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A visual and numerical comparative study of some parallel
affine projection algorithms for solving the convex
feasibility problem with application to scratch inpainting

IRINA MARIA ARTINESCU and COSTIN RADU BOLDEA

ABSTRACT. The paper compares four variants of algorithms that solve the problem of Convex Feasibility
using affine combinations of projections, two classical variants of Parallel Projection Method (PPM) and two
modified variants that involve variable weight, in terms of their effectiveness in inpainting a convex polygon,
as well as in terms of their convergence in a finite a number of step. We also present a numerical study of the
dependence of the efficiency and the execution speed of these algorithms on the shape of the inpainted convex
set, as well as on the values of the relaxation parameter.

1. INTRODUCTION AND PROBLEM STATEMENT.

The problem of finding a point inside a convex polygon starting from a point outside
it, equivalent to the problem of identifying a solution of a set of equations or linear in-
equalities has been known in the literature for a long time (see [4, 9, 17, 18] for its classical
approaches). These first methods used iterated projections of polygon external points
onto half-spaces defined by the polygon sides. This method becomes generalized to solve
the so-called convex feasibility problem - CFP of finding a point in the intersection of a family
of closed convex sets in a Hilbert space [14, 15, 16]. A detailed mathematical description
can be found in [5, 10].

The projection methods that solve CFP knew numerous applications in reconstruction
of tomography images, in data compression, in image filtering and pattern generations
(see also [8] for an exhaustive description), but was first involved by the first author of
this paper in reconstruction of an image by inpainting a small damaged area of it [2].

Although the mathematical analysis of the convergence of various parallel projection
methods used to solve the CFP was extensively described in [5], the derived algorithms do
not converge generally in finite time. Few studies have been conducted in the direction of
determining which algorithm converges in finite time almost everywhere in the Euclidean
space. For example, only in 2007 an algorithm in finite steps was proposed, based on
alternative projections on two convex sets, to solve the linear conic optimization problem
[1]. But in 2018 we proved [3] that the classical EMOPP algorithm [10] does not converge
in finite steps for starting points belonging to large regions of the Euclidean plane, in
the case of a simple rectangular convex set. Under these circumstances, a comparative
study of the convergence of various affine projection methods is needed to verify their
usefulness for graphical applications.

In this paper we study the convergence of four algorithms (PPM, EMOPP and two
modified versions of them) for scratch inpainting based on affine projection methods, in
order to determine the average number of steps for different shapes of the initial convex
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set, to verify the dependence of the convergence on the relaxation parameters and to test
the ability of the algorithms to ”cover” the entire surface of the convex target.

2. THE CONVEX FEASIBILITY PROBLEM (CFP) AND THE PARALLEL PROJECTION METHOD
(PPM)

The CFP can be formulated generally as [10]:
Considering m closed convex sets D1, D2, . . . , Dm ⊆ Rn, defined by
Di = {x ∈ Rn | fi(x) ≤ 0} , where fi : Rn → R are convex functions and having

nonempty intersection, that is, ∩Di ̸= ∅, find a point x ∈ D =
⋂m

i=1 Di .
The CFP can be solved mathematically, starting from an arbitrary point exterior to D,

by constructing a sequence of points obtained from affine combinations of projections of
the point onto some subset of {Di}. Under some appropriate conditions, this sequence of
points converges to a point inside D [5].

A first iterative method described by the sequence, known as algebraic reconstruction
technique (ART), is controled by the recursive construction:

(2.1) (∀n ∈ N )Qn+1 = Pn(mod m)+1(Qn),

where Pi represents the projection onto {Di}with i ∈ {1, . . .m}. ART was used to recover
the image of an object inside the intersection of a finite number of hyperplanes [15] . This
method was generalized as the Parallel Projection Method (PPM), which is defined by the
iteration ([12]):

(2.2) (∀n ∈ N )Qn+1 = Qn + λn(
∑

i∈1..n

wiPi(Qn)−Qn),

where relaxation parameters λn verify ϵ ≤ λn ≤ 2 − ϵ with 0 < ϵ < 1 and the weight∑
i∈1..n wi = 1. Combettes [10] proposed a generalization of PPM under the name Ex-

trapolated Method of Parallel Projections (EMOPP), taking the affine combination of the pro-
jections only involving a subset of them controlled by a subset of indices {In} ( control
sequence), which is variable from one iteration to another:

(2.3) (∀n ∈ N )Qn+1 = Qn + λn(
∑
i∈In

wiPi(Qn)−Qn),

The classical variant of EMOPP uses only the projection of an intermediary point on the
convex sets Di that do not contained it [10].

Although EMOPP is generally faster than PPM, it does not always converge in finite
number of steps [3]. To correct this deficiency we introduced in the next Section two
variants of PPM and EMOPP that use variable weights of the affine combination of pro-
jections, weights that depend inverse proportionally to the distance of intermediary point
relative to the convex set Di.

3. THE PROPOSED VARIANTS OF PARALLEL PROJECTION METHOD

We propose in this section an implementation of PPM and EMOPP used to cover by
inpainting the entire surface of the convex target. The two supplementary variants of
these algorithms, proposed by us under the name modified Parallel Projection Method
(mPPM) and modified Extrapolated Method of Parallel Projections (mEMOPP), respec-
tively, use the same iterations as PPM and EMOPP with constant λi ≡ 1 , but involve
variable weights wi for the affine combinations of projections at each iteration. We de-
scribe the inpainting methods based on mPPM and mEMOPP in the sequel.

mPPM AND mEMOPP ALGORITHMS
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Input A convex polygon {P} = {P1, P2, . . . , Pn} that simulate a damaged area of an im-
age.
Output The image of the inpainted polygon with NPmax exterior points and the descrip-
tive analysis of the number of iterations for all points.

1: Define O ← 1
n

∑n
i=1 Pi; (The center of the polygon)

2: Define an outer region of the polygon from where the algorithm chooses ran-
domly the starting points for the iterations:

RG ←
{
Q ∈ R2|d(Q,O) < 2 ∗ r

}
,

where r ← maxj{d(O,Pj)}.
3: forj ← 1 to NPmax

Generate a random point Qj,0 ∈ RG ∩ Ext(P)
4: j ← 1 and k ← 0
5: repeat

5.1: Determine the projections on the polygon sides:

Mj,k,i = pr(Qj,k, PiPi+1),

by convention (Pn+1 = P1) and di,k = dist(Qj,k, PiPi+1)
5.2: Compute the weights

wi,k =
1/(di,k + 1)∑
i∈I 1/(di,k + 1)

where I = {1, 2, . . . , n} .
5.3: The next point Qj,k+1 is determined by

Qj,k+1 = Qj,k + λk(
∑
i∈I

wiMj,k,i −Qj,k)

until (Qj,k+1 ∈ IntP) or (k > NrMaxIterations)
6: if Qj,k+1 ∈ Int(P) then color(Qj,k+1)← color(Qj,k)
7: repeat from Step 5 with j ← j + 1 and k ← 0.

Remark 3.1. The distances are measured in pixels and the weights {wi,k} are inversely
proportional to {di,k + 1} in order to eliminate the possible division by 0.

The control sequence λi is chosen to verify 1 <= λi < 2− ϵ where 0 < ϵ < 1.
The modified version of EMOPP is obtained taking into consideration only the projec-

tions of Qj,k on the semi-plans that contain the polygon and do not contain the point Qj,k.
The weights are computed with the same formula, in the condition

∑
wi = 1 for i ∈ Ik

where Ik is the set of semi-plans taken into consideration at the k iteration.
Both algorithms are convergent, as a consequence of the next theorem:

Theorem 3.1. Consider a set of points recursively defined by the iteration Qk+1 = f(Qk) where
k ∈ N and Q0 is a fixed arbitrary point outside the polygon P . Then for all points within the
interior of the polygon A ∈ int(P):

(1) We have

(3.4) ∥Qk+1 −A∥2 ≤ ∥Qk −A∥2 − λk(2− λk)
∑
i∈I

wi,kd
2
i,k

for (mPPM) and

(3.5) ∥Qk+1 −A∥2 ≤ ∥Qk −A∥2 − λk(2− λk)
∑
i∈Ik

wi,kd
2
i,k
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for (mEMOPP), respectively, where Ik is the set of indexes i such that PiPi+1 separates
Qk from the rest of the polygon’s P vertices (Pn+1 = P1),

(2) For both algorithms:

(3.6) ∥Qk+1 −Qk∥2 ≤
1

ϵ
(∥Qk −A∥2 − ∥Qk+1 −A∥2),

(3) We have
∑

k ∥Qk+1 −Qk∥2 ≤ 1
ϵdist(Q0,P).

Then, for both (mPPM) and (mEMOPP) algorithms, the sequence {Qk} converges in norm to
some interior point of P

Proof. We note Mk,i = pr(Qk, PiPi+1). The first point is obtained by the following rela-
tions (writen here for mPPM algorithm):

∥Qk+1 −A∥2 =

= ∥Qk −A+ λk · (
∑
i∈I

wi,k ·Mk,i −Qk)∥2

= ∥Qk −A∥2 +(3.7)

+ 2λk

〈
Qk −A,

∑
i∈I

wi,k ·Mk,i −Qj)

〉
+ λ2

k∥
∑
i∈I

wi,k ·Mk,i −Qk)∥2

But

(3.8) ∥
∑
i∈I

wi,k ·Mk,i −Qk)∥2 ≤
∑
i∈I

wi,k · ∥Mk,i −Qk∥2

and we also have (see [11])

(3.9) ⟨Mk,i −A,Mk,i −Qk⟩ ≤ 0

Then 〈
Qk −A,

∑
i∈I

wi,k ·Mk,i −Qk)

〉
≤

−
∑
i∈I

wi,k · ∥Mk,i −Qk∥2 = −
∑
i∈I

wi,kd
2
i,k(3.10)

The first point results from (3.7), (3.8) and (3.10). For the (mEMOPP) algorithm, the set
of indices I is replaced by Ik.

The second point is obtained by

∥Qk+1 −Qk∥2 = λk∥(
∑
i∈I

wikMk,i −Qk)∥2

≤ λk(
∑
i∈I

wi,k∥Mk,i −Qk)∥2

≤ λk
∥Qk −A∥2 − ∥Qk+1 −A∥2

λk(2− λk)

≤ 1

ϵ
(∥Qk −A∥2 − ∥Qk+1 −A∥2)

for any point A interior to the polygon P
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The third statement derived from
n∑

k=0

(∥Qk −A∥2 − ∥Qk+1 −A∥2) = ∥Q0 −A∥2 −

− ∥Qn −A∥2

≤ ∥Q0 −A∥2

for any C ∈ int(P), then

(3.11)
n∑

k=0

∥Qk+1 −Qk∥2 ≤
1

ϵ
dist(Q0,P)2

The convergence of Qi is assured by the Corollary 3.3 from [5].
□

Note that the convergence of the algorithm depends on the initial distance from Q0 to
the convex polygon and also on the set {λk}, while the convergence of the algorithms is
not assured for λk ≥ 2.

In order to give a more accurate evaluation of the dependence of the algorithms con-
vergence on the relaxation parameters, we presented a series of numerical experiments in
the next Section.

4. ANALYSIS OF THE CONVERGENCE OF ALGORITHMS

The four methods described before (PPM, EMOPP, mPPM, mEMOPP) were imple-
mented in C using a Borland Graphics Interface (BGI) emulator and tested to images
that include various regions affected by an induced loss of information. We chose two
different polygonal shapes: a long rectangle and a non-regular hexagon.

The number of vertices of the convex polygon affects directly the number of computa-
tions and the areas from where the points are transferred into the polygon. We imposed a
fixed number of NPMax = 10, 000 starting points and a limit of k > NrMaxIterations =
45. The original image and the two polygonal shapes were presented in Figure 1 and 2.

The purpose of this implementation was to visualize where the four algorithms insert
the exterior points into the predetermined convex polygon. If the PPM and the mPPM
algorithms use a continuous function to determine the next iterated point Qj,k −→ Qj,k+1,
the EMOPP and mEMOPP involve a variable number of projections at each iteration,
depending on the position of Qj,k related to the polygon, and then these algorithms do
not use a continuous transformation at each iteration.

We tested the dependence of the convergence of the algorithms on the relaxation pa-
rameter Λ and on the capacity of each algorithm to ”fill in” the polygonal shape, property
that assures that the solutions of the convex feasibility problem, depending on the starting
points, cover uniformly the interior of the given convex set.

The implemented algorithms produced a list of iterated positions (Qj,k) and a short de-
scriptive statistic of number of iterations executed for each starting points. The results for
the four algorithms are presented in the next Tables 1 and 2, for the relaxation parameters
λi = Λ = 1.1.

One observes that if the application of the weight factor depends on the position of the
points, the number of iterations increases significantly for the case of mPPM algorithm,
but not for the mEMOPP algorithm. The convergence of mEMOPP is comparable with
the case when the weights are constants.

The same experiments were repeated for each value of Λ ∈ {1.1+0.2 · i|i = 1, 5}. (Note
that the convergence of the PPM and EMOPP method are not assured for Λ >= 2 [10].)
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FIGURE 1. The initial image.

(a) (b)

FIGURE 2. The damaged images for a long rectangle (a) and a hexagonal
convex (b).

TABLE 1. The distribution of the starting points so that the algorithms
stop in k steps for a long rectangle.

Number Starting points(%) Starting points(%) Starting points(%) Starting points(%)
of iterations for PPM for mPPM for EMOPP for mEMOPP

1 13.35 6.32 48.07 48.78
2 20.28 10.38 2.62 2.18
3 46.22 13.47 1.33 7.47
4 16.24 13.30 1.64 12.51
5 0 11.65 1.50 10.89
6 0 12.07 1.44 3.91
7 0 9.21 1.27 0.93
8 0 6.78 1.15 0.15
9 0 4.74 0.93 0.09

>=10 3.91 12.08 40.05 13.08

The dependence of the number of iterations on the value of Λ is represented in the next
figure.

From the numerical data displayed in Figure 3, one can notice a direct dependence
of the convergence rate on the relaxation parameter Λ, more accentuated for the mPPM
and mEMOPP algorithms, phenomenon that was not predicted by the superior limitation
from the Theorem 3.1.

In order to analyze the final solution image (the region inside the polygon where the
solution’s points are distributed), we tested all the algorithms for each Λ (see Figure 4).
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TABLE 2. The distribution of the starting points so that the algorithms
stop in k steps for a hexagonal convex set.

Number Starting points(%) Starting points(%) Starting points(%) Starting points(%)
of iterations for PPM for mPPM for EMOPP for mEMOPP

1 46.64 4.67 14.74 15.67
2 41.29 9.27 32.34 31.36
3 0 14.86 31.65 25.08
4 0 16.68 6.56 9.35
5 0 12.71 1.62 3.60
6 0 8.08 0.49 1.65
7 0 4.80 0.13 0.65
8 0 5.93 0.03 0.14
9 0 6.23 0 0.07

>=10 12.07 16.77 12.44 12.44

FIGURE 3. The average number of iterations for the case of the hexagonal
convex set.

FIGURE 4. The average number of iterations for the case of a long rectan-
gle.

The significative differences between the average number of iterations of the EMOPP
algorithm in the case of a rectangular versus the case of hexagonal shape of the convex set
is the result of the fact that for starting point near the prolongation of the diagonals of the
rectangle, the EMOPP do not converge in finite number of steps. (Our implementation
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limited the number of steps to 45.) The mEMOPP possesses larger convergence regions
than EMOPP for Λ < 2 , but does not always converge for Λ > 2.

In the second part, we have analysed the dependence of the execution time on the
relaxation parameter Λ for the two cases of a convex target. The results are centralized in
Table 3 and Table 4.

One can notice that, if the execution time do not depend significatively on the value
of relaxation parameter Λ for the case of PPM and mPPM algorithms, the EMOPP and
mEMOPP algorithms are faster for Λ = 1.7, 1.9. The increased values of execution time for
Λ = 2.1 is the result of multiplication of the starting points for which the algorithms do not
converge in finite steps, in the case of mEMOPP. Finally, there are significant differences
between the firs two algorithms, on the one hand, and the last ones, on other hand, in
what concern the speed of convergence.

In order to test the ”efficiency” of the algorithms to ”cover” the entire surface of the
convex target, we systematized the spatial distribution of the solutions obtained for all
the considered algorithms, only for the case of the relaxation parameter Λ = 1.1, Λ = 1.7
and Λ = 2.1 in the Table 6 and Table 7 from the Annexe. For small values of Λ, the
solutions of the mPPM, EMOPP and mEMOPP are concentrated near the borders of the
initial considered convex polygon. For increased Λ, the filled region becomes larger in the
case of these three algorithms. Only for EMOPP and mEMOPP the entire surface of the
convex set will be covered, for Λ >= 1.9, more efficiently in the case of mEMOPP.

In the end of our work, we investigated the shape and the dimension of the finite steps
convergence regions. Table 9 presents comparatively the regions of initial points, exterior
to the polygon, from where the studied algorithms converge in one step (in red), two steps
(in blue), respectively three steps (in green), in the case of the hexagonal initial convex.
If for PPM, EMOPP and mEMOPP algorithms the borders of these convergence regions
seem to be defined by parallels to the polygon sides and diagonals, for mPPM algorithm
the convergence regions are similar to a fractal structure. A future study will be conducted
to investigate the existence of this fractal shape of the convergence region.

TABLE 3. The comparative execution times for different values of Λ in
the case of a long rectangle.

Λ PPM mPPM EMOPP mEMOPP
1.1 1069 1041 907 594
1.3 1034 1031 786 754
1.5 1026 1001 851 498
1.7 1018 993 757 540
1.9 997 981 656 529
2.1 1065 991 844 749

TABLE 4. The comparative execution times for different values of Λ in
the case of a hexagon.

Λ PPM mPPM EMOPP mEMOPP
1.1 941 943 455 448
1.3 959 931 766 703
1.5 934 927 742 457
1.7 1020 920 460 454
1.9 926 899 486 459
2.1 953 901 463 628
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5. CONCLUSIONS

The comparative analysis of the graphical implementations for the PPM, EMOPP and
their modified versions proposed in Section 2 allows to identify the way in which the vari-
able weight and the relaxation factor Λ influence the number of iterations calculated until
reaching the solution of the convex feasibility problem. The results of our experiments are
consistent with the analysis of the effectiveness of projection methods for convex feasibil-
ity problems presented in [8] for the PPM and EMOPP.

The graphical comparison allows also to verify the spatial distribution of the solutions,
depending on the shape of the convex polygon and the relaxation factor. Even if the meth-
ods are not efficient to recover a damaged image by inpainting, in the case of λ ≃ 1.7, 2.1
the polygon is uniformly covered by the solution points, for EMOPP and mEMOPP. The
distribution of the solutions depends strongly on the number of edges and the shape of
the convex polygon.

All previous specialized studies analyze the existence of a single solution to the Convex
Feasibility Problem. The article proposes for the first time an analysis of the uniform
coverage of a convex (understood as intersections of closed half-planes) using iterative
methods of solving CFP, which can lead to determining its shape and size using PPM or
methods derived from it.

Particular emphasis was placed on the dependence of the execution speed on the relax-
ation coefficient used in iterations, a parameter that seems to be of great importance for
the correct coverage of the regions affected by information loss. The relaxation parameter
influences more the convergence of the algorithms than the weights and also modifies the
dimension of the convergence regions. The convergence regions (defined by the starting
points for which the algorithms converge in a given number of steps) presented a very
interesting fragmentation for the EMOPP and mEMOPP, and a fractal shape for mPPM.

We choose this type of implementation in order to verify if the analyzed methods for
solving the convex feasibility problem can be used to recover a damaged image by in-
painting points from the exterior in the affected area. In conclusion, the EMOPP and
mEMOPP method can be better used for this purpose, but only for small regions affected
and a good choice of relaxation parameter Λ; moreover, the image of the covered area does
not reproduce the neighborhood of the convex polygon. All the results of this paper are
obtained by numerical experiments, therefore more theoretical results must be obtained
in order to sustain the presented analysis of the convergence of the four algorithms.
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TABLE 5. The filled regions defined by the solution of the convex feasi-
bility problem, for different algorithms and different values of Λ (the case
of the hexagonal convex set)

Λ 1.1 1.7 2.1

PPM

mPPM

EMOPP

mEMOPP
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TABLE 6. The filled regions defined by the solution of the convex feasi-
bility problem, for different algorithms and different values of Λ (the case
of the hexagonal convex set)

Λ 1.1 1.7 2.1

PPM

mPPM

EMOPP

mEMOPP
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TABLE 7. The filled regions defined by the solution of the convex feasibil-
ity problem, for different algorithms and different values of Λ ( the case
of a long rectangle)

Λ 1.1 1.7 2.1

PPM

mPPM

EMOPP

mEMOPP
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TABLE 8. Convergence zones for the case of the hexagonal convex set

Λ 1.1 1.7 2.1

PPM

mPPM

EMOPP

mEMOPP
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TABLE 9. Convergence zones for the case of the rectangle

Λ 1.1 1.7 2.1

PPM

mPPM

EMOPP

mEMOPP


