϕ̄, λ), ζ(ϕ, ϕ̄, λ)

)
∀(ϕ, ϕ̄) ∈ B, ∀λ ∈ [0, 1],

where (u(ϕ, ϕ̄, λ), ζ(ϕ, ϕ̄, λ) is the unique solution to the following linear second-order
boundary value problem

(3.21)



p
1

∂

∂t
u−
[
λΦ(t, x, ϕx)

∂

∂ϕxj

(Ψ(t, x, ϕx)ϕxi
)−(1−λ)δji

]
uxixj

=λ
[
A(t, x, ϕxi

)−p
2
ϕ(t, x)+f

1
(t, x)

]
in Q

u(t, x) = ζ(t, x) on Σ

u(0, x) = λu0(x) on Ω

∂

∂n
u+ p

1

∂

∂t
ζ −∆

Γ
ζ + p

3
ζ = λ[−g(t, x, ϕ̄) + w(t, x)] on Σ

ζ(0, x) = λζ0(x) x ∈ Γ.

Remark 3.1. The nonlinear operator H in (3.20) depends on λ ∈ [0, 1] and its fixed point
for λ = 1 are solutions of problem (3.21).

Proof. We start the proofing of Theorem 2.1 by showing that the nonlinear operatorH has
two properties:

A. H is well-defined.
B. H is continuous and compact.

A. H is well-defined if the problem (3.21) has a unique solution.

Making use of the assumptions I1, I2 and (1.6), from the right-hand side of (3.21) it
follows that ∀ϕ ∈ W 0,1

p (Q), then A(t, x, ϕxi
) + p2ϕ(t, x) + f

1
(t, x) ∈ Lp(Q). On the other

hand, according to (1.4), we have that g(t, x, ϕ̄) ∈ L
p′
r′ (Σ) whenever ϕ̄ ∈ Lp′(Σ). Moreover,

(1.3) implies g(t, x, ϕ̄) ∈ Lp(Σ). Applying Lemma 7.4 (see Appendix) with

f3 = λ [A(t, x, ϕxi
)− p2ϕ(t, x) + f

1
(t, x)] ∈ Lp(Q) and

g3 = λ [−g(t, x, ϕ̄) + w(t, x)] ∈ Lp(Σ),

the solution (u, ζ) to problem (3.21) exists and is unique. Furthermore, ∀(ϕ, ϕ̄) ∈ B, ∀ λ ∈
[0, 1],

(3.22) (u, ζ) =
(
u(ϕ, ϕ̄, λ), ζ(ϕ, ϕ̄, λ)

)
∈W 1,2

p (Q)×W 1,2
p (Σ).

Since µ =
p (n+ 2)

n+ 2− 2p
≥ p if

1

p
− 2

n+ 2
> 0 (see (2.18)), we can take µ > p in all cases

required by (2.18). Consequently, we have the continuous embeddings (see [5, p. 24])

(3.23)


W 1,2
p (Q) ⊂W 0,1

p (Q) ⊂ Lp(Q)

W 1,2
p (Σ) ⊂ Lp′(Σ) ⊂ Lp(Σ),
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which means that H(ϕ, ϕ̄, λ) = (u, ζ) ∈ B for all (ϕ, ϕ̄) ∈ B and ∀λ ∈ [0, 1].

B. Let us now show that H is continuous and compact.

Let ϕn → ϕ in W 0,1
p (Q), ϕ̄n → ϕ̄ in Lp

′
(Σ) and λn → λ in [0, 1]. Using the notation

(un,λn , ζn,λn) = H(ϕn, ϕ̄n, λn),
(un,λ, ζn,λ) = H(ϕn, ϕ̄n, λ), (uλ, ζλ) = H(ϕ, ϕ̄, λ),

and considering the difference H(ϕn, λn)−H(ϕn, λ), we obtain from (3.20) and (3.21)

(3.24)



p1

∂
∂t (u

n,λn − un,λ)−
[
λΦ(t, x, ϕnx)·

∂
∂ϕn

xj

(Ψ(t, x, ϕnx)ϕnxi
) + (1− λ)δji

]
(un,λn
xixj
− un,λxixj

)

=(λn−λ)

{[
Φ(t, x, ϕnx) ∂

∂ϕn
xj

(
Ψ(t, x, ϕnx)ϕnxi

)
−δji

]
un,λn
xixj

+A(t, x, ϕnxi
)− p

2
ϕn(t, x) + f

1
(t, x)

}
in Q

(un,λn − un,λ)(t, x) = (ζn,λn − ζn,λ)(t, x) on Σ

(un,λn − un,λ)(0, x) = (λn − λ)u0(x) in Ω

∂
∂n (un,λn − un,λ) + p1

∂
∂t (ζ

n,λn − ζn,λ)

−∆Γ(ζn,λn − ζn,λ) + p3(ζn,λn − ζn,λ)

= (λn − λ)[−g(t, x, ϕ̄n) + w(t, x)] on Σ

(ζn,λn − ζn,λ)(0, x) = (λn − λ)ζ0(x) in Γ.

The right-hand side in (3.24)1 belongs to Lp(Q), since un,λn ∈ W 1,2
p (Q). The embeddings

W
2− 2

p
∞ (Ω) ⊂W 2− 2

p
p (Ω) and W

2− 2
p

∞ (Σ) ⊂W 2− 2
p

p (Σ) allows us to apply Lemma 7.4 with:
f3 = (λn − λ)

[
A(t, x, ϕnxi

)− p2ϕ
n(t, x) + f1(t, x)

]
∈ Lp(Q),

g3 = (λn − λ) [−g(t, x, ϕ̄n) + w(t, x)] ∈ Lp(Σ),
and so we get

‖un,λn − un,λ‖W 1,2
p (Q) + ‖ζn,λn − ζn,λ‖W 1,2

p (Σ)

≤ C|λn−λ|

{∥∥∥∥[Φ(t, x, ϕnx) ∂
∂ϕn

xj

(
Ψ(t, x, ϕnx)ϕnxi

)
−δji

]
un,λn
xixj

∥∥∥∥
Lp(Q)

+‖u0‖
W

2− 2
p

∞ (Ω)
+ ‖ζ0‖

W
2− 2

p
∞ (Γ)

+ ‖A(t, x, ϕnxi
)‖Lp(Q) + p2‖ϕn‖Lp(Ω)

+‖f1‖Lp(Q) + ‖g(t, x, ϕ̄n)‖Lp(Σ) + ‖w‖
W

1− 1
2p

,2− 1
p

p (Σ)

}
,

for a positive constant C(|Ω|, |Γ|, p1, p2,M,M0 ,M1,M2,M3). By virtue of I1, I2 and know-
ing that un,λn

xixj
∈ Lp(Q), we derive the boundedness (in Lp(Q)) of the terms A(t, x, ϕnxi

),(
Φ(t, x, ϕnx) ∂

∂ϕn
xj

(
Ψ(t, x, ϕnx)ϕnxi

)
−δji

)
un,λn
xixj

, ϕn and f1 . Also, the sequence ϕ̄n is bounded

in Lp
′
(Σ), so that by (1.3) and (1.4) we derive the boundedness of g(t, x, ϕ̄n) in Lp(Σ).

Therefore, since λn → λ, we obtain from the previous inequality

(3.25) ‖un,λn − un,λ‖W 1,2
p (Q) + ‖ζn,λn − ζn,λ‖W 1,2

p (Σ) → 0 for n→∞.
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In order to evaluate the difference H(vn, λ)−H(v, λ), we use (3.20) and (3.21), so that

(3.26)



p
1

∂
∂t (u

n,λ − uλ)−
[
λΦ(t, x, ϕnx)·

∂
∂ϕn

xj

(Ψ(t, x, ϕnx)ϕnxi
) + (1− λ)δji

]
(un,λxixj

− uλxixj
)

=λ

{[
Φ(t, x, ϕnx) ∂

∂ϕn
xj

(Ψ(t, x, ϕnx)ϕnxi
)−δji

]
un,λxixj

+A(t, x, ϕnxi
)− p2ϕ

n(t, x) + f1(t, x)

}
in Q

(un,λ − uλ)(t, x) = (ζn,λ − ζλ)(t, x) on Σ
(un,λ − uλ)(0, x) = 0 in Ω
∂
∂n (un,λ − uλ) + p1

∂
∂t (ζ

n,λ − ζλ)

−∆
Γ
(ζn,λ−ζλ)+p

3
(ζn,λ−ζλ)=λ

[
−g(t, x, ϕ̄n)+w(t, x)

]
on Σ

(ζn,λ − ζλ)(0, x) = 0 in Γ.

Applying Lemma 7.4 to the linear inhomogeneous problem (3.26) with
f3 = λ

[
A(t, x, ϕnxi

)− p
2
ϕn(t, x) + f

1
(t, x)

]
∈ Lp(Q),

g3 = λ [−g(t, x, ϕ̄n) + w(t, x)] ∈ Lp(Σ)

and u0 = ζ0 = 0, λ ∈ [0, 1], we obtain

‖un,λ − uλ‖W 1,2
p (Q) + ‖ζn,λ − ζλ‖W 1,2

p (Σ)

≤ C

{∥∥∥∥[Φ(t, x, ϕnx) ∂
∂ϕn

xj

(
Ψ(t, x, ϕnx)ϕnxi

)
−δji

]
un,λxixj

∥∥∥∥
Lp(Q)

+‖A(t, x, ϕnxi
)‖Lp(Q) + p

2
‖ϕn‖Lp(Ω)

+‖f1‖Lp(Q) + ‖g(t, x, ϕ̄n)‖Lp(Σ) + ‖w‖
W

1− 1
2p

,2− 1
p

p (Σ)

}
,

for a positive constant C. Then, the convergences: ϕn → ϕ in W 0,1
p (Q), ϕ̄n → ϕ̄ in

Lp
′
(Σ), the continuity of the Nemytskij operator (see, [2] and references therein) and the

boundedness of the terms in right-hand side of above inequality helps us to conclude that

(3.27) ‖un,λ − uλ‖W 1,2
p (Q) + ‖ζn,λ − ζλ‖W 1,2

p (Σ) → 0 for n→∞.

Making use of the relations (3.25) and (3.27), we derive the continuity of the nonlinear
operator H defined by (3.20). Moreover, the mapping H is compact, what can easily be
seen by writting it as the composition

B × [0, 1]→W 1,2
p (Q)×W 1,2

p (Σ) ↪→ B = W 0,1
p (Q)× Lp

′
(Σ),

where the second map is an compact inclusion due to Lions-Peeter embedding theorem
(see [5, p. 21]).

4. THE REGULARITY OF THE SOLUTION u(t, x)

Now we establish the existence of a number δ > 0 such that (see (3.20))

(4.28) (u, ζ, λ) ∈ B × [0, 1] with (u, ζ) = H(u, ζ, λ) =⇒ ‖(u, ζ)‖B < δ.
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The equality (u, ζ) = H(u, ζ, λ) in (4.28) is equivalent to (see (1.1), (2.10) and (3.21))

(4.29)



p
1

∂

∂t
u−λΦ(t, x, ux)div

(
Ψ(t, x, ux)∇u

)
−(1−λ)∆u

=λ
[
−p

2
u(t, x)+f

1
(t, x)

]
in Q

u(t, x) = ζ(t, x) on Σ

u(0, x) = λu0(x) on Ω

∂

∂n
u+p

1

∂

∂t
ζ−∆

Γ
ζ+p

3
ζ=λ[−g(t, x, ζ)+w(t, x)] on Σ

ζ(0, x) = λζ0(x) x ∈ Γ.

Multiplying (4.29)1 by |u|p−2u and integrating over Qt := (0, t)× Ω, t ∈ (0, T ], we get

(4.30)

p
1

p

∫
Ot

∂

∂t
|u(t, x)|p dτdx

−λ
∫
Qt

Φ(t, x, ux)div
(

Ψ(t, x, ux)∇u
)
|u|p−2u dτdx

−(1− λ)

∫
Qt

∆u |u|p−2u dτdx

= λp
2

∫
Qt

|u|p dτdx+ λ

∫
Qt

f
1
|u|p−2u dτdx.

In order to process the terms∫
Qt

Φ(t, x, ux)div
(
Ψ(t, x, ux)∇u

)
|u|p−2u dτdx and

∫
Qt

∆u |u|p−2u dτdx,

we use Green’s first identity (2.17)1 and (2.17)2, respectively, and we obtain

(4.31)

−λ
∫
Qt

Φ(t, x, ux)div
(

Ψ(t, x, ux)∇u
)
|u|p−2u dτdx

= λ

∫
Qt

Ψ(t, x, ux)∇u · ∇
(

Φ(t, x, ux)|u|p−2u
)
dτdx

+λ

∫
Σt

Φ(t, x, ux)|u|p−2u
(
− ∂

∂n
u
)
dτdγ,

(4.32)

−(1− λ)

∫
Qt

∆u |u|p−2u dτdx = (1− λ)(p− 1)

∫
Qt

|∇u|2|u|p−2 dτdx

+(1− λ)

∫
Σt

|u|p−2u
(
− ∂

∂n
u
)
dτdγ,

where Σt = (0, t)× ∂Ω, t ∈ (0, T ] and

− ∂

∂n
u = p

1

∂

∂t
ζ −∆

Γ
ζ + p

3
ζ + λg(t, x, ζ)− λw(t, x)

(see (4.29)4).
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Combining the above equality with the boundary condition (4.29)2 and, making use of
the left inequality in (2.11), the hypothesis I2, g3, as well as the relations (4.31), (4.32), then
(4.30) leads us to the following inequality

(4.33)

p1

p

∫
Ω

|u(t, x)|p dx

+λ
p

1

p
m

1

∫
Γ

|ζ(t, x)|p dγ + (1− λ)
p

1

p

∫
Γ

|ζ(t, x)|p dγ

+λ

∫
Qt

Ψ(t, x, ux)∇u · ∇
(

Φ(t, x, ux)|u|p−2u
)
dτdx

+(1− λ)(p− 1)

∫
Qt

|∇u|2|u|p−2 dτdx

+λp
3
m

1

∫
Σt

|u|p dτdγ + (1− λ)p
3

∫
Σt

|u|p dτdγ

+λ

∫
Σt

∇Γ

(
Φ(t, x, ux)|u|p−1

)
· ∇Γu dτdγ

+(1− λ)

∫
Σt

∇Γ

(
|u|p−1

)
· ∇Γu dτdγ + λb3

∫
Σt

|u|p dτdγ

≤ λp1

p

∫
Ω

|u0(x)|p dx+ λ
p1

p
m

1

∫
Γ

|ζ0(x)|pdγ

+(1− λ)
p

1

p

∫
Γ

|ζ0(x)|pdγ + λp
2

∫
Qt

|u|p dτdx

+λ

∫
Qt

f1 |u|p−2u dτdx+ λ
[
(1− λ) + λM1

] ∫
Σt

w|u|p−2u dτdγ

for all t ∈ (0, T ]. The Hölder’s and Cauchy’s inequality, applied to the last terms in above
inequality, give us

j1. λ

∫
Qt

f
1
|u|p−2u dτdx ≤ p− 1

p

∫
Qt

|u|p dτdx+ λ
1

p

∫
Qt

|f
1
|p dτdx,

j2. λM1

∫
Σt

w|u|p−2u dτdγ

≤ λp− 1

p

∫
Σt

|u|p dτdγ +M1

1

p

∫
Σt

|w|p dτdγ,

j3. (1− λ)

∫
Σt

w|u|p−2u dτdγ

≤ (1− λ)
p− 1

p

∫
Σt

|u|p dτdγ +
1

p

∫
Σt

|w|p dτdγ.
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Due to the inequalities j1-j3, from (4.33) we derive the following estimate

(4.34)

p
1

p

∫
Ω

|u(t, x)|p dx

+λ
p1

p
m1

∫
Γ

|ζ(t, x)|p dγ + (1− λ)
p1

p

∫
Γ

|ζ(t, x)|p dγ

+λ

∫
Qt

Ψ(t, x, ux)∇u · ∇
(

Φ(t, x, ux)|u|p−2u
)
dτdx

+(1− λ)(p− 1)

∫
Qt

|∇u|2|u|p−2 dτdx

+λp
3
m

1

∫
Σt

|u|p dτdγ + (1− λ)p
3

∫
Σt

|u|p dτdγ

+λ

∫
Σt

∇
Γ

(
Φ(t, x, ux)|u|p−1

)
· ∇

Γ
u dτdγ

+(1− λ)

∫
Σt

∇
Γ

(
|u|p−1

)
· ∇

Γ
u dτdγ + λb

3

∫
Σt

|ζ|p dτdγ

≤ λp1

p

∫
Ω

|u0(x)|p dx+ λ
p

1

p
m

1

∫
Γ

|ζ0(x)|pdγ

+(1− λ)
p1

p

∫
Γ

|ζ0(x)|pdγ +
[
p2 + 2

p− 1

p

] ∫
Qt

|u|p dτdx

+λ
1

p

∫
Qt

|f
1
|p dτdx+ (M

1
+ 1)

1

p

∫
Σt

|w|p dτdγ

for all t ∈ (0, T ].
By Gronwall’s lemma, from (4.34) we get

(4.35) λ‖u‖pLp(Q) ≤ C1

(
‖u0‖pLp(Ω) + ‖ζ0‖pLp(Γ) + ‖f

1
‖pLp(Q) + ‖w‖pLp(Σ)

)
,

for a constant C1 = C(|Ω|, |Γ|, T, p, n, p
1
, p

2
, p

3
,m

1
,M

1
) > 0.

Owing to (4.35), we deduce from (4.34) that

(4.36) λ‖ζ‖pLp(Σ) ≤ C2

(
‖u0‖pLp(Ω) + ‖ζ0‖pLp(Γ) + ‖f1‖

p
Lp(Q) + ‖w‖pLp(Σ)

)
,

where C2 = C(|Ω|, |Γ|, T, n, p, p1 , p2 , p3 ,m1 ,M1 , b3) > 0 denotes a new positive constant.
Appling Lemma 7.4 to the linear inhomogeneous problem (4.29) with

f3 = λ [−p
2
u(t, x) + f

1
(t, x)] ∈ Lp(Q) and

g3 = λ [−g(t, x, ζ) + w(t, x)] ∈ Lp(Σ),
we obtain

(4.37)

‖u‖W 1,2
p (Q) + ‖ζ‖W 1,2

p (Σ)

≤ C3

{
‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
W

2− 2
p

∞ (Γ)
+ λp

2
‖u‖Lp(Ω)

+‖f
1
‖Lp(Q) + λ‖g(t, x, ζ)‖Lp(Σ) + ‖w‖

W
1− 1

2p
,2− 1

p
p (Σ)

}
,

for a constant C3 = C(|Ω|, |Γ|, T, n, p, p1 , p3) > 0.
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Using now (1.4), then (4.37) becomes

(4.38)

|u‖W 1,2
p (Q) + ‖ζ‖W 1,2

p (Σ) ≤ C4

{
1 + ‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
W

2− 2
p

∞ (Γ)

+λ‖u‖Lp(Ω) + λ‖ζ‖Lp′ (Σ)

+‖f
1
‖Lp(Q) + ‖w‖

W
1− 1

2p
,2− 1

p
p (Σ)

}
,

for a constant C4 = C(|Ω|, |Γ|, T, n, p, p1 , p2 , p3 ,m1 ,M1 , b3) > 0.
Owing to the embeddings in (3.23)2 a standard interpolation inequality (see [5, p. 58])

yields that ∀ε > 0, ∃C(ε) > 0 such that

‖ζ‖Lp′ (Σ) ≤ ε‖ζ‖W 1,2
p (Σ) + C(ε)‖ζ‖Lp(Σ),

and thus from (4.38), we get

(4.39)

|u‖W 1,2
p (Q) + (1− εC4)‖ζ‖W 1,2

p (Σ)

≤ C5

{
1 + ‖u0‖

W
2− 2

p
∞ (Ω)

+ ‖ζ0‖
W

2− 2
p

∞ (Γ)

+λ‖u‖Lp(Ω) + λ‖ζ‖Lp(Σ)

+‖f
1
‖Lp(Q) + ‖w‖

W
1− 1

2p
,2− 1

p
p (Σ)

}
,

for a new constant C5 = C(ε)C4 > 0.
The continuous embedding in (3.23) ensures that

‖u‖Lp(Q) + ‖ζ‖Lp(Σ) ≤ C
(
‖u‖W 1,2

p (Q) + ‖ζ‖W 1,2
p (Σ)

)
which, for ε > 0 with 1 − εC4 > 0, and thanks to (4.35)-(4.36) and (4.39), ensures that a
constant δ > 0 can be found such that the property expressed in (4.28) is true.

Denoting BHδ :=
{

(u, ζ) ∈ B : ‖(u, ζ)‖B < δ
}
, relation (4.28) implies that

(u, ζ, λ) 6= (u, ζ) ∀(u, ζ) ∈ ∂BHδ , ∀λ ∈ [0, 1],

provided that δ > 0 is sufficiently large. Furthermore, following the same reasoning as in
[2], we conclude that problem (2.10) has a solution (u, ζ) ∈ W 1,2

p (Q)×W 1,2
p (Σ) (for more

details, see [12, p. 195]). Estimate (2.13) follows from (4.39) combined with (4.35)-(4.36).
This completes the proof of the first part in Theorem 2.1.

5. PROOF OF Theorem 2.1 CONTINUED

In this section we prove the second part of Theorem 2.1 which comes down to checking
the estimate (2.16) and, as a consequence, the uniqueness of the solution to problem (1.1)
(or (1.5)). To this end we consider (u1, ζ1), (u2, ζ2) as in the statement of Theorem 2.1. In
the first part we already esteblished that u1, u2 ∈ W 1,2

p (Q) and ζ1, ζ2 ∈ W 1,2
p (Σ). Thus

U = u1 − u2 ∈W 1,2
p (Q) and Z = ζ1 − ζ2 ∈W 1,2

p (Σ).
Following [1, p. 176], we write the increments of aij and A (see (1.6)) in the form

aij(t, x, u
1
x)− aij(t, x, u2

x) =

1∫
0

d

dλ
ai,j

(
t, x, uλx

)
dλ,
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A(t, x, u1
x)−A(t, x, u2

x) =

1∫
0

d

dλ
A
(
t, x, uλx

)
dλ

and then

(5.40)

aij(t, x, u
1
x)u1

xixj
− aij(t, x, u2

x)u2
xixj

= aij(t, x, u
1
x)Uxixj

+

u2
xixj

1∫
0

∂

∂uλxj

[
Φ(t, x, uλx)ai,j

(
t, x, uλx

)]
dλ

Uxi
,

(5.41) A(t, x, u1
x)−A(t, x, u2

x) =


1∫

0

∂

∂uλxj

A
(
t, x, uλx

)
dλ

Uxi
,

where

ai,j
(
t, x, uλx

)
=

∂

∂uλxj

[
Ψ(t, x, uλx)uλxi

]
,

A
(
t, x, uλx

)
=Φ(t, x, uλx)ai

(
t, x, uλx

)
, ai

(
t, x, uλx

)
=

∂

∂xi

[
Ψ(t, x, uλx)uλxi

]
and

uλx(t, x) = λu1
x(t, x) + (1− λ)u2

x(t, x).

We subtract the equation (1.5) for u2(t, x) from the equations (1.5) for u1(t, x) and, ow-
ing to (5.40) and (5.41), we obtain the following linear problem endowed with nonlinear
dynamic boundary conditions, that is

(5.42)



p
1

∂

∂t
U − âij(t, x)∆U = −âi(t, x)∇U − p

2
U + (f1

1 − f2
1 ) in Q

U(t, x) = Z(t, x) on Σ

U(0, x) = (u1
0 − u2

0)(x) in Ω

∂

∂n
U + p

1

∂

∂t
Z −∆ΓZ + p

3
Z

= −
[
g(ζ1)− g(ζ2)

]
+ (w1 − w2) on Σ

Z(0, x) = (ζ1
0 − ζ2

0 )(x) on Γ,

where

âij(t, x) = Φ(t, x, u1
x) aij(t, x, u

1
x),

âi(t, x) = −u2
xixj

1∫
0

∂

∂uλxj

[
Φ(t, x, uλx) ai,j

(
t, x, uλx

)]
dλ

+

1∫
0

∂

∂uλxj

[
Φ(t, x, uλx)

∂

∂xi
Ψ(t, x, uλx)uλxi

]
dλ.

By hypothesis we have u1
0−u2

0 ∈W
2− 2

p
∞ (Ω) ⊂W 2− 2

p
p (Ω), ζ1

0 − ζ2
0 ∈W

2− 2
p

∞ (Γ) ⊂W 2− 2
p

p (Γ),
−âi(t, x)∇U − p2U + (f1

1 − f2
1 ) ∈ Lp(Q) (recall that U(t, x) ∈ W 1,2

p (Q)) and −
[
g(ζ1) −
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g(ζ2)
]
∈ Lp(Σ). So, Theorem 2.1 in [2, relation (2.7)] applied to problem (5.42) for the

unknown functionsU(t, x) = (u1−u2)(t, x) andZ(t, x) = (ζ1−ζ2)(t, x), gives the estimate

(5.43)

‖u1 − u2‖p
W 1,2

p (Q)
+ ‖ζ1 − ζ2‖p

W 1,2
p (Σ)

≤ C6

[
‖u1

0−u2
0‖
p

W
2− 2

p
∞ (Ω)

+‖ζ1
0−ζ2

0‖
p

W
2− 2

p
∞ (Γ)

+‖∇(u1 − u2)‖pLp(Q) + ‖u1 − u2‖pLp(Q) + ‖g(ζ1)− g(ζ2)‖pLp(Σ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖pLp(Σ)

]
.

where C6 = C(|Ω|, |Γ|, T, n, p, p
1
, p

2
, p

3
) > 0. Appling again Theorem 2.1 in [2, relation

(2.4)] and making use of the embedding W 1,2
p (Q) ⊂ Lp(Q), we have

(5.44)

‖∇(u1 − u2)‖pLp(Q) + ‖u1 − u2‖pLp(Q)

≤ C̄
[
1 + ‖u1

0−u2
0‖
p

W
2− 2

p
∞ (Ω)

+‖ζ1
0−ζ2

0‖
p

W
2− 2

p
∞ (Γ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖p

W
1− 1

2p
,2− 1

p
p (Σ)

]
.

Let us now focus our attention on the term ‖g(ζ1) − g(ζ2)‖pLp(Σ) from the right-hand
side of (5.43). Firstly, we recall that is true the following sequence of embeddings (see [8,
p. 103, relation (2.198)]):

(5.45) W 1,2
p (Σ) ⊂ Lp

′
(Σ) ⊂ L`1(Σ) ⊂ Lp(Σ) ⊂ L2(Σ).

From g2, Hölder’s inequality, relations (2.15) and (5.45), we derive that

(5.46) ‖g(ζ1)− g(ζ2)‖Lp(Σ) ≤ C7‖ζ1 − ζ2‖L`1 (Σ).

where C7 = C(|Ω|, T, p, b2)
(

1 + 2M2
5

)
. Using the embedding in (5.45), the standard inter-

polation inequalities (see [5, p. 58]) yield that ∀ε > 0, ∃C(ε) > 0 such that

(5.47) ‖y‖L`1 (Σ) ≤ ε‖y‖W 1,2
p (Σ) + C(ε)‖y‖Lp(Σ), ∀y ∈W 1,2

p (Σ).

Combining (5.44), (5.46) and (5.47), estimate (5.43) leads to

(5.48)

‖u1 − u2‖p
W 1,2

p (Q)
+ (1− εC7)‖ζ1 − ζ2‖p

W 1,2
p (Σ)

≤ C6

{
‖u1

0−u2
0‖
p

W
2− 2

p
∞ (Ω)

+‖ζ1
0−ζ2

0‖
p

W
2− 2

p
∞ (Γ)

C6C̄

[
1 + ‖u1

0−u2
0‖
p

W
2− 2

p
∞ (Ω)

+‖ζ1
0−ζ2

0‖
p

W
2− 2

p
∞ (Γ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖p

W
1− 1

2p
,2− 1

p
p (Σ)

]

+C8‖ζ1 − ζ2‖Lp(Σ) + ‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖pLp(Σ)

}
.
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where C8 = C(ε)C7 > 0.
In order to handle the term ‖ζ1 − ζ2‖Lp(Σ), we rely on a priori estimates in Lp(Σ). In

this respect, we multiply (5.42)1 by |U |p−2U = |u1 − u2|p−2(u1 − u2). Integrating over Qt,
t ∈ (0, T ] and using Green’s first identity as well as the Cauchy-Schwarz inequality, we
get

(5.49)

p
1

p

∫
Ot

∂

∂t
|U(t, x)|p dτdx

+(p− 1)

∫
Qt

|∇U |2 · ∇
(
âij(t, x)|U |p−2

)
dτdx

+

∫
Σt

|U |p−1
(
− ∂

∂n
U
)
dτdγ

≤
∫
Qt

|âi(t, x)| |∇U | |U |p−1 dτdx

+p
2

∫
Qt

|U |p dτdx+ λ

∫
Qt

|f1
1 − f2

1 | |U |p−1 dτdx.

Using the boundary conditions (5.42)2, (5.42)4 and Hölder’s inequality, then (5.49)
becomes

(5.50)

p
1

p

∫
Ot

∂

∂t
|U(t, x)|p dτdx+

p
1

p

∫
Σt

∂

∂t
|Z(t, x)|p dτdγ

+(p− 1)

∫
Qt

|∇U |2 · ∇
(
âij(t, x)|U |p−2

)
dτdx

+p
3

∫
Σt

|Z(t, x)|p dτdγ + (p− 1)

∫
Σt

|∇
Γ
Z|2 |Z|p−2 dτdγ

+

∫
Σt

[
g(ζ1)− g(ζ2)

]
|Z|p−2Z dτdγ

≤ C̃
[
‖∇(u1 − u2)‖pLp(Q) + ‖u1 − u2‖pLp(Q)

+‖u1 − u2|pLp(Q) + |ζ1 − ζ2|pLp(Σ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖pLp(Σ)

]

where C̃ = C(|Ω|, |Γ|, p, p
2
,M

1
,M

4
) > 0.
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In particular, owing to hypothesis g1 and (5.44), it follows from (5.50) that

(5.51)

∫
Ω

|u1 − u2|p dx+

∫
Γ

|ζ1 − ζ2|p dγ

≤ C9

[
‖u1

0 − u2
0‖
p
Lp(Ω) + ‖ζ1

0 − ζ2
0‖
p
Lp(Γ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖pLp(Σ)

+

t∫
0

[∫
Ω

|u1 − u2|p dx+

∫
Γ

|ζ1 − ζ2|p dγ
]
dτ

]
,

where C9 = C(C̃, p
3
, b

1
) > 0.

Making uses of Gronwall’s inequality, we can deduce from (5.51) that

(5.52)

‖u1 − u2‖pLp(Q) + ‖ζ1 − ζ2‖pLp(Σ)

≤ expC9T

[
‖u1

0 − u2
0‖
p
Lp(Ω) + ‖ζ1

0 − ζ2
0‖
p
Lp(Γ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖pLp(Σ)

]
.

Making use of relations (5.52), from (5.48) we finally derive that

(5.53)

‖u1 − u2‖W 1,2
p (Q) + (1− εC7)‖ζ1 − ζ2‖W 1,2

p (Σ)

≤ C10

[
1 + ‖u1

0−u2
0‖
W

2− 2
p

∞ (Ω)
+‖ζ1

0−ζ2
0‖
W

2− 2
p

∞ (Γ)

+‖f1
1 − f2

1 ‖Lp(Q) + ‖w1 − w2‖
W

1− 1
2p

,2− 1
p

p (Σ)

]

+C8 expC9T

[
‖u1

0 − u2
0‖
p
Lp(Ω) + ‖ζ1

0 − ζ2
0‖
p
Lp(Γ)

+‖f1
1 − f2

1 ‖
p
Lp(Q) + ‖w1 − w2‖pLp(Σ)

]
.

For ε >0 with 1−εC7 > 0, the embedding W
1− 1

2p ,2−
1
p

p (Σ)⊂Lp(Σ) and the estimate (5.53)
implies the estimate (2.16), which finishes the proof of Theorem 2.1. �

As a consequence, the uniqueness of solution to problem (1.1) is valid.

Corollary 5.1. For the same initial conditions, the problem (1.1) possesses a unique classical
solution.

Proof. Let f1
1 = f2

1 = f and w1 = w2 = w in the Theorem 2.1. Then (2.16) demonstrates
the corollary (see also [4, Theorem 2.4, p. 17]). �

6. CONCLUSIONS

The problem addressed in this paper is a nonlinear second-order anisotropic reaction-
diffusion equation with principal part in divergence form, endowed with nonlinear inho-
mogeneous dynamic boundary conditions and non-constant mobility Ψ(t, x, ·). Provided
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that the initial and boundary data meet appropriate regularity and compatibility condi-
tions, we prove the existence, estimate, uniqueness and regularity of a classical solution.
Precisely, the Leray-Schauder principle is applied to prove the existence result for the
nonlinear problem in question, while the Lp theory of linear and quasi-linear parabolic
equations, via Lemma A3 in Appendix, is involved in order to derive regularity prop-
erties for the solutions. In other words, we can not directly apply the Lp theory to the
problem (1.1) or (1.5). Thus, it makes the result in Lemma 7.4 himself very important.
Moreover, the a priori estimates are made in Lp(Q) and Lp(Σ) which leads to a better es-
timates for unknown functions

(
u(t, x), ζ(t, x)

)
. This approach could be applied in future

to study other kind of the first and second boundary value problems.
From the perspective of applicability, it is natural to find the suitable type of nonlinear-

ities on the ∂Ω, able to describe the complexity of many important physical phenomena,
among which we mention effect of surface tension, separating zone of solid and liquid states etc.
So, one of the most important characteristics of our improved mathematical model (1.1) is
the nonlinear term g in the nonlinear dynamic boundary conditions which allows to con-
sider a nonlinearity with a larger growth exponent r′ ≤ (n+ 2)/(n+ 2− 2p) if n+ 2 > 2p
(see (3.19). It extends the already studied types of boundary conditions (see [1], [7]) and
therefore makes the new formulation of model (1.1) to be more able to describe a wide
variety of industrial applications, in particular, the interactions with the walls in confined
systems (i.e. the phase changes at the boundary of Ω).

Let’s also remark that, due to the presence of the term Φ(t, x, ux), the nonlinear operator
in (1.1)1 does not represent the gradient of the energy functional. Therefore, the new
proposed second-order nonlinear problem can not be obtained from the minimisation of
any energy cost functional, i.e. (1.1) is not a variational PDE model.

The qualitative results obtained here can be involved later in the quantitative approaches
of the mathematical model (1.1) as well as in the study of distributed and/or boundary
nonlinear optimal control problems governed by such a nonlinear problem. Amongst
other things, we wish to be exploited all this in our future works.

At the end we want to underline the solutions dependence in Theorem 2.1 on physical
parameters, which can be useful in future investigations regarding the error analysis and
numerical simulations.

7. APPENDIX

The goal of this section is to analyze some simple problems which are useful in the
proof of Theorem 2.1. Every product is understood in the L2-space, except when other-
wise specified. In particular, the norm and the scalar product in L2(Ω) are denoted by ‖ · ‖
and < ., . >, respectively, while the corresponding symbols in L2(Γ) will be marked by a
subscript Γ.

Consider the family of linear first-order boundary value problems with homogeneous
Dirichlet conditions

(7.54)


p

1

∂

∂t
v−λΦ(t, x, vx)div

(
Ψ(t, x, vx)∇v(t, x)

)
−(1−λ)∆v(t, x)=f

2
(t, x) in Q

v(t, x) = 0 on Σ

v(0, x) = v0(x) in Ω,

where λ ∈ [0, 1].
Let us now formulate the existence result for the classical solution of problems (7.54).



Nonlinear anisotropic reaction-diffusion problem with nonlinear inhomogeneous dynamic boundary conditions 113

Lemma 7.2. Suppose v(t, x) is a classical solution of problem (7.54) and that the conditions in [1,
Theorem 2.1, p.173] hold.

Then, ∀v0(x) ∈ W
2− 2

p
p (Ω) and ∀f

2
(t, x) ∈ Lp(Q), with p 6= 3

2 , the problem (7.54) has a
solution v(t, x) ∈W 1,2

p (Q) and the next estimate holds

(7.55) ‖v‖W 1,2
p (Q) ≤ C

[
‖v0‖

W
2− 2

p
p (Ω)

+ ‖f2‖Lp(Q)

]
,

where the constant C depends on |Ω|, T , n, p, p1, but is independent of v and f
2
.

Proof. The result established by Lemma 7.2 was proved in [1] in a more general context
(i.e., in the presence of the reaction term and inhomogeneous boundary conditions of the
Cauchy-Neumann type). We omit details here. For similar results involving other classes
of functions for existence, we recommend to readers the reference [4, Chapter V, Section
6, p. 449]. �

Next, we consider the family of linear first-order boundary value problem with inho-
mogeneous Dirichlet condition and zero initial datum, that is

(7.56)


p

1

∂

∂t
v−λΦ(t, x, vx)div

(
Ψ(t, x, vx)∇v(t, x)

)
−(1−λ)∆v(t, x)=0 in Q

v(t, x) = y(t, x) on Σ

v(0, x) = 0 in Ω,

where λ ∈ [0, 1].

Lemma 7.3. If y ∈W 1− 1
2p ,2−

1
p

p (Σ), then there exists a unique solution v ∈W 1,2
p (Q) to problem

(7.56) such that

(7.57) ‖v‖W 1,2
p (Q) ≤ C ‖y‖

W
1− 1

2p
,2− 1

p
p (Σ)

,

where C depends on |Γ|, T , n, p, p
1
, but is independent of v and y.

Moreover

(7.58)

t∫
0

〈
∂

∂n
v(τ, ·), y(τ, ·)

〉
Γ

dτ ≥ 0.

Proof. We consider the linear extension operator

(7.59) T0 : W
1− 1

2p ,2−
1
p

p (Σ)→W 1,2
p (Q) such that (T0y)|

Σ
= y.

(see [2] and references therein). Besides that, let us consider the change of variable
z = v − T

0
y. Knowing that v = z + T

0
y solves (7.56), i.e.

(7.60)



p
1

∂

∂t
(z + T

0
y)− λΦ(t, x, vx)div

(
Ψ(t, x, vx)∇(z + T

0
y)
)

−(1− λ)∆(z + T0y) = 0 in Q

z + T
0
y = y on Σ

(z + T
0
y)(0, x) = 0 in Ω,

and making use of the last statement in (7.59), we obtain that z in (7.60) solves (7.54) with
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f2(t, x)= ∂
∂t (T0y)+Φ(t, x, vx)div

(
Ψ(t, x, vx)∇(T0y)

)
+(1−λ)∆(T0y)∈Lp(Q)

and v0(x) = −T
0
y(0, x) ∈ W

2− 2
p

p (Γ). Applying Lemma 7.2 we derive the existence and
uniqueness of the solution to problem (7.56) as well as the estimate (7.57).

Multiplying equation (7.56) by v and then integrating over (0, t)× Ω, we get

λ

t∫
0

Φ(t, x, vx)

〈
∂

∂n
v(τ, ·), y(τ, ·)

〉
Γ

dτ + (1−λ)

t∫
0

〈
∂

∂n
v(τ, ·), y(τ, ·)

〉
Γ

dτ

=
p

1

2
‖v(t)‖2

+λ

t∫
0

〈
Ψ(τ, ·, vx(τ, ·))∇v(τ, ·),∇

(
Φ
(
τ, ·, vx(τ, ·)

)
v(τ, ·)

)〉
Ω
dτ

+(1−λ)

t∫
0

‖∇v(τ)‖2dτ ≥ 0,

from which we can deduce (7.58) and thus Lemma 7.3 is proved. �

We now analyze the linear inhomogeneous problem with linear homogeneous dy-
namic boundary condition, that is

(7.61)



p
1

∂

∂t
v−λΦ(t, x, vx)div

(
Ψ(t, x, vx)∇v

)
− (1−λ)∆v = f

3
in Q

v = y on Σ

v(0, x) = v0(x) x ∈ Ω

∂

∂n
v + p

1

∂

∂t
y −∆Γy + p

3
y + g

3
(t, x) = 0 on Σ

y(0, x) = y0(x) x ∈ Γ.

Lemma 7.4. If v0 ∈W
2− 2

p
p (Ω), y0 ∈W

2− 2
p

p (Γ), f3 ∈ Lp(Q), g3 ∈ Lp(Σ), then (7.61) possesses
a unique solution (v, y) ∈W 1,2

p (Q)×W 1,2
p (Σ) such that

(7.62)

‖v‖W 1,2
p (Q) + ‖y‖W 1,2

p (Σ)

≤ C
[
‖v0‖

W
2− 2

p
p (Ω)

+ ‖y0‖
W

2− 2
p

p (Γ)
+ ‖f

3
‖Lp(Q) + ‖g

3
‖Lp(Σ)

]
,

where C depends on |Ω|, |Γ|, T , n, p, p
1
, p

3
, but is independent of v, y, f

3
and g

3
.

Proof. The proof is based on the idea used in [9, Lemma 2.2]. Following this, we have that

there exists the operator T
0

: W
1− 1

2p ,2−
1
p

p (Σ)→W 1,2
p (Q) (see (7.59)), defined as the unique

solution v ∈W 1,2
p (Q) to the following problem:

(7.63)


p

1

∂

∂t
v − Φ(t, x, vx)div

(
Ψ(t, x, vx)∇v(t, x)

)
= 0 in Q

v = y on Σ

v(0, x) = 0 in Ω.
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Setting z(t) = T
0
y(t) and θ(t) = v(t)− z(t), we derive from (7.59) and (7.61) that

(7.64)



p
1

∂

∂t
θ − Φ(t, x, θx)div

(
Ψ(t, x, θx)∇θ(t, x)

)
= f

3
(t, x) in Q

θ = 0 on Σ

θ(0, x) = v0(x) x ∈ Ω

∂

∂n
v + p

1

∂

∂t
y −∆Γy + p

3
y + g

3
(t, x) = 0 on Σ

y(0, x) = y0(x) x ∈ Γ.

Let us first observe that in this new setting of problem (7.61), the unknown functions
(θ, y) are no longer coupled, which means that we can treat separately equations (7.64)1−3

and (7.64)4−5. Accordingly, Lemma 7.2 applied to problem (7.64)1−3 gives the existence
of a solution θ ∈W 1,2

p (Q) which satisfies the estimate

(7.65) ‖θ‖W 1,2
p (Q) ≤ C

[
‖v0‖

W
2− 2

p
p (Ω)

+ ‖f3‖Lp(Q)

]
,

while the unknown y in problem (7.64)4−5 solves the problem (we recall that v = θ + z =
θ + T

0
y)

(7.66)


∂

∂n
(T

0
y) + p

1

∂

∂t
y −∆Γy + p

3
y + ḡ

3
(t, x) = 0 on Σ

y(0, x) = y0(x) x ∈ Γ,

where ḡ
3
(t, x) = g

3
(t, x) + ∂

∂nθ ∈ L
p(Σ). Moreover, due to Lemma 7.3 and to a suitable

trace theorem, we have

(7.67)
∥∥∥∥ ∂∂n

(T0y)

∥∥∥∥
Lp(Σ)

≤ C ‖y‖
W

1− 1
2p

,2− 1
p

p (Σ)
.

Arguing as in [9, p. 723] we obtain the existence and uniqueness of the solution y
solving (7.66), as well as the following estimate

(7.68) ‖y‖W 1,2
p (Σ) ≤ C

[
‖y0‖

W
2− 2

p
p (Γ)

+ ‖y‖
W

1− 1
2p

,2− 1
p

p (Σ)
+ ‖ḡ3‖Lp(Σ)

]
.

A standard interpolation inequality (see [5, p. 58]), written for the Sobolev spaces

W 1,2
p (Σ) ⊂W 1− 1

2p ,2−
1
p

p (Σ) ⊂ L2(Σ), yields that ∀ε > 0, ∃C(ε) > 0 such that

(7.69) ‖y‖
W

1− 1
2p

,2− 1
p

p (Σ)
≤ ε‖y‖W 1,2

p (Σ) + C(ε)‖y‖L2(Σ).

Applying (7.69) in order to handle the second term in the right-hand side of (7.68), we
obtain

(7.70) (1− ε)‖y‖W 1,2
p (Σ) ≤ C(ε)

[
‖y0‖

W
2− 2

p
p (Γ)

+ ‖y‖L2(Σ) + ‖ḡ3‖Lp(Σ)

]
.

Multiplying (7.66) by y(t), scalarly in L2(Γ), Integrating over [0, t] and using (7.58), we
get

1

2
‖y(t)‖2

L2(Γ)
− 1

2
‖y0‖2

L2(Γ)
≤

t∫
0

〈
ḡ3(τ), y(τ)

〉
Γ
dτ.
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By Gronwall’s lemma, we obtain

(7.71) ‖y‖
L2(Σ)

≤ C(T )
(
‖y0‖L2(Γ) + ‖ḡ3‖L2(Σ)

)
,

which, combined with (7.65), (7.70) and making use of the embedding

W
2− 2

p
p (Γ) ⊂ L2(Γ), yields estimate (7.62) and finishes the proof of Lemma 7.4. �
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