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About convex structures on metric spaces

MITROFAN M. CHOBAN

ABSTRACT. In the present paper we study the relationships between different concepts of convex structures
in metric spaces that that are related to the works of K. Menger [Menger, K. Untersuchungen über allgemeine
Metrik. Math. Ann. 100 (1928), 75–163], H. Busemann [Busemann, H. The geometry of geodesics, Academic Press,
1955], I. N. Herstein; J. Milnor [Herstein, I. N.; Milnor, J. An axiomatic approach to measurable utility. Econo-
metrica 21 (1953), 291–297], E. Michael [Michael, E. Convex structures and continuous selections. Canad. J. Math.
11 (1959), 556–575], A. Nijenhuis [Nijenhuis, A. A note on hyperconvexity in Riemannian manifolds. Canad. J.
Math. 11 (1959), 576–582.], W. Takahashi; T. Shimizu [Shimizu, T.; Takahashi, W. Fixed points of multivalued
mappings in certain metric spaces. Topol. Methods Nonlinear Anal. 8 (1996), no. 1, 197–203 and Takahashi, W. A
convexity in metric space and nonexpansive mappings I. Kodai Math. Sem. Rep. 22 (1970), 142–149], M. Tasković
[Tasković, M. General convex topological spaces and fixed points. Math. Moravica 1 (1997), 127–134], Yu. A.
Aminov [Aminov, Yu. A. Two-Dimensional Surfaces in 3-Dimensional and 4-Dimensional Euclidean Spaces.
Results and Unsolved Problems. Ukr. Math. J. 71 (2019), no. 1, 1–38.], H. V. Machado [Machado, H. V. A char-
acterization of convex subsets of normed spaces. Kodai Math. Sem. Rep. 25 (1973), 307–320], and many other
papers.

Some well known examples of concrete convex structures are reexamined and the possibilities of differ-
ent embeddings of metric spaces with convex structures are also studied. Corollary 6.1 states that the Bolyai-
Lobachevskii plane and the Bolyai-Lobachevskii half-plane are not isometrically embedding in some strictly
convex normed space. A characteristic of the invariant metric generated by a norm is presented (Proposition
4.6).

1. INTRODUCTION

The concept of distance and, in particular, of the metric is important in many branches
of mathematics and applications. The main goal of this article is to consider examples of
convex metrics that differ significantly from the convex structures generated by isometric
embedding of a given space into some normed space. Some kinds of the convexities may
be considered on spaces with general distances.

In the present article we consider only symmetrical distances in the following sense.

Definition 1.1. A distance space is a pair (X, ρ) consisting of a set X and a non-negative
real-valued function ρ on the set X ×X satisfying the following conditions:

(D) ρ(x, y) = 0 if and only if x = y;
(S) ρ(x, y) = ρ(y, x), for all x, y ∈ X .

Let (X, ρ) be a distance space. For any x ∈ X and each r > 0 we put

B(x, r, ρ) = {y ∈ X : ρ(x, y) < r},

C(x, r, ρ) = {y ∈ X : ρ(x, y) ≤ r}.
The set B(x, r, ρ) is the ρ-open ball with center x and radius r or, simply, the r-ball about
x and the set C(x, r, ρ) is the ρ-closed ball with center x and radius r or, simply, the closed
r-ball about x.
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The set [a, b]ρ = {x ∈ X : ρ(a, b) = ρ(a, x)+ρ(x, b)} is the ρ-interval with the ends a, b ∈ X .
Obviously, from condition (S) it follows that [a, b]ρ = [b, a]ρ.

We say that a set U ⊆ X is ρ-open if for any x ∈ U we have B(x, ϵ, ρ) ⊆ U for some
ϵ > 0. The family T (ρ) of all ρ-open sets forms the topology of the distance space (X, ρ),
i.e., the topology induced by the distance ρ.

The open ballB(x, r, ρ) is not obligatory an open subset of the topological space (X,T (ρ))
and the closed ball C(x, r, ρ) is not obligatory a closed subset of the topological space
(X,T (ρ)) (see [13]). We put B0(x, r, ρ) = ∪{U ∈ T (ρ) : U ⊆ B(x, r, ρ)}.

A distance space (X, ρ) is called a strong distance space if, for any x ∈ X and any r > 0,
we have x ∈ B0(x, r, ρ) ⊆ B(x, r, ρ). A distance space (X, ρ) is a strong distance space
if and only if the space (X,T (ρ)) is first-countable. Various concepts in the theory of
distance spaces were discussed in [2, 5, 29, 30, 31, 32].

Example 1.1. Let Z = {(x, y) : x, y ∈ R, 0 < x ≤ 1, 0 < y ≤ 1} and Y = {(0, 0)} ∪ Z. For
(x, y), (u, v) ∈ Z we put d((x, y), (u, v)) =

√
(x− u)2 + (y − v)2. For any (x, y) ∈ Y we put

d((x, y), (0, 0)) = d((0, 0), (x, y)) = x for y = 0 and d((x, y), (0, 0)) = d((0, 0), (x, y)) = 2 for
y > 0. In this case, B((x, y), r, d) is an open subset of (Y, T (d)), for any point (x, y) ̸= (0, 0)
and r > 0, and B0((0, 0), r, d) = ∅, for any r ≤ 2. Let Yn = Y for any n ∈ N. We put X
= {(yn : n ∈ N) ∈ Y N : the set {n ∈ N : yn ̸= (0, 0)} is finite} and ρ(((yn : n ∈ N), (zn :
n ∈ N)) = Σ{2−nd(yn, zn) : n ∈ N}, for any two points (yn : n ∈ N), (zn : n ∈ N) ∈ X . In
this case, for any point x = (xn : n ∈ N) ∈ X we put ind(x) = min{n ∈ N : xn = (0, 0)}.
Then, for r ≤ 2−ind(x), we have B(x, r, ρ) = ∅. In particular, the space (X, ρ) is Lindelöf,
completely regular and without first axiom of countability at each point. Moreover, the
space X is σ-compact and a continuous image of a separable complete metrizable space.

Definition 1.2. A distance space (X, ρ) is said to be:
1) a metric space [20] if it satisfies the following condition:
ρ(x, z) ≤ ρ(x, y) + ρ(y, z), for all x, y, z ∈ X ;
2) a b-metric space [3] if there exists a number λ > 0 such that d(x, z) ≤ λ(d(x, y) +

d(y, z)), for all x, y, z ∈ X .
3) an F -distance space [20, 11] if, for any ε > 0, there exists a δ > 0 such that ρ(x, z) < ε

provided ρ(x, y) < δ and ρ(y, z) < δ for some y ∈ Y ;
4) a N -distance space [33] if, for any point x ∈ X and each ε > 0 there exists a δ > 0 such

that ρ(x, z) < ε provided ρ(x, y) < δ and ρ(y, z) < δ for some y ∈ Y ;
5) a Π-distance space [33] if, for any point x ∈ X and any two sequences {xn ∈ X : n ∈

N} and {yn ∈ X : n ∈ N} we have limn→∞ ρ(x, yn) = 0 provided limn→∞ ρ(x, xn) = 0
and limn→∞ ρ(xn, yn) = 0 for some y ∈ Y ;

6) a W -metric space [41] if, for each point X ∈ X and each positive number k, there is a
positive number r such that if y ∈ X is a point for which ρ(x, y) ≥ k, then ρ(x, z)+ρ(y, z) ≥
r, for each z ∈ X .

Any metric space is a b-metric space and any b-metric space is an F -distance space (see
[3, 5]). From the E. W. Chittenden’s theorem [11, 20] any F -distance space is metrizable.
Moreover, for any F -distance ρ on a set X there exists a metric d on X such that, for any
ε > 0, there exists a δ > 0 for which ρ(x, y) < ε provided d(x, y) < δ and vice-versa
d(x, y) < ε, provided ρ(x, y) < δ.

V. V. Niemytzki [33] proved that any N -distance is a Π-distance, any Π-distance is a N -
distance and any N -distace space is metrizable (see [29, 30, 31, 32]). In [41] W. A. Wilson
proved that any W -distance is a N -distance, any N -distance is a W -distance and any W -
distace space is metrizable.

The notion of metric convexity due to K. Menger [27].
The term convexity is very diversified and it is used in various branches of mathematics.
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Let R be the space of reals and Rn be the n-dimensional vector space with the Euclidean
metric dn2 ((x1, x2, ..., xn), (y1, y2, ..., yn)) =

√
Σ{(yi − xi)2 : i ≤ n}. The set I={t : 0 ≤ t≤1}

is the unit segment of the space R1.
On the space Rn, for any number p>0, we consider the following distances

dnp ((x1,x2,...,xn), (y1, y2, ..., yn)) = (Σ{|yi − xi|p : i ≤ n}})1/p

and
dn∞((x1, x2, ..., xn), (y1, y2, ..., yn)) = sup{|yi − xi| : i ≤ n}}.

For p < 1, the distance dnp is a b-metric with λ = 21/p [4], while for p ≥ 1, the distance dnp
is a metric.

Definition 1.3. A convex structure on a distance space (E, d) assigns a mapping µ : E ×
E × I −→ E with the properties:

1) µ(x, y, t) = µ(y, x, 1− t), for all x, y ∈ E and t ∈ I;
2) d(x, µ(x, y, t)) = (1 − t) · d(x, y) and d(µ(x, y, t), y) = t · d(x, y), for all x, y ∈ E and

t ∈ I.
3) for any x, y ∈ E the mapping µ(xy) : I −→ E, where µ(xy)(t) = µ(x, y, t) for any t ∈ I,

is continuous.

By definition, we have µ(x, y, 1) = x and µ(x, y, 0) = y.
On any linear space L we consider the linear convexity µl(x, y, t) = (1− t) · x + t · y, for

all x, y ∈ E and t ∈ I.

Definition 1.4. Let µ : E × E × I −→ E be a convex structure on a distance space (E, d).
1) For any two points a, b ∈ E, [a, b]µ = {µ(a, b, t) : t ∈ I} is the µ-segment with the end

points a, b.
2) A subset A ⊆ E is called convex if µ(x, y, t) ∈ A, for all x, y ∈ E and t ∈ I.
3) A subset A ⊆ E is called d-convex or a metric subset if [x, y]d ⊆ A, for all x, y ∈ E.
4) A convex distance space (E, d, µ) is a hereditary convex distance space if

µ(x, y, t) ∈ [a, b]µ, for for all a, b ∈ E, x, y ∈ [a, b]µ and t ∈ I.

We have [a, b]µ ⊆ [a, b]d for all points a, b ∈ E. Hence any metric convex set in the
Menger’s sense is convex. For p ̸= 2 and n ≥ 2 in the metric space (Rn, dnp ) with the
linear convexity there exists a convex set which is not metric convex. By definition, the
empty set is ρ-convex. The concept of Menger’s convexity is very large. By instance, on
an discrete metric space (E, d), where d(x, x) = 0 and d(x, y) = 1, for distinct x, y ∈ E, any
subset A ⊂ E is d-convex and on (E, d) there are no convex structures. Various aspects
of convex structures were studied and applied to certain problems by many authors, see
[6, 8, 10, 12, 17, 26, 28, 38, 39, 40].

2. UNIFORM CONVEX STRUCTURES

In the case of the Fixed Point Theory, some convex structures with special metric con-
straints were introduced and used.

Definition 2.5. A convex structure µ : E×E× I −→ E on a distance space (E, d) is called:
1) uniformly continuous if, for every ε > 0, there exist δ, ξ ∈ R such that ε ≥ ξ ≥ δ > 0

and d(µ(x, y, t), µ(s, z, t)) < ξ provided x, y, s, z ∈ E, t ∈ I, d(x, s) < ξ and d(y, z) < δ;
2) a convex structure with convex round balls if d(z, µ(x, y, t)) ≤ max{d(z, x), d(z, y)}, for

all x, y, z ∈ E and t ∈ I;
3)a strictly convex structure with convex round balls if d(z,µ(x, y,t))<max{d(z, x), d(z, y)},

for all x, y, z ∈ E and t ∈ I, 0 < t < 1, and for all x, y ∈ E and t ∈ I there exists a unique
point z ∈ E such that d(x, z) = t · d(x, y) and d(z, y) = (1− t) · d(x, y);
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4) a T -convex structure if d(z, µ(x, y, t)) ≤ t · d(z, x) + (1 − t) · d(z, y), for all x, y, z ∈ E
and t ∈ I.

5) a strongly T -convex structure if d(z, µ(x, y, t)) < t · d(z, x) + (1 − t) · d(z, y), for all
distinct points x, y, z ∈ E and 0 < t < 1.

Convex structures, convex structures with convex round balls and strictly convex struc-
tures with convex round balls were studied in [7, 10, 12, 21, 22, 37], while T -convex struc-
tures were studied in [35, 36].

Definition 2.6. Let 0 < γ ≤ 1. A convex structure µ : E×E× I −→ E on a distance space
(E, d) is called:

- a hyperconvex structure if, for every positive number ε > 0 and any points a, b ∈ E,
there exists δ > 0 such that from x, y ∈ E the inequalities d(a, x) < δ, d(b, y) < δ imply
that d(µ(x, y, t), µ(u, v, t)) < ε for any t ∈ I.

- a γ-hyperconvex structure if, for every positive number ε > 0 and any points x, y, u, v ∈
E, the inequalities d(x, u) < ε, d(y, v) < γ · ε imply that d(µ(x, y, t), µ(u, v, t)) < ε between
corresponding points of t ∈ I.

Any γ-hyperconvex structure is a hyperconvex structure. The concept of γ-hyperconvex
structure was introduced by A. Nijenhuis [34], who proved (Theorem II) that: if (M,d) is
a Riemann manifold with the convex metric, then:

1) if the curvature of M is non-positive, then M is 1-hyperconvex;
2) if the curvature is positive, then every point of the Riemannian manifold M has a

2−1-hyperconvex neighborhood.

Remark 2.1. Any T -convex structure is a convex structure with convex round balls.

Remark 2.2. Any γ-hyperconvex structure is a uniformly continuous convex structure.

Remark 2.3. Any strictly convex structure with convex round balls is a hereditary convex
structure with convex round balls. If µ is a hyperconvex structure on a metric space (E, d),
then µ : E × E × I −→ E is a continuous mapping.

Proposition 2.1. Let µ : E × E × I −→ E be a convex structure with convex round balls on a
distance space (E, d). Then B(a, r, d) and C(x, r, d) are convex subsets of the space (E, d).

Proof. If x, y ∈ B(a, r, d) and t ∈ I, then d(a, µ(x, y, t)) ≤ max{d(a, x), d(a, y)} < r and
µ(x, y, t) ∈ B(a, r, d). If x, y ∈ C(a, r, d) and t ∈ I, then d(a,µ(x, y, t)) ≤ max{d(a, x), d(a, y)}
≤ r and µ(x, y, t) ∈ C(a, r, d). □

IfE is a linear space, then [a, b] = {t·a+(1−t)·b : t ∈ I} is the linear segment with the end
points a, b. If (E,n) is a normed space and d(x, y) = n(x− y), then [a, b] = [a, b]µl

⊆ [a, b]d.
Let (X, d, µ) be a metric space with a convex structure. A subset L ⊆ X is µ-collinear if,

for any three points x, y, z ∈ L, there exist two points a, b ∈ X such that x, y, z ∈ [a, b]µ. A
maximal µ-collinear subset of X is called a µ-line.

Proposition 2.2. Let (X, d, µ) be a metric space with a hereditary convex structure. Then for any
two distinct points a, b ∈ X there exists some µ-line (ab)µ such that a, b ∈ (ab)µ.

Proof. Fix two distinct points a, b ∈ X . There exists a maximal family of µ-segments
L(a, b) = {[x, y]µ : x, y ∈ X, [a, b]µ ⊆ [x, y]µ} linearly ordered by inclusion. We put (ab)µ
= ∪L(a, b). Assume that x, y ∈ (ab)µ. Then there exist four points x1, x2, y1, y2 ∈ X such
that:

- x ∈ [x1, x2]µ ∈ L(a, b);
- y ∈ [y1, y2]µ ∈ L(a, b).
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Then one of the µ-segments [x1, x2]µ, [y1, y2]µ is a subset of other. Thus the points
a, b, x, y are µ-collinear. By induction we can proved that any finite set L ⊆ [a, b]µ is µ-
collinear.

Fix a point c ∈ X \ (ab)µ. We have two possible cases.
Case 1. If x, y ∈ X and [a, b]µ ⊆ [x, y]µ, then c ̸∈ [x, y]µ.
In this case the points a, b, c are not µ-collinear.
Case 2. There exist two points x, y ∈ X such that [a, b]µ ⊆ [x, y]µ and c ∈ [x, y]µ.
Since µ is a hereditary convex structure, the intersection (ab)µ ∩ [x, y]µ is a µ-segment.

We can assume that (ab)µ∩[x, y]µ = [a, b]µ. Since the family L(a, b) is maximal and [x, y]µ ̸∈
L(a, b), there exist two points u, v ∈ X such that [a, b]µ ⊆ [u, v]µ ∈ L(a, b), {u, v}\{a, b} ≠ ∅
and c ̸∈ [u, v]µ. In this case the points u, v, c are not µ-collinear and for x, y ∈ X and
[u, v]µ ⊆ [x, y]µ follows that c ̸∈ [x, y]µ. Hence (ab)µ is a µ-line. □

3. ON BOLYAI-LOBACHEVSKII PLANE

When the parallel postulate is removed from Euclidean geometry, the resulting geom-
etry is the absolute geometry.

Denote byL the absolute plane with the metric d.Assume thatL is the Bolyai-Lobachevskii
plane or the Euclidean plane. Consider two distinct points a, b ∈ L. A point x ∈ L is be-
tween the points a and b if and only if x is a point of the straight line (ab) passing through
the distinct points a, b and d(a, b) = d(a, x) + d(x, b). For any number t ∈ I = [0, 1] there
exists a unique point µL(a, b, t) = xt such that d(a, xt) = (1 − t) · d(a, b) and d(xt, b) =
t · d(a, b). In particular, on a metric space (L, d) there exists a unique convex structure
µL : L× L× I −→ L such that:

- [a, b]d = {x ∈ L : d(a, x) + d(x, b) = d(a, b) for any two points a, b ∈ L;
- [a, b] = {x ∈ L : x is between the points a, b} ⊆ (ab) is the line segment with the

end-points a, b ∈ L;
- [a, b] = [a, b]d = [a, b]µ for any two points a, b ∈ L.

Proposition 3.3. A convex structure µL : L × L × I −→ L on the absolute plane (L, d) is a
uniformly continuous hereditary strictly convex structure with convex round balls.

Proof. There are two kinds of absolute geometry: Euclidean geometry and hyperbolic or
Bolyai-Lobachevskii geometry. The case of Euclidean plane is well known.

Assume that L is the Bolyai-Lobachevskii plane. Consider two distinct points a, b ∈ L.
A point x ∈ L is between the points a and b if and only if x is a point of the straight line
(ab) passing through the distinct points a, b and d(a, b) = d(a, x)+ d(x, b). For any number
t ∈ I = [0, 1] there exists a unique point µL(a, b, t) = xt such that d(a, xt) = (1− t) · d(a, b)
and d(xt, b) = t · d(a, b). In particular, on a metric space (L, d) the convex structure µL :
L× L× I −→ L is the unique convex structure such that:

- [a, b] = [a, b]d = [a, b]µ for any two points a, b ∈ L;
- if a, b ∈ L and u, v ∈ [a, b]d, then [u, v]d = [u, v]µ ⊆ [a, b]µ = [a, b]d.
Hence µL is a hereditary strictly convex structure on the space (L, d).
Fix three distinct points a, b, c ∈ L and a point x ∈ L between the points a and b.

Assume that c ̸∈ [a, b].
If c ∈ (ab), then x ∈ [c, a]d ∪ [c, b]d. If x ∈ [c, a]d, then d(c, a) > d(c, x).
Suppose that c ̸∈ (ab). There is a perpendicular line (cp) to a line (ab) through the point

c, where p ∈ (ab). Fix a point z ∈ (a, b). Then cpz is a right triangle with the hypotenuse
[cz]d and catheters [c, z]d and [pz]d. Suppose that d(c, a) ≥ d(c, b).

Consider the hyperbolic function defined as cosh(z) = 1
2 (e

z + e−z). By virtue of analo-
gous of Pythagora’s Theorem we have cosh(d(c, z)) = cosh(d(c, p)) · cosh(d(pz)). Hence for
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u ∈ (a, b) we have d(c, z) < d(c, u) if and only if d(p, z) < d(p, u). Since z is a point strictly
between a, b and d(c, a) ≥ d(c, b), then d(c, a) > d(c, z).

Therefore µ is a hereditary strictly convex structure with convex round balls. □

Proposition 3.4. A convex structure µ : L×L×I −→ L on the absolute plane (L, d) is uniformly
continuous.

Proof. Follows by A. Nijenhuis results [34]. □

Proposition 3.5. A convex structure µL : L × L × I −→ L on the absolute plane (L, d) is a
strongly T-convex structure.

Proof. The assertion is true for the Euclidean plane (R2, d22).
Assume that (L, d) is a hyperbolic space of non-positive curvature k. Fix a geodesic

triangle △(a, b, c) in L with vertices a, b, c. The sides ab, ac, bc of the triangle △(a, b, c) are
the geodesic lines of the length d(a, b), d(a, c), d(b, c) respectively.

A comparison triangle in R2 for the geodesic triangle △(a, b, c) a triangle in the Eu-
clidean plane with vertices ā, b̄, c̄ such that d22(ā, b̄) = d(a, b), d22(ā, c̄) = d(a, c) and d22(b̄, c̄) =
d(b, c). Such a triangle is unique up to isometry, and shall be denoted △(ā, b̄, c̄). Fix a point
x on the side bc such that d(b, x) = (1− t) · d(b, c) and 0 < t < 1. Then d(x, c) = t · d(b, c).
On the interval b̄c̄) there exists a unique points x̄ such that d22(b̄, x̄) = (1− t) · d22(b̄, c̄). Since
L is a hyperbolic space of the non-positive curvature k < 0, by virtue of CAT (k) inequal-
ity, we have d(a, x) ≤ d22(ā, x̄) [6, 9, 23]. Since △(ā, b̄, c̄) is an Euclidean triangle we have
d22(ā, x̄) ≤ (1−t)d22(ā, b̄)+td22(ā, c̄). Therefore d(a, x) ≤ d22(ā, x̄) ≤ t·d22(ā, b̄)+(1−t)·d22(ā, c̄)
= t · d(a, b) + (1− t) · d(a, c). □

4. CONVEXITIES ON LINEAR SPACES

Let (B,n) be a normed liner space with the norm n with the properties:
1) n(x) = 0 if and only if x = 0;
2) n(t · x) = |t| · n(x), for all x ∈ B and t ∈ R;
3) n(x+ y) ≤ n(x) + n(y), for all x, y ∈ B.
We put d(x, y) = n(x − y) and µB(x, y, t) = tx + (1 − t)y, for all x, y ∈ B and t ∈ I. In

this case d is the metric generated by the norm n(x) and µ is a convexity generated by the
linear structure of the space B. The metric generated by a norm is invariant.

A metric d on a linear space B is invariant if it satisfies the following equivalent prop-
erties:

(i) d(x+ z, y + z) = d(x, y), for all x, y, z ∈ B;
(ii) d(x, y) = d(x− y, 0), for all x, y ∈ B.
The convex metric space (B, d, µB) is a metric space with 1-hyperconvexity and with a

uniformly continuous hereditary convex structure with convex round balls. That convex
structure is strictly convex structure with convex round balls provided (B,n) is a uni-
formly convex Banach space. We have d(t·x, 0) = t·d(x, 0) and d(t·x+(1−t)·y, 0) ≤ t·d(x, 0)
+ (1− t) · d(y, 0), for all x, y ∈ B and t ∈ I.

Professor V. Berinde posed the following question: let d be a metric on the linear space
B with the next two properties:

(1) d is invariant, i.e. d(x, y) = d(x− y, 0), for all x, y ∈ B;
(2) d(t · x+ (1− t) · y, 0) ≤ t · d(x, 0) + (1− t) · d(y, 0), for all x, y ∈ B and t ∈ I.
Is it true that n(x) = d(x, 0) is not a norm on the linear space?
The response is negative. We mention the following fact which, in particular, states

that a metric on a linear space is generated by the norm provided it is in accordance with
the linear convexity of the space.
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Proposition 4.6. Assume that (B, d) is a linear space with an invariant metric d. The following
properties are equivalent:

(1) d(t · x, 0) = t · d(x, 0), for all x ∈ B and t ∈ I.
(2) n(x) = d(x, 0) is a norm on the linear space B and d(x, y) = n(x− y), for all x, y ∈ B.
(3) the linear convex structure µ(x, y, t) = (1− t) · x+ t · y is a convex structure on the metric

space (B, d).
(4) d(t · x, 0) ≤ t · d(x, 0), for all x ∈ B and t ∈ I.
(5) d(t · x+ (1− t) · y, 0) ≤ t · d(x, 0) + (1− t) · d(y, 0), for all x, y ∈ B and t ∈ I.

Proof. Implications (2) → (3) → (1) → (4) and 2 → (5) → (4) are obvious.
Assume that d(t · x, 0) = t · d(x, 0) for all x ∈ B and t ∈ I. We will prove a series of

statements.
S1. d(x+ z, y + z) = d(−x,−y) = d(x, y) for all x, y, z ∈ B.
Really, d(x + z, y + z) = d((x + z) − (y + z), 0) = d(x − y, 0) = d(x, y) and d(x, y) =

d(x− y, y − y) = d(x− y, 0) = d(x− y − x, 0− x) = d(−y,−x) = d(−x,−y).
S2. n(−x) = n(x) for each x ∈ B.
By definition, n(−x) = d(−x, 0). By assertion S1 we have n(−x) = d(−x, 0) = d(−(−x),−0)

= d(x, 0) = n(x).
S3. n(t · x) = n(|t| · x) for all x ∈ B and t ∈ R.
Since |t| = t for t ≥ 0 and |t| = −t for t ≤ 0, assertion S3 follows from assertion S2.
S4. n(x+ y) ≤ n(x) + n(y) for all x, y ∈ B.
From properties of metric it follows n(x+y) = d(x+y, 0) = d(x,−y) ≤ d(x, 0)+d(0,−y)

= n(x) + n(−y) = n(x) + n(y).
S5. n(x) = 0 if and only if x = 0.
If x = 0, then n(0) = d(0, 0) = 0. Assume that x ∈ B and n(x) = 0. Then 0 = n(x) =

d(x, 0) and d(x, 0) = 0 if and only if x = 0.
S6. n(t · x) = |t| · n(x) for all x ∈ B and t ∈ R.
By virtue of assertion S3, we can assume that t > 0. Consider three possible cases.
Case 1. t = 1.
Since 1 · x = x, we have n(1 · x) = n(x) = |1| · n(x).
Case 2. 0 ≤ t < 1.
In this case t ∈ I and n(t · x) = d(t · x, 0) = t · d(x, 0) = |t| · n(x).
Case 3. t > 1.
In this case 0 < t−1 < 1 and n(x) = n(t−1 · (t · x)) = t−1 · n(t · x). Therefore n(t · x) =

|t| · n(x).
S7. n(x) is a norm on B and d(x, y) = n(x− y) for all x, y ∈ B.
Follows from assertions S4, S5, S6 and construction of the norm n(x). Implications

(1) → (2) → (3) are proved.
Assume now that n(x) = d(x − y, 0) is a norm on the linear space B. Since n(t · x) =

|t| · n(x) for all x ∈ B and t ∈ R, we have d(t · x, 0 = t · d(x, 0) for all x ∈ B and t ∈ I.
Assume that d(t · x, 0) ≤ t · d(x, 0) for all x ∈ B and t ∈ I. Suppose that λ ∈ I

and d(λ · a, 0) < λ · d(a, 0) for some a ∈ B. Then d(a, 0) = d(λ · a + (1 − λ) · a, 0) ≤
d(λ · a, 0) + d((1− λ) · a, 0) ≤ λ · d(a, 0) + d((1− λ) · a, 0) ≤ λ · d(a, 0) + (1− λ) · d(a, 0) =
d(a, 0), a contradiction. So, implication (4) → (1) is proved. □

5. EMBEDDINGS OF CONVEX METRIC SPACES

Various embeddings of metric spaces appear in the paper of M. Fréchet [19], where he
first introduces the notion of metric space.

K. Kuratowski [25] proved the following embedding theorem.
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Theorem 5.1. (K. Kuratowski [25]) Let (X, d) be a metric space, ω be a point in X and B =
C0(X) denotes the Banach space of all bounded continuous real-valued functions on X with the
supremum norm n(f) = sup{|f(x)| : x ∈ X}. Then the mapping Φ : X −→ B, defined by
Φ(a)(x) = d(x, a)− d(x, ω) for all a, x ∈ X , is an isometric embedding and Φ(ω) is the zero 0 of
the linear space C0(X).

Proof. It is well known that set B = C0(X) of all bounded continuous real-valued func-
tions on X with the supremum norm n(f) = sup{|f(x)| : x ∈ X} is a Banach space. For
any point a ∈ X consider the continuous function φa(x) = d(x, a)−d(x, ω) for all a, x ∈ X .
We have:

- Φ(a) = φa for any point a ∈ X ;
- φω(x) = 0 for any x ∈ X ;
- n(φa) = d(a, ω) for any a ∈ X ;
- d(x, y) = n(φx − φy) for all x, y ∈ X .
Hence Φ : X −→ B is the desired isometric embedding. This embedding depends on

the chosen point ω ∈ X . □

Let (X, d, µ) be a metric space with a convex structure. The following assertion shows
that the Kuratowski’s embedding Φ : X −→ C0(X) as a rule does not accord the convexi-
ties µ on X and µl on C0(X).

Proposition 5.7. Let (X, d, µ) be a metric space with a hereditary strictly convex structure with
convex round balls and assume that X is not a µ-line. Let ω be a point in X and denote by B =
C0(X) the Banach space of all bounded continuous real-valued functions onX with the supremum
norm n(f) = sup{|f(x)| : x ∈ X} and µl(u, v, t) = (1− t) · u+ t · v, for all u, v ∈ B and t ∈ I.
Assume that for every two distinct points a, b ∈ X there exists no more than one µ-line that
contains both of them. Consider the metrically embedding Φ : X −→ B, defined by Φ(a)(x) =
d(x, a) − d(x, ω) for all a, x ∈ X . Then Φ(µ(a, b, t)) ̸= µl(Φ(a),Φ(b), t), for any two points
a, b ∈ X and 0 < t < 1.

Proof. Fix two distinct points a, b ∈ X . Let t ∈ I and 0 < t < 1. By virtue of Proposition
2.2, there exists a unique µ-line (ab)µ that contains the points a, b.

Case 1. 0 < t < 1, c ̸∈ (ab)µ and d(a, c) = d(b, c).
We put p = µ(a, b, t). We have d(p, c) > 0. We can assume that a = ω. Then we put

Φ(a) = f , Φ(b) = g and Φ(p) = ψ. By construction, f(x) = 0, g(x) = d(b, x) − d(a, x) and
ψ(x) = d(p, x) − d(a, x) for any x ∈ X , g(b) = −d(a, b), g(c) = d(b, c) − d(a, c) = 0, g(p) =
d(b, p)−d(a, p) = t·d(a, b)−(1−t)·d(a, b) = (2t−1)·d(a, b), φ(p) = −d(a, p) = −(1−t)·d(a, b)
= (1− t) · g(b) and, since d(c, p) < d(c, a) = d(c, b), φ(c) = d(p, c)− d(a, c) = λ < 0. Hence
Φ(µ(a, b, t)) = Φ(p) = ψ ̸= (1− t) · g = µl(f, g, t) = µl(Φ(a),Φ(b), t).

Case 2. 0 < t < 1 and p = µ(a, b, t).
SinceX is not a µ-line, there exists a point u ∈ X\(ab)µ. Obviously (ab)µ∩[a, u]µ = {a},

(ab)µ ∩ [b, u]µ = {b} and [a, u]µ ∩ [b, u]µ = {u}. We put Y = [a, u]µ ∪ [b, u]µ. On Y consider
the continuous function h(y) = d(a, y)−d(b, y). Since h(a) = −d(a, b) < 0, h(b) = d(a, b) > 0
and Y is a connected space, there exists a point p ∈ Y such that h(p) = 0. By construction,
p ̸∈ (ab)µ and d(a, p) = d(b, p). By virtue of Case 1, Φ(µ(a, b, t)) ̸= µl(Φ(a),Φ(b), t) are not
µ-collinear and for x, y ∈ X and [u, v]µ ⊆ [x, y]µ it follows that c ̸∈ [x, y]µ. □

6. IMMERSIONS AND EMBEDDINGS OF CONVEX METRIC SPACES

Let (X, d) be a metric space. A simple curve ξ inX is a continuous injection ξ : I −→ X .
We identify ξ and the set ξ(I) ⊆ X . A number L(ξ) = supΣ{d(ξ(ti), ξ(ti+1)) : 0 ≤ i ≤ n},
where the supremum is taken over all sequences 0 = t0 < t1 < ..., tn < tn+1 = 1, is called
the length of ξ. A simple curve ξ is rectifiable, if the length l(ξ) < +∞.
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A subspace Y of the metric space (X, d) is rectifiable, if for any two points a, b ∈ Y
there exists a rectifiable simple curve ξ in X such that a, b ∈ ξ ⊆ Y .

Let Y be a rectifiable subspace of the metric space (X, d). For any two points a, b ∈ Y
we put din(a, b) = inf{l(ξ) : a, b ∈ ξ ⊆ Y, ξ is a simple rectifiable curve in X}. Then din is
the interior metric on Y generated by the metric d.

Let (Y, ρ) and (X, d) be two metric spaces. A mapping f : Y −→ X is called an iso-
metrical immersion of the metric space Y in the metric space X if f(Y ) is a rectifiable
subspace of the metric space (X, d) and for the interior metric din on f(Y ) we have ρ(y, z)
= din(f(y), f(z)), for all points y, z ∈ Y .

Remark 6.4. If (F, ρ) is a metric space with a convex structure µ : F × F × I −→ F and
g : F −→ B is an isometrically embedding of F into a metric space (B, d), then g(F ) is
a rectifiable subspace of B and ρ(x, y) = d(g(x), g(y)) = din(g(x), g(y)), for all x, y ∈ F ,
where din is the interior metric on g(F ). In particular, g is an isometrical immersion.

Hilbert’s theorem [18] states that there exists no complete regular surface S of constant
negative Gaussian curvature K immersed in R3. This theorem answers the question for
the negative case of which surfaces in R3 can be obtained by isometrically immersing
complete manifolds with constant curvature. Distinct embedding problems were exam-
ined in [1, 8, 14, 15, 16, 24] and other important works. The Bolyai-Lobachevskii plane
admits isometrically immersions in the Euclidean Space R4 (see [1]).

Theorem 6.2. Let (B,n) be a strictly convex normed space of dimension ≥ 3 and µ : L×L×I −→
L be the uniformly continuous hereditary strictly convex structure with convex round balls on the
Bolyai-Lobachevskii plane (L, ρ). Then any isometrically immersion g : L −→ B is not an
isometrically embedding of (L, ρ) into the metric space (B, d), where d(x, y) = n(x − y), for all
x, y ∈ B.

Proof. A normed vector space (B,n) is strictly convex if and only it satisfies one of the
following equivalent conditions:

1) if x, y ∈ B, x ̸= y and n(x) = n(y) = 1, then n(x+ y) < 2;
2) if x, y ∈ B, x ̸= y and n(x) = n(y) = 1, then n(t · x+ (1− t) · y) < 1, for all 0 < t < 1.
Assume that g : L −→ B is not an isometrically embedding of (L, ρ) into the metric

space (B, d). We can identify a point x ∈ L with the point g(x) ∈ B and we consider that
L ⊂ B and ρ(x, y) = d(x, y) = n(x− y) for all x, y ∈ L. For any two distinct points x, y ∈ L,
denote by (xy)L the straight line passing through the points x, y in the plane L and (xy)B
= {t · x + (1 − t) · y : t ∈ R} is the vector or affine line passing through the points x, y in
the space B.

According to Proposition 3.3, µL : L×L×I −→ L is the unique convex structure on the
space (L, ρ) which is hereditary strictly convex. Fix two distinct point a, b ∈ L and t ∈ I,
where 0 < t < 1. We put xt = µ(a, b, t) and yt = (1 − t) · a + t · b. Then d(a, yt) + d(yt, b)
= d(a, b), d(a, yt) = t · d(a, b), d(a, xt) + d(xt, b) = ρ(a, xt) + ρ(xt, b) = ρ(a, b) = d(a, b) and
d(a, xt) = ρ(a, xt) = t · ρ(a, b) = t · d(a, b). Since B is strictly convex, we have xt = yt.
Therefore (ab)L = (ab)B for all distinct points a, b ∈ L. In this case L is an affine (vector)
plane in a linear space B and any straight line of L is an affine line of the linear space B,
a contradiction, since we have distinct parallel postulates in the affine plane and in the
Bolyai-Lobachevskii plane. □

Corollary 6.1. The Bolyai-Lobachevskii plane and the Bolyai-Lobachevskii half-plane are not iso-
metrically embedding in some strictly convex normed space.

Example 6.2. Let (E, ρ) be a complete metric space and µE : E × E × I −→ E a convex
structure on the space (E, ρ). Fix a normed space (B,n) and an isometrically embedding
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of (E, ρ) into (B,n). We can assume that E ⊆ B and ρ(x, y) = n(x − y) for all points
x, y ∈ E. Since E is a complete metric space, E is a closed subset of B. Fix two distinct
points a, b ∈ B. We have four possible cases.

Case 1. a, b ∈ E.
We put µ(a, b, t) = µE(a, b, t) for any t ∈ I.
Case 2. a, b ∈ B \ E.
We put µ(a, b, t) = (1− t) · a+ t · b for any t ∈ I.
Case 3. a ∈ E, b ∈ B \ E and L ∩ [a, d] = {a}.
We put µ(a, b, t) = (1− t) · a+ t · b and µ(b, a, t) = µ(a, b, 1− t) for any t ∈ I.
Case 4. a ∈ E, b ∈ B \ E and L ∩ [a, d] ̸= {a}.
In this case there exists c ∈ E such that c ∈ E ∩ [a, b] and L ∩ [c, b] = {c}. let p =

ρ(a, c)/ρ(a, b). Obviously, c ̸∈ {a, b} and 0 < p < 1. We put µ(a, b, t) = µE(a, b, t/p) for
t ≤ p, µ(a, b, t) = (1− t) · a+ t · b for t > p and µ(b, a, t) = µ(a, b, 1− t).

The mapping µ : B × B × I −→ B is a convex structure on B which is an extension of
the convex structure µE .

Note that the extension µ of µL has some shortcomings. Firstly, it is not hereditary.
Secondly, it is not always continuous.

Special isometrically embeddings of convex metric spaces are examined in [26].

Question. Are conditions (A), (B) and (C) from [36] sufficient for isometrically embedding the
convex metric space in some Hilbert space?

Example 6.3. ( Example 1 from [36]). Let F be the family of closed intervals [a, b] such that
0 ≤ a ≤ b ≤ l. For A = [a, b], P = [p, q] from F and t ∈ I we define a mapping µF by µF =
[(1 − t)a + tp, (1 − t)b = tq]. Define a metric d on F by the Pompeiu-Hausdorff distance:
ρ(A,P ) = sup{| inf{|c− u| : u ∈ A} − inf{|c− v|; v ∈ P}| : c ∈ I}.

We claim that ρ(A,P ) = sup{|a − p|, |b − q|}. To prove this, it is sufficient to consider
three cases: 0 ≤ a ≤ b ≤ p ≤ q ≤ 1; 0 ≤ a ≤ p ≤ q ≤ b ≤ 1; 0 ≤ a ≤ p ≤ b ≤ q ≤ 1.

Denote by B = R × R = {(x, y) : x, y ∈ R} with the norm n(x, y) = sup{|x|, |y|}. Then
the mapping φ : F −→ B, where φ([a, b]) = (a, b) for any [a, b] ∈ F , is an isometrically
embedding and φ([a, b], [p, q], t) = (1− t) · (a, b)+ t · (p, q) = ((1− t) ·a+ t ·p, (1− t) · b+ t ·q).

The following example is similar to the Example 2 from [35].

Example 6.4. LetH be a Hilbert space of dimension ≥ 3 (in particular an Euclidean space)
with the inner product ≪ a, b≫. On H consider the norm nH and the metric d generated
by the inner product: (nH(x))2 = ≪ x, x≫ and d(x, y) = nH(x− y), for all x, y ∈ H .

Fix the numbers R > r > 0 and a vector e ∈ H with ≪ e, e ≫= R2. We put S =
{x ∈ H :≪ x, x ≫= R2}, S0 = {x ∈ S :≪ x − e, x − e ≫< 2 · R2} and Sr = {x ∈ S :≪
x−e, x−e≫≤ 2 ·(R2−R ·r)}. The set is a sphere of the radiusR with the centre at zero 0,
S0 is an open half-sphere of S and Sr is a closed spherical cap of S. If 0 < p < r < R, then
Sr ⊆ Sp ⊆ S0 ⊆ S. On S and on the spherical caps of S we consider the interior metric
din generated by the metric dH . Then din is the great-circle distance relatively to which
the great-circles are the geodesic curves on S. For any two distinct points a, b ∈ S0 there
exists a unique geodesic curve (ab)g on S through the points a, b and we put µS(a, b, t) =
R · ((1 − t) · a + t · b)/nH((1 − t) · a + t · b). Then µS is a convex structure on S0 and Sr

relatively to metric din. On Sr µH is a continuous hereditary strictly convex structure with
convex round balls and γ-hyperconvex structure. From the Gauss-Bonnet theorem about
geodesic triangle it follows that the spaces (S0, din) and (Sr, din) are not isometrically
embedding in some Hilbert space.
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7. A SPECIAL CONSTRUCTION

The following construction is inspired by the proof of Theorem 5 from [36].
Fix a compact space S and a metric space (E, d) with the continuous convex structure

µ : E × E × I −→ E, i.e., the mapping µ : E × E × I −→ E is continuous. Denote by
C(S,E) the space of all continuous mappings f : S −→ E of the space S into the space E.
The mapping f is bounded if the diameter diamd(f(S)) = sup{d(x, y) : x, y ∈ f(S)} < ∞.
Since S is a compact space, any mapping f ∈ C(S,E) is bounded. Consider the metric
ρ(f, g) = sup{d(f(x), g(x)) : x ∈ S} of uniform convergence. It is well known that the
metric space (C(S,E), ρ) is complete if and only if the metric space (E, d) is complete. We
identify the point a ∈ E with the constant mapping ca : S −→ E, where ca(x) = a for any
x ∈ S. Then E ⊂ C(S,E) and d(a, b) = ρ(a, b) = ρ(ca, cb) for all a, b ∈ E.

On C(S,E) we extend the convexity µ and we put η(f, g, t)(x) = µ(f(x), g(x), t), for all
f, g ∈ C(S,E), x ∈ S and t ∈ I.
Property 1. η(f, g, t) ∈ C(S,E) for all f, g ∈ C0(S,E) and t ∈ I.
Proof. The set F = µ(f(S), g(S), I) is a compact subset of the metric space E. Then
η(f, g, t)(S) ⊂ F and η(f, g, t) is a bounded function on S. The mapping φ : E×E× I −→
X ×E× I, where φ(x, y, t) = (f(x), g(y), t) for any (x, y, t) ∈ E×E× I, is continuous. The
mapping φ is uniformly continuous on F ×F × I. Hence η(f, g, t) ∈ C(S,E) for each t ∈ I.
Property 2. Let E be a compact space. Then η : C(S,E) × C)(S,E) × I −→ C(S,E) is a
continuous convexity on the space C(S,E).
Proof. Fix f, g ∈ C(S,E), t ∈ I and ε > 0. Since the mapping µ is uniformly continuous,
there exists a number r > 0 such that d(µ(x, y, t), µ(u, v, τ) provided (x, y, t), (u, v, τ) ∈
E ×E × I, d(x, u) < r, d(y, v) < r, |t− τ | < r. Let 0 < δ < r. If h, ψ ∈ C)(S,E), τ ∈ I, then
d(µ(f(x), g(x), t), µ(h(x), ψ(x), τ) < ε provided ρ(f, h) ≤ δ, ρ(g, ψ) ≤ δ and |t − τ | ≤ δ.
Hence ρ(η(f, g, t), ηh, ψ, τ) ≤ ε provided ρ(f, h) ≤ δ, ρ(g, ψ) ≤ δ and |t− τ | ≤ δ.

We say that the convexity µ is non-expansive if d(µ(x, b, t), µ(y, b, t)) ≤ (1− t)d(x, y) for
all b, x, y ∈ E and t ∈ I. In this case d(µ(a, x, t), µ(a, y, t)) ≤ td(x, y) for all a, x, y ∈ E and
t ∈ I.

The linear convexity of the normed linear space is non-expansive.
Property 3. If the convexity µ is non-expansive, then the convexity η is non-expansive, too.
Proof. In this case d(η(f, h, t), η(g, h, t))(x) = d(µ(f(x), h(x), t), µ(g(x), h(x), t)) ≤ (1 − t)
d(f(x), g(x)) for all f, g, h ∈ C(S,E), x ∈ S and t ∈ I. Hence d(η(f, h, t), η(g, h, t)) ≤
(1− t)d(f, g).

Let k > 0 and (S, d1) be a metric space. Denote by Ck(S,E) the family of all mappings
f : S −→ E with the property d(f(x), f(y)) ≤ k · d1(x, y), for all x, y ∈ S. Obviously,
Ck(S,E) is a closed subset of the space C(S,E).
Property 4. Let (S, d1) be a metric space, the convexity µ be non-expansive and k > 0. Then
Ck(S,E) is a closed convex subset of the space C(S,E). Moreover, if E is a compact space, then
Ck(S,E) is a compact convex space, too.

Proof. If f, g∈ Ck(S,E) and x, y∈ S, then d(η(f, g, t)(x),η(f, g, t)(y))=d(µ(f(x), g(x), t),
µ(f(y), g(y), t)) ≤ d(µ(f(x), g(x), t), µ(f(y), g(x), t)) + d(µ(f(y), g(x), t), µ(f(y), g(y), t)) ≤
(1−t)d(f(x), f(y)) + td(g(x), g(y)) ≤ (1−t)·k·d1(x, y) + t·k·d1(x, y) = k·d1(x, y). Therefore,
η(f, g, t) ∈ Ck(S,E) and Ck(S,E) is a closed convex subset of the space C(S,E).

Assume that E is a compact convex space and let r > 0 be given. A subset L ⊂ S is
called a r-net if S = ∪{B(x, r, d1) : x ∈ L}. For any metric space and for any r > 0 there
exists some r-net. A metric space is compact if it is complete and for each r > 0 there
exists a finite r-net.

Assume that Ck(S,E) is not a compact metric space. Then there exists a number ε > 0
such that the space (Ck(S,E), ρ) has not a finite ε-net. Fix r > 0 such that 0 < 4·(1+k)·r <



402 Mitrofan M. Choban

ε. Since (S, d1) is a compact metric space, there exists a finite r-net L = {s1, s2, ..., sm},
where m ∈ N. There exists an infinite sequence {gn ∈ Ck(S,E) : n ∈ N} such that
ρ(gn, gq) ≥ ε for all distinct n, q ∈ N.

Since E is a compact space, there exist a finite subset {b1, b2, ..., bm} of the space E and
a finite family {Ni : i ≤ m} of infinite subsets of the set N such that:

- Ni+1 is a subset of the set Ni for each i < m;
- the sequence {gn(si) : n ∈ Ni} converges to a point bi for each i ≤ m.
We can fix two distinct integers n, q ∈ Nm such that d(bi, gn(si)) + d(bi, gq(si) < r

for each i < m. Hence d(gn(si), gq(si)) < r for each r ≤ m. Since ρ(gn, gq) ≥ ε, there
exists a point s ∈ S such that d(gn(s), gq(s)) > ε − r. There exists i ≤ m such that
d1(s, si) < r. Then d(gn(s), gn(si)) ≤ k · r, d(gq(s), gq(si)) ≤ k · r, d(gn(si), gq(si)) < r and
d(gn(s), gq(s)) ≤ d(gn(s), gn(si))+d(gn(si), gq(si))+d(gq(si), gq(s)) < k ·r+r+k ·r < ε−r,
a contradiction. The proof is complete.
Property 5. If µ is a convex structure with convex round balls, then η is a convex structure with
convex round balls, too.
Proof. Fix f, g, h ∈ C(S,E) and t ∈ I. Then ρ(h, η(f, g, t)) = sup{d(h(x), η(f, g, t)(x)) :
x ∈ S} = sup{d(h(x), µ(f(x), g(x), t)) : x ∈ S} ≤ sup{d(h(x), f(x)), d(h(x), g(x)) : x ∈ S}
≤ sup{ρ(h, f), ρ(h, g)}. The proof is complete.
Property 6. Let E be a compact space. If µ is a strictly convex structure with convex round balls,
then η is a strictly convex structure with convex round balls, too.
Proof. Fix f, g, h ∈ C(S,E) and t ∈ I\{0, 1}. The function h(x, t) = max{{ρ(h, f), ρ(h, g)}−
d(h(x), µ(f(x), g(x), t)) is positive and continuous. Let In = [2−n, 1 − 2−n]. Since E ×
In is a compact space then h(x, t) ≥ kn > 0 for all (x, t) ∈ E × In. ρ(h, η(f, g, t)) <
sup{ρ(h, f), ρ(h, g)} for each t ∈ I \ {0, 1}.

For all xy ∈ E and t ∈ I there exists a unique point z ∈ E such that d(x; z) = (1 −
t)d(x; y) and d(z; y) = td(x; y). In this case z = µ(x, y, t). Fix f, g ∈ C(S,E) and t ∈ I. then
h(x) = µ(f(x), g(x), t) is a unique continuous mapping of S into E such that ρ(h, f) =
(1− t)ρ(f, g) and ρ(h, g) = tρ(f, g). The proof is complete.
Property 7. If µ is a T-convex structure, then η is a T-convex structure, too.
Proof. Fix f, g, h ∈ C(S,E) and t ∈ I\{0, 1}. Then ρ(h, η(f, g, t)) = sup{d(h(x), η(f, g, t)(x)):
x ∈ S} = sup{d(h(x), µ(f(x), g(x), t)) : x ∈ S} ≤ sup{t · d(h(x), f(x)) + (1 − t) · d(h(x),
g(x)) : x ∈ S} ≤ {t · ρ(h, f) + (1− t) · ρ(h, g)}. The proof is complete.
Property 8. Let E be a compact space. If µ is a strongly T-convex structure, then η is a strongly
T-convex structure, too.
Proof. Fix f, g, h ∈ C(S,E) and t ∈ I. Then ρ(h, η(f, g, t)) = sup{d(h(x), µ(f(x), g(x), t)):
x ∈ S} < sup{t · d(h(x), f(x)) + (1 − t) · d(h(x), g(x)): x ∈ S}. Since S is a compact
space, ρ(h, η(f, g, t)) < sup{t · d(h(x), f(x)) + (1− t) · d(h(x), g(x)): x ∈ S} ≤ {t · ρ(h, f) +
(1− t) · ρ(h, g)}. The proof is complete.
Property 9. If µ is a uniformly continuous convex structure, then η is a uniformly continuous
convex structure, too.
Proof. Fix ε > 0. Since µ is uniformly continuous, there exist δ, ξ ∈ R such that ε ≥ ξ ≥
δ > 0 and d(µ(x, y, t), µ(s, z, t) ≤ ξ provided x, y, s, z ∈ E, t ∈ I, d(x, s) < ξ and d(y, z) < δ.

Fix f, g, φ, ψ∈C(S,E), t∈I for which ρ(f, φ)<ξ and ρ(g, ψ)<δ. Then ρ(η(f, g, t), η(φ,ψ, t))
= sup{µ(f(x), g(y), t), φ(x), ψ(x), t) ≤ ξ.
Property 10. E is a convex closed subset of C(S,E), d(a, b) = ρ(a, b) and µ(a, b, t) = η(a, b, t)
for all a, b ∈ E and t ∈ I. If s ∈ S, then the mapping Rs : C(S,E) −→ E, where Rs(f) = f(s)
for any f ∈ C(S,E), is a non-expansive retraction and Rs(η(f, g, t)) = µ(Rs(f), Rs(g), t) for all
f, g ∈ C(S,E) and t ∈ I.
Proof. By definition, the point a ∈ E is identified with the constant function ca(s) = a
for any s ∈ S. Then Rs(a) = Rs(ca)= a for any a ∈ E. Since d(f(s), g(s)) ≤ ρ(f, g), the
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mapping Rs is non-expansive. By definition, η(f, g, t)(s) = µ(f(s), g(s), t). This completes
the proof.

Remark 7.5. Supose that (S, d) is a metric space with the continuous convex structure µ.
In [10] R. Cauty proved that for any continuous mapping f : E −→ E the set {x ∈ E :
f(x) = x} of fixed points of f is non-empty.

That construction permits to extend Theorem 5 from [36].

Corollary 7.2. Suppose that (S, d1) is a metric space, (E, d) is a compact space with a non-
expansive convexity µ and k > 0. Fix a family F of non-expansive mappings of the spaceCk(S,E)
into itself. If F is a left amenable semigroup of mappings or F is a family of mappings with
invariant property in Ck(S,E), then the family F has a common fixed point f ∈ Ck(S,E).
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[19] Fréchet, M. Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo 22 (1906),

1–74.
[20] Frink, A. H. Distance functions and the metrization problem. Bull. Amer. Math. Soc. 43 (1937), no. 2, 133–142.
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