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On the crossing number of the join of the wheel on six
vertices with a path

ŠTEFAN BEREŽNÝ and MICHAL STAŠ

ABSTRACT. The crossing number cr(G) of a graph G is the minimum number of edge crossings over all
drawings of G in the plane. The main aim of the paper is to give the crossing number of join product W5 + Pn

for the wheel W5 on six vertices, where Pn is the path on n vertices. Staš and Valiska conjectured that the
crossing number of Wm +Pn is equal to Z(m+1)Z(n) + (Z(m)− 1)

⌊
n
2

⌋
+ n+1, for all m ≥ 3, n ≥ 2, where

Zarankiewicz’s number is defined as Z(n) =
⌊
n
2

⌋⌊
n−1
2

⌋
for n ≥ 1. Recently, this conjecture was proved for

W3+Pn by Klešč and Schrötter, and for W4+Pn by Staš and Valiska. We establish the validity of this conjecture
for W5 + Pn. The conjecture also holds due to some isomorphisms for Wm + P2, Wm + P3 by Klešč, and for
Wm + P4 by Staš for all m ≥ 3.

1. INTRODUCTION

The crossing number cr(G) of a simple graph G with the vertex set V (G) and the edge set
E(G) is the minimum possible number of edge crossings in a drawing of G in the plane.
(For the definition of a drawing see Klešč [10].) It is easy to see that a drawing with the
minimum number of crossings (an optimal drawing) is always a good drawing, meaning
that no edge crosses itself, no two edges cross more than once, and no two edges incident
with the same vertex cross. The join product of two graphs Gi and Gj , denoted by Gi+Gj ,
is obtained from vertex-disjoint copies of Gi and Gj by adding all edges between V (Gi)
and V (Gj). For |V (Gi)| = m and |V (Gj)| = n, the edge set of Gi + Gj is the union of
disjoint edge sets of the graphs Gi, Gj , and the complete bipartite graph Km,n.

Let D be a good drawing of the graph G. We denote the number of crossings in D by
crD(G). Let Gi and Gj be edge-disjoint subgraphs of G. We denote the number of cross-
ings between edges of Gi and edges of Gj by crD(Gi, Gj), and the number of crossings
among edges of Gi in D by crD(Gi). For any three mutually edge-disjoint subgraphs Gi,
Gj , and Gk of G by [10], the following equations hold:

crD(Gi ∪Gj) = crD(Gi) + crD(Gj) + crD(Gi, Gj) ,

crD(Gi ∪Gj , Gk) = crD(Gi, Gk) + crD(Gj , Gk) .

The investigation of the crossing number of graphs is a classical and very difficult prob-
lem. Garey and Johnson [7] proved that this problem is NP-complete. The exact values
of the crossing numbers are known for some families of graphs, see Clancy et al. [4]. The
purpose of this paper is to extend the known results concerning this topic. Some parts of
proofs will be based on Kleitman’s result [9] on the crossing numbers for some complete
bipartite graphs. He showed that

cr(Km,n) =
⌊m
2

⌋⌊m− 1

2

⌋⌊n
2

⌋⌊n− 1

2

⌋
, if m ≤ 6.
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Using Kleitman’s result, the crossing numbers for the join product of paths with all graphs
of order four were studied by Klešč [11] and Klešč and Schrötter [17]. The exact values
for the crossing numbers of G + Pn for some graphs G on five vertices are determined
in [16, 18, 22, 23, 24, 25]. The crossing numbers of the join product G+Pn are known only
for a few graphs G of order six, and so the purpose of this article is to extend the known
results concerning this topic to new connected graphs, see [2, 5, 6, 10, 13, 20]. Minimal
number of crossings in the Cartesian product and in the strong product of paths have
been studied by Klešč et al. [14] and [15].

Staš and Valiska [25] observed that the optimal drawing for W4+Pn can be generalized
to drawings of Wm+Pn, which lead them to conjecture that the crossing number of Wm+
Pn equals Z(m + 1)Z(n) + (Z(m) − 1)

⌊
n
2

⌋
+ n + 1 for all m ≥ 3, n ≥ 2, where Z(n) =⌊

n
2

⌋⌊
n−1
2

⌋
is Zarankiewicz’s number. Recently, this conjecture was proved for the crossing

numbers of join products W3 + Pn and W4 + Pn by Klešč and Schrötter [17] and by Staš
and Valiska [25], respectively. Results by Klešč [11] and [12] establish the conjecture for
Wm + P2 and Wm + P3, and by Staš [23] for Wm + P4.

The main purpose of the current paper is to show that the conjecture is true for W5+Pn,
for all n ≥ 2.

Theorem 1.1. cr(W5 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 for n ≥ 2.

Note that the result of Theorem 3.3 has already been claimed by Su and Huang [21] just
as a conjecture without any proof. Clancy et al. [4] also placed an asterisk on a number of
the results in their survey to essentially indicate that the mentioned results appeared in
journals which do not have a sufficiently rigorous peer-review process. In the proofs of
the paper, we will often use the term “region” also in nonplanar drawings. In this case,
crossings are considered to be vertices of the “map”.

2. CYCLIC PERMUTATIONS

This article follows definitions and notation for the crossing numbers from Klešč [11].
Let W5 be the wheel on six vertices. We first consider the join product of W5 with the
discrete graph on n vertices denoted by Dn. The graph W5 +Dn consists of just one copy
of the graph W5 and of n vertices t1, t2, . . . , tn, where each vertex ti, i = 1, 2, . . . , n, is
adjacent to every vertex of W5. Let T i, 1 ≤ i ≤ n, denote the subgraph induced by the six
edges incident with the vertex ti. This means that the graph T 1 ∪ · · · ∪ Tn is isomorphic
to the complete bipartite graph K6,n and

(2.1) W5 +Dn = W5 ∪K6,n = W5 ∪
( n⋃

i=1

T i

)
.

The graph W5 + Pn contains W5 + Dn as a subgraph. For the subgraphs of the graph
W5 + Pn which are also subgraphs of the graph W5 + nK1 we use the same notation as
above. Let P ∗

n denote the path induced by n vertices of W5 + Pn not belonging to the
subgraph W5. Hence, P ∗

n consists of the vertices t1, t2, . . . , tn and of the edges {ti, ti+1}
for i = 1, 2, . . . , n− 1. One can easily see that

(2.2) W5 + Pn = W5 ∪K6,n ∪ P ∗
n = W5 ∪

( n⋃
i=1

T i

)
∪ P ∗

n .

Let D be a good drawing of the graph W5 + Dn. The rotation rotD(ti) of a vertex ti in
the drawing D is the cyclic permutation that records the (cyclic) counterclockwise order
in which the edges leave ti, as defined by Hernández-Vélez et al. [8] or Woodall [26]. We
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use the notation (123456) if the counter-clockwise order the edges incident with the vertex
ti is tiv1, tiv2, tiv3, tiv4, tiv5, and tiv6. Recall that a rotation is a cyclic permutation; that is,
(123456), (234561), (345612), (456123), (561234), and (612345) denote the same rotation.
We separate all subgraphs T i, i = 1, 2, . . . , n, of the graph W5 + Dn into four mutually-
disjoint families of subgraphs depending on how many times the considered T i crosses
the edges of W5 in D. Let RD = {T i : crD(W5, T

i) = 0}, SD = {T i : crD(W5, T
i) = 1},

and TD = {T i : crD(W5, T
i) = 2}. Every other subgraph T i crosses the edges of W5

at least three times in D. For T i ∈ RD ∪ SD ∪ TD, let F i denote the subgraph W5 ∪ T i,
i ∈ {1, 2, . . . , n}, of W5+Dn and let D(F i) be its good subdrawing induced by D. Clearly,
the four families we mentioned are the same in the drawing D of W5 + Pn and in the
subdrawing D

′
of W5 +Dn induced by D without the edges of P ∗

n .

3. POSSIBLE DRAWINGS OF W5 AND THE CROSSING NUMBER OF W5 + Pn

Since the graph W5 consists of one dominating vertex of degree 5 and of five vertices of
degree 3 which form the subgraph isomorphic to the cycle C5 (for brevity, we will write
C?

5 ), we only need to consider possibilities of crossings between subdrawings of C?
5 and

the five edges incident with the dominating vertex which form the subgraph isomorphic
to the star S5 on six vertices (also for brevity, we will write S?

5 ). In the rest of the paper,
let V (W5) = {v1, v2, . . . , v6}, and let v6 be the vertex notation of the dominating vertex of
degree 5 in all considered good subdrawings of the graph W5.

Let us first note that if D is a good drawing of W5 + Pn with the empty set RD ∪ SD,
then t = |TD| <

⌈
n
2

⌉
implies at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+n+3

⌊
n
2

⌋
+1 crossings in D provided by

crD(W5 + Pn) ≥ crD(K6,n) + crD(W5,K6,n) ≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 2t+ 3(n− t) =

6
⌊n
2

⌋⌊n− 1

2

⌋
+ 3n− t ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ 3n+ 1−

⌈n
2

⌉
≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
+ 1.

Lemma 3.1. Let G ∈ {Dn|n ≥ 1} ∪ {Pn|n ≥ 2}. In any optimal drawing of the join product
W5 + G, the edges of C?

5 do not cross each other. Moreover, the subdrawing of W5 induced by
D, in which no two edges of C?

5 are crossed by any edge of S?
5 and with a possibility of obtaining

a subgraph T i whose edges cross the edges of W5 at most twice, is isomorphic to one of the eight
drawings depicted in Fig. 1.

Proof. The proof for W5 +Dn has already been presented by Berežný and Staš [3]. In the
case of W5 + Pn, the proof uses the same idea, that is, we can always redraw a crossing of
two edges of C?

5 to get a new drawing of C?
5 (with vertices in a different order) with less

number of edge crossings.
Let D be a good drawing of W5+Dn with no crossing among edges of C?

5 , and let there
be a possibility of obtaining a subgraph T i by which the edges of W5 are crossed at most
twice. Without lost of generality, let us denote by v1v2v3v4v5v1 the vertex notation of the
cycle C?

5 . Because any edge of S?
5 can cross at most one edge of C?

5 , only three main cases
need to be considered:

If no edge of the cycle C?
5 is crossed by any edge of S?

5 , we obtain the planar subdrawing
of W5 shown in Fig. 1(a). For any i = 1, . . . , 5, if the edge viv6 crosses some edge of C?

5

and all three regions of D(C?
5 ∪ viv6) contain at least three vertices of the graph W5 on

its boundary, then we obtain a subdrawing of W5 isomorphic to the drawing shown in
Fig. 1(c). Now, without lost of generality, let the edge v3v4 be crossed by the edge v2v6.
The edge v3v6 must be without any crossing in D(W5), and the edge v1v6 either crosses
one of the edges v4v5, v3v4 or does not cross the edges of C?

5 . If v1v6 crosses v4v5, we obtain
the subdrawing of W5 shown in Fig. 1(e). If v1v6 crosses v3v4 and also v4v6 crosses v1v5,
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we obtain the subdrawing of W5 shown in Fig. 1(g). If v1v6 crosses v3v4 and also v4v6 is
without any crossing in D(W5), then the edge v5v6 either does not cross any edge of C?

5

or cross the edge v3v4 and we obtain the subdrawings of W5 shown in Fig. 1(f) and (h),
respectively. Finally, if the edge v1v6 does not cross any edge of the cycle C?

5 , then the
edge v5v6 either also does not cross any edge of C?

5 or cross the edge v3v4 and we obtain
the last two possible subdrawings of W5 shown in Fig. 1(b) and (d), respectively.

�
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FIGURE 1. Eight possible non isomorphic drawings of the graph W5 with
no crossing among edges of C?

5 , where no two edges of C?
5 are crossed

by any edge of S?
5 , and also with a possibility of obtaining a subgraph

T i ∈ RD ∪ SD ∪ TD.

Lemma 3.2. Let D be a good drawing of W5 + Pn, n ≥ 2. If the edges of C?
5 are crossed at least⌈

n
2

⌉
+ 1 times, then there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 crossings in D.

Proof. As the wheel W5 consists of two edge-disjoint subgraphs C?
5 and S?

5 , let us consider
that crD(C?

5 )+ crD(C?
5 , S

?
5 +Pn) ≥

⌈
n
2

⌉
+1 is fulfilling in the good drawing D of W5+Pn.

The star S?
5 is isomorphic to the complete bipartite graph K1,5 and the exact value for the

crossing number of K1,5 + Pn as a direct corollary of the crossing number of K1,5 + Dn

is given by Mei and Huang [19], that is, cr(K1,5,n) = cr(K1,5 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
.

This enforces that the edges of S?
5 + Pn must be crossed at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 4
⌊
n
2

⌋
times

in D. Consequently, we have

crD(W5 + Pn) = crD(S?
5 + Pn) + crD(C?

5 ) + crD(C?
5 , S

?
5 + Pn)

≥ 6
⌊n
2

⌋⌊n− 1

2

⌋
+ 4
⌊n
2

⌋
+
⌈n
2

⌉
+ 1 = 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
+ 1.

�

Corollary 3.1. Let D be a good drawing of W5+Pn, n ≥ 2, with no crossing among edges of C?
5 ,

and let |TD| ≥
⌈
n
2

⌉
. If any subgraph T i ∈ TD crosses some edge of the cycle C?

5 , then there are at
least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 crossings in D.
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Proof. In the planar drawing of W5 (shown in Fig. 1(a)), there is no possibility to obtain
a subdrawing of W5 ∪ T i for a subgraph T i ∈ TD. All cases of good drawings of W5 + Pn

with at least one crossing among edges of the graph W5 enforce crD(C?
5 , S

?
5 ) ≥ 1. So, if

|TD| ≥
⌈
n
2

⌉
and any T i ∈ TD crosses some edge of C?

5 , then the edges of C?
5 are crossed at

least
⌈
n
2

⌉
+1 times, and therefore by Lemma 3.2, there are at least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+n+3

⌊
n
2

⌋
+1

crossings in D. �

Corollary 3.2. Let D be a good drawing of W5 + Pn, n ≥ 2, with no crossing among edges
of C?

5 , and let all vertices ti of the path P ∗
n be placed in the same region of the considered good

subdrawing of W5. If at least two edges of C?
5 are crossed by the same edge of S?

5 , then there are at
least 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 crossings in D.

Proof. Let D be a good drawing of W5 + Pn with no crossing among edges of C?
5 . If any

subgraph T i crosses the edges of W5 at least twice, then |TD| ≥
⌈
n
2

⌉
or there are at least

6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 crossings in D.

Let us turn to the good drawing D of the graph W5 + Pn with the assumption that
all vertices of P ∗

n are placed in the same region of the considered good subdrawing of
W5, and some edge of S?

5 crosses at least two different edges of C?
5 . For this purpose, we

suppose the drawing with the vertex notation of W5 in such a way as shown in Fig. 2(a).
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FIGURE 2. Two good drawings of the graph W5 in which at least two
edges of C?

5 are crossed by the same edge of S?
5 .

Because no region is incident to at least five vertices in the subdrawing D(W5), there is
no possibility to obtain a subdrawing of W5 ∪ T i for a T i ∈ RD ∪ SD. As r = 0 and s = 0,
we can assume that |TD| ≥

⌈
n
2

⌉
, otherwise, we obtain the considered number of crossings

in D. If all vertices of the path P ∗
n are placed in the outer region with four vertices v2, v3,

v4, and v5 of the graph W5 on its boundary, then the edges tiv6 cross some edge of the cycle
C?

5 , and therefore by Corollary 3.1, there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+n+3

⌊
n
2

⌋
+1 crossings in

D again. Now, let all vertices of P ∗
n be placed in the inner region with four vertices v1, v3,

v4, and v6 of W5 on its boundary. The graph W5 contains the cycle v3v4v6v3 as a subgraph
by which the vertices v2, v5 and ti are separated in D(W5), that is, each subgraph T i

crosses the edges of the 3-cycle v3v4v6v3 at least twice in D(W5 ∪ T i). If the edges of C?
5

are crossed by all subgraphs T i at most
⌈
n
2

⌉
−crD(W5) times due to Lemma 3.2, then there

are at least 2n− (
⌈
n
2

⌉
− 3) + 2 crossings on the edges v3v6 and v4v6 in D. Let us denote by

H the subgraph of W5 with the vertex set V (W5), and the edge set E(W5) \ {v3v6, v4v6}.
Since the exact value for the crossing number of the join product H \ {v1v6, v3v4}+Dn is
given in [1], i.e., cr(H \ {v1v6, v3v4}+Dn) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
, the edges of H + Pn are

crossed at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
times in D. Thus, the edges of W5 + Pn are crossed at

least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ 2
⌊
n
2

⌋
+ 2n− (

⌈
n
2

⌉
− 3) + 2 times in D.
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This result completes the proof for the considered subdrawing of W5 in D given in
Fig. 2(a), and the proof proceeds in the similar way also for the remaining good subdraw-
ings of W5 in which one edge of S?

5 crosses at least two different edges of the cycle C?
5 . In

several cases (shown in Fig. 2(b)), it is sufficient to use only Corollary 3.1. �

According to Lemma 3.1, the edges of the cycle C?
5 do not cross each other in any

optimal drawing D of the join product W5 + Pn. Using Corollary 3.2, we will consider
only eight possible non isomorphic drawings of W5 as shown in Fig. 1, in which there is
no crossing among edges of C?

5 , no two edges of C?
5 are crossed by any edge of S?

5 , and
there is a possibility of obtaining a subgraph T i by which the edges of W5 are crossed
at most twice. In the proof of Theorem 3.3, several parts are also based on the following
Theorem 3.2.

Theorem 3.2 ([3], Theorem 3.1). cr(W5 +Dn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
for n ≥ 1.

Even though we can compute the exact values of crossing numbers of two graphs W5+
P2 and W5 + P3 using algorithm located on the website http://crossings.uos.de/,
due to the simplicity of these proofs, we prove the following Lemma 3.3.

Lemma 3.3. cr(W5 + P2) = 6 and cr(W5 + P3) = 13.

Proof. The graphs W5 + P2 and W5 + P3 are isomorphic to the join product of the cycle
C5 with the cycle C3 and with the graph K4 \ e obtained by removing one edge from the
complete graph K4, respectively. In [11] and [12] were proved that cr(C5 + C3) = 6 and
cr(C5 +K4 \ e) = 13, respectively, and so cr(W5 + P2) = 6 and cr(W5 + P3) = 13. �

 

_⌈ ⌉t n
2

t1

tn
_⌈ ⌉t n
2
+1

FIGURE 3. The good drawing of W5 + Pn with 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 crossings.

Theorem 3.3. cr(W5 + Pn) = 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 for n ≥ 2.

Proof. In Fig. 3, the edges of K6,n cross each other 6
⌊
n
2

⌋⌊
n−1
2

⌋
times, each subgraph T i,

i = 1, . . . ,
⌈
n
2

⌉
on the right side crosses the edges of C?

5 exactly once and each subgraph
T i, i =

⌈
n
2

⌉
+ 1, . . . , n on the left side crosses the edges of S?

5 exactly four times. The path
P ∗
n crosses W5 once, and so 6

⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 3

⌊
n
2

⌋
+ 1 crossings appear among the edges

of the graph W5 + Pn in this drawing. Thus, cr(W5 + Pn) ≤ 6
⌊
n
2

⌋⌊
n−1
2

⌋
+ n + 3

⌊
n
2

⌋
+ 1.

By Lemma 3.3, the result is true for n = 2 and n = 3. We prove the reverse inequality by
induction on n. Suppose now that, for some n ≥ 4, there is a drawing D with

(3.3) crD(W5 + Pn) < 6
⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
+ 1,
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and that

(3.4) cr(W5 + Pm) = 6
⌊m
2

⌋⌊m− 1

2

⌋
+m+ 3

⌊m
2

⌋
+ 1 for any integer 2 ≤ m < n.

As the graph W5 +Dn is a subgraph of the graph W5 + Pn, by Theorem 3.2, the edges
of W5 + Pn are crossed exactly 6

⌊
n
2

⌋ ⌊
n−1
2

⌋
+ n + 3

⌊
n
2

⌋
times, and therefore, no edge of

the path P ∗
n is crossed in D. This also enforces that all vertices ti of the path P ∗

n must
be placed in the same region of the considered good subdrawing of W5. Moreover, if
r = |RD|, s = |SD|, and t = |TD|, the assumption (3.3) together with the well-known fact
cr(K6,n) = 6

⌊
n
2

⌋⌊
n−1
2

⌋
imply that, in D, if r = 0 and s = 0, then there are at least

⌈
n
2

⌉
subgraphs T i by which the edges of W5 are crossed exactly twice. More precisely:

crD(W5) + crD(W5,K6,n) ≤ n+ 3
⌊n
2

⌋
,

i.e.,

(3.5) crD(W5) + 0r + 1s+ 2t+ 3(n− r − s− t) ≤ n+ 3
⌊n
2

⌋
.

This forces that 3r + 2s+ t ≥
⌈
n
2

⌉
+ crD(W5), and therefore, t ≥

⌈
n
2

⌉
+ crD(W5) if both

sets RD and SD are empty. By Lemma 3.1, we can also suppose that there is no crossing
among edges of C?

5 in all contemplated subdrawings of the graph W5. Now, we will deal
with the possibilities of obtaining a subgraph T i ∈ RD∪SD∪TD in the drawing D and we
show that in all cases a contradiction with the assumption (3.3) is obtained. Recall that the
drawing D is also satisfying the restriction of placement all vertices ti in the same region
of the considered subdrawing of W5.

Case 1: crD(W5) = 0. The drawing of W5 is uniquely determined in such a way as
shown in Fig. 1(a). It is obvious that the sets RD and TD are empty. As the set SD cannot
be empty, all vertices ti must be placed in the region of D(W5) with five vertices of the
graph W5 on its boundary. Since each subgraph T i crosses some edge of C?

5 at least once,
the edges of the cycle C?

5 are crossed at least n times. Lemma 3.2 forces a contradiction
with the assumption (3.3) in D.

Case 2: crD(W5) = 1. At first, without loss of generality, we suppose the drawing with
the vertex notation of W5 in such a way as shown in Fig. 1(b). Since the sets RD and SD

are empty, there are at least
⌈
n
2

⌉
+ 1 subgraphs T i whose edges cross the edges of W5

exactly twice. It is easy to see that crD(C?
5 , T

i) ≥ 1 holds for each such subgraph T i ∈ TD,
and so Lemma 3.2 again contradicts the assumptions of D.

In addition, without loss of generality, we can choose the vertex notation of the graph
W5 in such a way as shown in Fig. 1(c). Clearly, also the sets RD and SD are empty, that
is, t ≥

⌈
n
2

⌉
+ 1. Moreover, all vertices ti must be placed in the region of D(W5) with

four vertices v1, v2, v3, and v6 of W5 on its boundary. For a T i ∈ TD, there is only one
subdrawing of F i \ {v4, v5} represented by the rotation (1236), which yields that there
are four ways to obtain the subdrawing of F i depending on which two edges of W5 are
crossed by the edges tiv4 and tiv5. The edges of C?

5 are not crossed by any T i ∈ TD only if
rotD(ti) = (123465). It is not difficult to verify in six possible regions of D(W5 ∪ T i) that
crD(W5∪T i, T k) ≥ 6 is true for any subgraph T k with k 6= i. Thus, by fixing the subgraph
W5 ∪ T i, we have

crD(W5 + Pn) ≥ 6
⌊n− 1

2

⌋⌊n− 2

2

⌋
+ 6(n− 1) + 3 ≥ 6

⌊n
2

⌋⌊n− 1

2

⌋
+ n+ 3

⌊n
2

⌋
+ 1.

If there is no T i ∈ TD with rotD(ti) = (123465), then each subgraph T i ∈ TD crosses
some edge of C?

5 at least once, and so Lemma 3.2 also confirms a contradiction with the
assumption (3.3) in D.
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Case 3: crD(W5) = 2. At first, without loss of generality, we can choose the vertex
notation of the graph W5 in such a way as shown in Fig. 1(d). As the sets RD and SD are
also empty, suppose that all vertices ti are placed in the region of D(W5) with four vertices
v1, v2, v3, and v6 of W5 on its boundary according to a certain symmetry of this drawing
W5. Consequently, we can apply the same idea as in the previous subcase regarding the
existence or non existence of a subgraph T i ∈ TD which does not cross the edges of C?

5 .
In addition, without loss of generality, we can consider the drawing of W5 with the

vertex notation in such a way as shown in Fig. 1(e). Clearly, all vertices ti are placed in
the region of D(W5) with five vertices v1, v2, v3, v5, and v6 of W5 on its boundary, and the
set RD is empty but the set SD can be nonempty. So, two possible subcases may occur:

a) Let SD be the nonempty set, that is, only the edge v1v2 of W5 is crossed by the edge
tiv4 of each subgraph T i ∈ SD. It is not difficult to verify in six possible regions of
D(W5 ∪ T i) that crD(W5 ∪ T i, T k) ≥ 6 holds for any subgraph T k, k 6= i. By fixing
the subgraph W5 ∪ T i, we obtain a contradiction with the assumption (3.3) in D.

b) Let SD be the empty set, that is, each subgraph T i crosses the edges of W5 at least
twice. The edges of C?

5 are not crossed by any T i ∈ TD only if either rotD(ti) =
(123465) or rotD(ti) = (123645). In both cases, crD(W5 ∪ T i, T k) ≥ 6 is fulfilling
for any subgraph T k, k 6= i, which yields a contradiction by fixing the subgraph
W5 ∪ T i. If there is no subgraph T i ∈ TD with crD(C?

5 , T
i) = 0, then the discussed

drawing contradicts the assumption of D again by Lemma 3.2.
Finally, without loss of generality, we assume the drawing of W5 with the vertex no-

tation in such a way as shown in Fig. 1(f). The set RD is empty, but the set SD can be
nonempty, and so the proof proceeds in a similar way as for the drawing of W5 in Fig. 1(e).
Only if SD 6= ∅, there are two possibilities of obtaining a subgraph T i ∈ SD with either
rotD(ti) = (123645) or rotD(ti) = (123654).

Case 4: crD(W5) = 3. If we consider the drawing of W5 as in Fig. 1(g), by applying
the same process as for the drawing in Fig. 1(b), we obtain at least

⌈
n
2

⌉
+ 1 subgraphs

T i ∈ TD whose edges cross the edges of C?
5 . Otherwise, if we assume the drawing of W5

as shown in Fig. 1(h), then the same idea as in such a case in [3] regarding the existence or
non existence of a subgraph T i ∈ RD could be exploited.

We have shown, in all cases, that there are at least 6
⌊
n
2

⌋⌊
n−1
2

⌋
+n+3

⌊
n
2

⌋
+1 crossings in

each good drawing D of the graph W5+Pn. This completes the proof of Theorem 3.3. �

4. CONCLUSIONS

Staš and Valiska were able to postulate that

cr(Wm + Pn) = Z(m+ 1)Z(n) + (Z(m)− 1)
⌊n
2

⌋
+ n+ 1 for all m ≥ 3, n ≥ 2,

where Z(n) =
⌊
n
2

⌋⌊
n−1
2

⌋
is Zarankiewicz’s number. Recently, this conjecture was proved

for the graph W3 +Pn by Klešč and Schrötter [17], and for the graph W4 +Pn by Staš and
Valiska [25]. Theorem 3.3 also confirms the validity of this conjecture for W5 + Pn.

Theorem 4.4 ([17], Theorem 4.2). cr(W3 + Pn) = 2
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+ 1 for n ≥ 2.

Theorem 4.5 ([25], Theorem 3.3). cr(W4 + Pn) = 4
⌊
n
2

⌋⌊
n−1
2

⌋
+ n+

⌊
n
2

⌋
+ 1 for n ≥ 2.

On the other hand, the graphs Wm+P2 and Wm+P3 are isomorphic to the join product
of the cycle Cm with the cycle C3 and with the graph K4 \ e obtained by removing one
edge from the complete graph K4, respectively. The exact values for the crossing numbers
of the graphs Cm + Cn are given by Klešč [11], that is, cr(Cm + Cn) = Z(m)Z(n) + 2



On the crossing number of join product W5 + Pn 345

for any m,n ≥ 3 with min{m,n} ≤ 6. The crossing numbers of K4 \ e + Cm equal to
2
⌊
m
2

⌋⌊
m−1
2

⌋
+
⌊
m
2

⌋
+ 3 were established also by Klešč [12]. Further, the graph Wm + P4

is isomorphic to the join product of the cycle Cm with the graph K1,4 + 3e obtained by
adding three non incident edges with the same vertex to the complete bipartite graph
K1,4. Using the result of Staš [23], the crossing numbers of the graphs (K1,4 + 3e) + Cm

are given by 4
⌊
m
2

⌋⌊
m−1
2

⌋
+ 2
⌊
m
2

⌋
+ 3 for each m ≥ 3. These facts allow us to determine

another results for the join product of the wheels Wm with the path on two, three, and
four vertices.

Theorem 4.6 ([25], Theorem 5.1). cr(Wm + P2) =
⌊
m
2

⌋⌊
m−1
2

⌋
+ 2 for m ≥ 3.

Theorem 4.7 ([25], Theorem 5.2). cr(Wm + P3) = 2
⌊
m
2

⌋⌊
m−1
2

⌋
+
⌊
m
2

⌋
+ 3 for m ≥ 3.

Theorem 4.8 ([23], Corollary 7). cr(Wm + P4) = 4
⌊
m
2

⌋⌊
m−1
2

⌋
+ 2
⌊
m
2

⌋
+ 3 for m ≥ 3.

One can easily verify that these results also confirm the validity of this conjecture for
the graphs Wm + P2, Wm + P3, and Wm + P4.
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[3] Berežný, Š.; Staš, M. On the crossing number of join of the wheel on six vertices with the discrete graph.
Carpathian J. Math. 36 (2020), no. 3, 381–390.

[4] Clancy, K.; Haythorpe, M.; Newcombe, A. A survey of graphs with known or bounded crossing numbers.
Australasian J. Combin. 78 (2020), no. 2, 209–296.
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Czechia, 11–13 September 2019; pp. 457–463.

[7] Garey, M. R.; Johnson, D. S. Crossing number is NP-complete. SIAM J. Algebraic. Discrete Methods 4 (1983),
no. 3, 312–316.
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346 Štefan Berežný and Michal Staš
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