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Monotone iteration method for general nonlinear two point
boundary value problems with deviating arguments

BAPURAO C. DHAGE1, JANHAVI B. DHAGE1 and JAVID ALI2

ABSTRACT. In this paper we shall study the existence and approximation results for a nonlinear two point
boundary value problem of a second order ordinary differential equation with general form of Dirichlet/Neumann
type boundary conditions. The nonlinearity present on right hand side of the differential equation is assumed
to be Carathoéodory containing a deviating argument. The proofs of the main results are based on a monotone
iteration method contained in the hybrid fixed point principles of Dhage (2014) in an ordered Banach space.
Finally, some remarks concerning the merits of our monotone iteration method over other frequently used iter-
ation methods in the theory of nonlinear differential equations are given in the conclusion.

1. INTRODUCTION

Let R denote the set of all real numbers and R+ the set of all nonnegative reals. Given
a closed and bounded interval I = [t0, t1] ⊂ R, t0 < t1, consider the nonlinear two point
BVP of ordinary second order differential equation with a deviating argument

(1.1) Lx(t) = f(t, x(t), x(φ(t))) a.e. t ∈ I,

where operator L : AC1(I) → L1(I) has the form

Lx = −x′′ + p(t)x′ + q(t)x,

where p, q ∈ L∞(I) and q is positive-valued, f : I × R × R → R and φ is a continuous
real function on I . Choosing an interval J = [s0, s1] which contains both I and φ[I], and
denoting I0 = [s0, t0] and I1 = [t1, s1]. We shall adjoin to the differential equation (1.1) the
following boundary condition:

(1.2) Bjx(t) = ajx(t)− (−1)jbjx
′(t) = αj(t), t ∈ Ij , j = 0, 1,

where
aj , bj ∈ R+, aj + bj > 0 and αj ∈ L1(Ij), j = 0, 1.

Definition 1.1. A function x ∈ AC1(J,R) is said to be a lower solution of the BVP (1.1)
and (1.2) if

(1.3)
Lx(t) ≤ f(t, x(t), x(φ(t))) a.e. t ∈ I,

Bjx(t) ≤ αj(t), t ∈ Ij , j = 0, 1,

}
where AC1(J,R) is the space of functions x ∈ C(J,R) whose first derivative exists and is
absolutely continuous on J . Similarly, x ∈ AC1(J,R) is called an upper solution of (1.1)
and (1.2) on J if the reversed inequalities hold in (1.3). If equalities hold in (1.3), we say
that x is a solution of (1.1) and (1.2) on J .
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In the case when f is zero function, the problem (1.1) and (1.2) has a unique solution
which we denote by z. In the special case when f is a function of t alone, it can be shown
that the problem (1.1) and (1.2) has at most one solution in the class AC1(J,R). The exis-
tence of the solution is guaranteed by the above regularity and boundary conditions, and
can be extended via boundary conditions to a unique solution of (1.1) and (1.2) on J .

The existence and uniqueness of the solution to problem (1.1) and (1.2) is discussed in
[6, 7] by using classical comparison and iteration methods, and assuming that f is a con-
tinuous function in all its three arguments. The existence of extremal solutions to the BVP
(1.1) and (1.2) between the given lower an upper solutions is studied in [8] via general-
ized iteration method, but allowing discontinuous nonlinearity for f . In the present paper
we shall study the existence and approximation of solutions of the differential problem
(1.1) and (1.2) without usual Lipschitz condition as well as without assuming the exis-
tence of both comparable lower and upper solutions but via a monotone iteration method
developed in Dhage [1, 2].

2. AUXILIARY RESULTS

We shall impose certain natural conditions on the nonlinear function f : I×R×R → R
in our discussion. So, we need the following useful definitions in the sequel.

Definition 2.2. [[1, 2, 3, 4]] An upper-semicontinuous and monotone non-decreasing func-
tion ψ : R+ → R+ satisfying the condition ψ(0) = 0 is called a D-function on R+. The
class of all D-functions is denoted by D.

A few examples of the D functions on R+ along with some applications appear in
Dhage and Dhage [5] and references therein.

Definition 2.3. A function β : I × R× R → R is called Carathéodory if
(i) the map t 7→ β(t, x, y) is measurable for each x, y ∈ R, and

(ii) the map (x, y) 7→ β(t, x, y) is jointly continuous for each t ∈ I .

The following lemma is often used in the study of nonlinear differential equations (see
Dhage and Heikkillä [8] and references therein).

Lemma 2.1 (Carathéodory). Let β : I × R × R → R be a Carathéodory function. Then the
map (t, x, y) 7→ β(t, x, y) is jointly measurable. In particular the map t 7→ β(t, x(t), y(t)) is
measurable on I for all x, y ∈ C(I,R).

We need the following hypotheses in the sequel.
(H1) The function f is Carathéodory on I × R× R.
(H2) f is bounded on I × R× R with bound Mf .
(H3) f(t, x, y) is nondecreasing in x and y for each t ∈ I .
(H4) There exists a D-function ψf ∈ D such that

0 ≤ f(t, x1, x2)− f(t, y1, y2) ≤ ψf

(
max

{
x1 − y1 , x2 − y2

})
for all ∈ I and x1, x2, y1, y2 ∈ R with x1 ≥ y1, x2 ≥ y2.

(LS) The BVP (1.1) and (1.2) has a lower solution u ∈ AC1(J,R).
(US) The BVP (1.1) and (1.2) has an upper solution v ∈ AC1(J,R).

Lemma 2.2. Given any function h ∈ L1(I,R), the BVP

(2.4)
Lx(t) = h(t) a.e. t ∈ I,

Bjx(t) = 0, t ∈ Ij , j = 0, 1,

}
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is equivalent to the integral equation

(2.5) x(t) =

∫ t1

t0

k(t, s)h(s) ds, t ∈ I,

where k(t, s) is the Green’s function associated with the homogeneous boundary value problem

(2.6)
−x′′(t) + p(t)x′(t) + q(t)x(t) = 0 a.e. t ∈ I,

ajx(tj)− (−1)jbjx(tj) = 0, j = 0, 1.

}
Notice that the function x given by (2.5) belongs to the classC(I,R). Since q ∈ C+(I,R),

it follows from the maximum principle that k is continuous and nonnegative on I × I .
Therefore, the number K = supt,s∈I k(t, s) exists.

Employing the Green’s function for ordinary linear differential equation, one can prove
the following result.

Lemma 2.3. Suppose that the assumptions (H1) and (H2) hold. Then the BVP (1.1) and (1.2) can
be expressed into the equivalent functional equation as

(2.7) x(t) = z(t) +


Ffx(t), t ∈ I,

e

(
aj(t−t0)

bj

)
Ffx(tj), t ∈ Ij , bj ̸= 0, j = 0, 1,

0, t ∈ Ij , bj = 0, j = 0, 1,

where z ∈ C(J,R) is a unique solution of the linear BVP

(2.8)
−x′′(t) + p(t)x′(t) + q(t)x(t) = 0 a.e. t ∈ I,

ajx(tj)− (−1)jbjx(tj) = αj(t), t ∈ Ij , j = 0, 1,

}
and Ff is a continuous superposition operator on C(I,R) defined by

(2.9) Ffx(t) =

∫ t1

t0

k(t, s)f(s, x(s), x(φ(s))) ds, t ∈ I.

The proof of our main results will be based on the monotone iteration principle or
monotone iteration method embodied in the following applicable hybrid fixed point the-
orems of Dhage [1, 2] in a partially ordered normed linear space.

Theorem 2.1 ([1, 2]). Let
(
E,⪯, ∥·∥

)
be a regular partially ordered complete normed linear space

and let every compact chain C in E be Janhavi set. Let T : E → E be a monotone nondecreasing,
partially continuous and partially compact operator. If there exists an element x0 ∈ E such that
x0 ⪯ T x0 or x0 ⪰ T x0, then the hybrid operator equation T x = x has a solution x∗ in E and
the sequence {T nx0}∞n=0 of successive iterations converges monotonically to x∗.

Theorem 2.2 ([1, 2]). Let (E,⪯, ∥ · ∥) be a partially ordered Banach space and let T : E → E
be a monotone nondecreasing and nonlinear partial D-contraction. Suppose that there exists an
element x0 ∈ E such that x0 ⪯ T x0 or x0 ⪰ T x0. If T is continuous or E is regular, then
T has a unique comparable fixed point x∗ and the sequence {T nx0}∞n=0 of successive iterations
converges monotonically to x∗. Moreover, the fixed point x∗ is unique if every pair of elements in
E has a lower bound or an upper bound.

The details of monotone iteration principle or method and related definitions such
as Janhavi set, Janhavi Banach space, partial continuity, partial compactness, partial D-
contraction and comparable fixed point of the operator etc., along with some nice appli-
cations may be found in Dhage [1, 2, 3, 4], Dhage and Dhage [6], Dhage et al. [7] and the
references therein.
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3. EXISTENCE AND APPROXIMATION RESULTS

Let C+(J,R) denote the space of all nonnegative-valued functions of C(J,R). We as-
sume that the space C(J,R) is endowed with the norm ∥ · ∥ and with the partial ordering
⪯ defined by

(3.10) ∥x∥ = max
t∈J

|x(t)|

and

(3.11) x ⪯ y ⇐⇒ x(t) ≤ y(t) ∀ t ∈ J.

Clearly, C(J,R) is a Banach space with respect to above maximum norm and also par-
tially ordered with respect to the above partially order relation ⪯. It is known that the
partially ordered Banach space C(J,R) is regular and lattice so that every pair of ele-
ments of C(J,R) has a lower and an upper bound in it (for details, see Dhage [1]- [3] and
the references therein). The following useful lemma concerning the Janhavi subsets of
C(J,R) follows immediately from the Arzelà-Ascoli theorem for compactness.

Lemma 3.4 ([3]). Let
(
C(J,R),⪯, ∥ · ∥

)
be a partially ordered Banach space with the norm ∥ · ∥

and the order relation ⪯ defined by (3.10) and (3.11) respectively. Then every partially compact
subset S of C(J,R) is Janhavi set.

We now state and prove our first result of the paper.

Theorem 3.3. Suppose that hypotheses (H1)-(H3) and (LS) hold. Then the BVP (1.1) and (1.2)
has a solution x∗ defined on J and the sequence {xn}∞n=0 of successive approximations defined by

x0 = u,

xn+1(t) = z(t) +


Ffxn(t), if t ∈ I,

e

(
aj(t−t0)

bj

)
Ffxn(tj), if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1,

(3.12)

converges monotone nondecreasingly to x∗.

Proof. SetE = C(J,R). Then, in view of Lemma 3.4, every compact chainC inE possesses
the compatibility property with respect to the norm ∥ · ∥ and the order relation ⪯ so that
every compact chain C is a Janhavi set in E.

Define an operator T on E by

(3.13) T x(t) = z(t) +


Ffx(t), if t ∈ I,

e

(
aj(t−t0)

bj

)
Ffx(tj), if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

From the continuity of the integral, it follows that T defines the operator T : E →
E. Applying Lemmas 2.2 and 2.3, the BVP (1.1) and (1.2) is equivalent to the operator
equation

T x(t) = x(t), t ∈ J.

Now, we show that the operator T satisfies all the conditions of Theorem 2.1 in a series of
following steps.

Step I: T is nondecreasing on E.
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Let x, y ∈ E be such that x ⪰ y. Then, from the hypothesis (H3) it follows that (u, v) →
f(t, u, v) is nondecreasing in R×R for almost all t ∈ I . Noticing also that k is nonnegative-
valued, we have that

Ffx(t) =

∫ t1

t0

k(t, s)f(s, x(s), x(φ(s)))ds

≥
∫ t1

t0

k(t, s)f(s, y(s), y(φ(s)))ds

= Ffy(t)

for all t ∈ I . This implies that Ffx ⪰ Ffy whenever x ⪰ y. As a result, we have that

T x(t) = z(t) +


Ffx(t), if t ∈ I,

e

(
aj(t−t0)

bj

)
Ffx(tj), if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

≥ z(t) +


Ffy(t), if t ∈ I,

e

(
aj(t−t0)

bj

)
Ffy(tj), if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

= T y(t),

for all t ∈ J . Consequently, T x ⪰ Ty for all x, y ∈ E with x ⪰ y. This shows that the
operator T is also nondecreasing on E.

Step II: T is partially continuous on E.
Let {xn}n∈N be a sequence in a chain C such that xn → x as n → ∞. Since the f is

continuous, we have

lim
n→∞

T xn(t) = z(t) +


lim
n→∞

Ffxn(t), if t ∈ I,

e

(
aj(t−t0)

bj

) [
lim

n→∞
Ffxn(tj)

]
, if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

= z(t) +


Ffx(t), if t ∈ I,

e

(
aj(t−t0)

bj

)
Ffx(tj), if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

= T x(t),

for all t ∈ J . This shows that T xn converges to T x pointwise on J .
Next, we show that {T xn}n∈N is an equicontinuous sequence of functions in E. Now

for any τ1, τ2 ∈ J , one obtains

(3.14) |T xn(τ1)− T xn(τ2)| ≤ |z(τ1)− z(τ2)|+ |w(τ1)− w(τ2)|,
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where

(3.15) w(t) =



Mf

∫ t1
t0
k(t, s) ds, t ∈ I,

(t1 − t0)KMf e

(
aj(t−t0)

bj

)
, t ∈ Ij , bj ̸= 0, j = 0, 1,

0, t ∈ Ij , bj = 0, j = 0, 1.

Since the functions t → k(t, s) and t → e

(
aj(t−t0)

bj

)
are continuous on compact I and Ij

respectively, they are uniformly continuous there. Consequently the function t → w(t) is
uniformly continuous on J . Similarly, the function t → z(t) is also uniformly continuous
on J . Therefore, we have

|z(τ1)− z(τ2)| → 0 and |w(τ1)− w(τ2)| → 0 as τ1 → τ2

uniformly on J . As a result, we have that

|T xn(τ1)− T xn(τ2)| → 0 as τ1 → τ2,

uniformly for all n ∈ N. This shows that the convergence T xn → T x is uniform and that
T is a partially continuous operator on E into itself.

Step III: T is partially compact operator on E.
Let C be an arbitrary chain in E. We show that B(C) is uniformly bounded and

equicontinuous set in E. First we show that T (C) is uniformly bounded. Let y ∈ T (C) be
any element. Then there is an element x ∈ C such that y = T x. By hypothesis (H2)

|y(t)| ≤


Mf K(t1 − t0), t ∈ I,

Mf K (s1 − t0) e

(
aj(t−t0)

bj

)
, t ∈ Ij , bj ̸= 0, j = 0, 1,

0, t ∈ Ij , bj = 0, j = 0, 1.

≤Mf K (s1 − t0) e

(
aj(s1−t0)

bj

)
= r,

for all t ∈ J . Taking the supremum over t we obtain ∥y∥ = ∥T x∥ ≤ r for all y ∈ T (C).
Hence T (C) is a uniformly bounded subset of E. Next we show that T (C) is an equicon-
tinuous set in E. Let t1, t2 ∈ J , with t1 < t2. Then proceeding with the arguments that
given in Step II it can be shown that∣∣y(t2)− y(t1)

∣∣ = |T x(t2)− T x(t1)| → 0 as t1 → t2

uniformly for all y ∈ T (C). This shows that T (C) is an equicontinuous subset of E. Now,
T (C) is a uniformly bounded and equicontinuous subset of functions in E and hence it
is compact in view of Arzelá-Ascoli theorem. Consequently T : E → E is a partially
compact operator on E into itself.

Step IV: u satisfies the operator inequality u ⪯ T u.
By hypothesis (LS), the BVP (1.1) and (1.2) has a lower solution u defined on J . Then

we have

(3.16)
Lu(t) ≤ f(t, u(t), u(φ(t))) a.e. t ∈ I,

Bju(t) ≤ αj(t), t ∈ Ij , j = 0, 1.

}
By using this, the maximum principle [13] and the definition of T , it can be shown that

the function u ∈ C(J,R) satisfies the relation u ⪯ T u on J .
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Thus, T satisfies all the conditions of Theorem 2.1 and so the operator equation T x = x
has a solution x∗ and the sequence {T nu}∞n=0 of successive iterations of T converges
monotone nondecreasingly to x∗. Therefore, the integral equation (2.5) and consequently
the BVP (1.1) and (1.2) has a solution x∗ and the sequence {xn}∞n=0 of successive approxi-
mations defined by (3.12) converges monotone nondecreasingly to x∗. This completes the
proof. □

Theorem 3.4. Suppose that hypotheses (H1)-(H2), (H4) and (LS) hold. Furthermore, if

(3.17) e

(
aj(s1−t0)

bj

)
K(t1 − t0)ψf (r) < r, r > 0,

then the BVP (1.1) and (1.2) has a unique solution ξ∗ defined on J and the sequence {xn}∞n=0 of
successive approximations defined by (3.12) converges monotone nondecreasingly to ξ∗.

Proof. Set E = C(J,R). Define the operator T by (3.13). We shall show that T satisfies all
the conditions of Theorem 2.2 in E. We shall simply show that the operator T is a partial
nonlinear D-contraction on E. Let x, y ∈ E be any two elements such that x ⪰ y. Then,
by hypothesis (H3),

(3.18) |T x(t)− T y(t)| ≤


∣∣Ffx(t)−Ffy(t)

∣∣, if t ∈ I,

e

(
aj(t−t0)

bj

)∣∣Ffx(tj)−Ffy(tj)
∣∣, if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

Now, for any two elements x, y ∈ E with x ⪰ y, we have∣∣Ffx(t)−Ffy(t)
∣∣ ≤ K(t1 − t0)ψf

(
∥x− y∥

)
for all t ∈ J . Therefore, from the inequality (3.17) it follows that
(3.19)

|T x(t)− T y(t)| ≤


K(s1 − t0)ψf

(
∥x− y∥

)∣∣, if t ∈ I,

e

(
aj(s1−t0)

bj

)
K(t1 − t0)ψf

(
∥x− y∥

)
, if t ∈ Ij , bj ̸= 0, j = 0, 1,

0, if t ∈ Ij , bj = 0, j = 0, 1.

Taking the supremum over t in the above inequality (3.19), we obtain

∥T x− T y∥ ≤ ψT
(
∥x− y∥

)
for all x, y ∈ E, x ⪰ y, where ψT (r) = e

(
aj(s1−t0)

bj

)
K(t1 − t0)ψf (r) < r for r > 0. This

shows that T is a partial nonlinear D-contraction onE. Furthermore, it can be shown as in
the proof of Theorem 3.3 that the function u given in hypothesis (LS) satisfies the operator
inequality u ⪯ T u on J . Now a direct application of Theorem 2.2 yields that the BVP (1.1)
and (1.2) has a unique solution ξ∗ defined on J and the sequence {xn}∞n=0 of successive
approximations defined by (3.12) converges monotone nondecreasingly to ξ∗. □

Remark 3.1. The conclusion of Theorems 3.3 and 3.4 also remain true if we replace the
hypothesis (LS) with (US). The proof of Theorems 3.3 and 3.4 under this new hypothesis
is similar and can be obtained by closely observing the same arguments with appropriate
modifications. In this case the sequence {xn}∞n=0 defined by (3.12) with x0(t) = v(t), t ∈
[0, T ], converges monotone nonincreasingly to the solution x∗ of he BVP (1.1) and (1.2) on
J .
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Remark 3.2. We note that if the BVP (1.1) and (1.2) has a lower solution u ∈ AC1(J,R) as
well as an upper solution v ∈ AC1(J,R) such that u ⪯ v, then under the given conditions
of Theorems 3.3 and 3.4 it has corresponding solutions x∗ and y∗ and these solutions
satisfy the inequality

u = x0 ⪯ x1 ⪯ · · · ⪯ xn ⪯ x∗ ⪯ y∗ ⪯ yn ⪯ · · · ⪯ y1 ⪯ y0 = v.

Hence x∗ and y∗ are respectively the minimal and maximal impulsive solutions of the
HIVP (1.1) in the vector segment [u, v] of the Banach space E = C(J,R), where the vector
segment [u, v] is a set of elements in C(J,R) defined by

[u, v] = {x ∈ C(J,R) | u ⪯ x ⪯ v}.

This is because of the order cone K defined by (3.11) is a closed convex subset of C(J,R).
However, we have not used any property of the cone K in the main existence results of
this paper. A few details concerning the order relation by the order cones and the Janhavi
sets in an ordered Banach space are given in Hekkilä and Lakshmikatham [9].

Remark 3.3. Theorems 3.3 and 3.4 include the existence and approximation results for the
nonlinear BVP

(3.20) −x′′ = f(t, x) a.e t ∈ [t0, t1], x(t0) = 0 = x(t1),

already discussed in Dhage [3] as the special cases.

4. THE EXAMPLES

Example 4.1. Choose I = [−1, 1] and J = [−2, 2]. Consider the nonlinear BVP

(4.21)
−x′′(t) = tanhx(t) + tanhx(t− 1) + tanhx(t+ 1) a.e. t ∈ I,

x(t) = 1, t ∈ [−2,−1] ∪ [1, 2].

}
Here, f(t, x, y, z) = tanhx + tanh y + tanh z for t ∈ [−1, 1] and x, y, z ∈ R. Then f

is continuous and bounded on I × R × R × R with bound Mf = 3. Also f(t, x, y, z) is
nondecreasing in the variables x, y and z for each t ∈ I .

Now the BVP (4.21) is equivalent to the nonlinear integral equation

(4.22) x(t) = 1 +


∫ 1

−1
k(t, s)

[
tanhx(s) + tanhx(s− 1) + tanhx(s+ 1)

]
ds, t ∈ I,

0, t ∈ [−2,−1] ∪ [1, 2],

where k is a Green’s function associated with the homogeneous BVP

(4.23) −x′′(t) = 0, t ∈ [−1, 1], x(−1) = 0 = x(1),

defined by

(4.24) k(t, s) =


(1− t)(1 + s)

2
, −1 ≤ s ≤ t ≤ 1,

(1 + t)(1− s)

2
, −1 ≤ t ≤ s ≤ 1,

which is continuous and nonnegative on I × I .
It can be verified that the function u ∈ C(J,R) defined by

u(t) = 1 +

−3
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],
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is a lower solution of the BVP (4.21) on J . Similarly, the function v ∈ C(J,R) defined by

v(t) = 1 +

3
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

is an upper solution of the BVP (4.21) on J .
Hence, by an application of Theorem 3.3, the BVP (4.21) has a solution x∗ and the

sequence {xn}∞n=0 of successive approximations defined by

x0(t) = 1 +

−3
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

xn+1(t) = 1 +


∫ 1

−1
k(t, s)

[
tanhxn(s) + tanhxn(s− 1) + tanhxn(s+ 1)

]
ds, t ∈ I,

0, t ∈ [−2,−1] ∪ [1, 2],

converges monotone nondecreasingly to x∗. Similarly, the sequence {yn}∞n=0 of successive
approximations defined by

y0(t) = 1 +

3
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

yn+1(t) = 1 +


∫ 1

−1
k(t, s)

[
tanh yn(s) + tanh yn(s− 1) + tanh yn(s+ 1)

]
ds, t ∈ I,

0, t ∈ [−2,−1] ∪ [1, 2],

converges monotone nonincreasingly to the solution y∗. Furthermore, we have

u(t) = 1 +

−3
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

≤ 1 +

3
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

= v(t)

for all t ∈ J and so u ⪯ v. Therefore, in view of Remark 3.2, x∗ and y∗ are respectively the
minimal and maximal solutions of the BVP (4.21) on J in the vector segment [u, v] of the
ordered Banach space C(J,R) with

u = x0 ⪯ x1 ⪯ · · · ⪯ xn ⪯ x∗ ⪯ y∗ ⪯ yn ⪯ · · · ⪯ y1 ⪯ y0 = v.

Example 4.2. Given closed and bounded intervals I = [−1, 1] and J = [−2, 2], consider the
nonlinear boundary value problem

(4.25)
−x′′(t) = 2

3

[
tan−1 x(t) + tan−1 x(t− 1) + tan−1 x(t+ 1)

]
a.e. t ∈ I,

x(t) = 1, t ∈ [−2,−1] ∪ [1, 2].


Here, f(t, x, y, z) = 2

3

[
tan−1 x+ tan−1 y + tan−1 z

]
for t ∈ [−1, 1] and x, y, z ∈ R. Then

f is continuous and bounded on I × R × R × R with bound Mf = 1. Also f(t, x, y, z) is
nondecreasing in the variables x, y and z for each t ∈ I . Moreover, f satisfies the hypothesis (H4)



414 B. C. Dhage, J. B. Dhage and J. Ali

with ψf (r) =
r

1 + ξ
for some 0 ≤ ξ ≤ r and consequently, the condition (3.17) of Theorem 3.4 is

satisfied. Now the BVP (4.25) is equivalent to the nonlinear integral equation
(4.26)

x(t) = 1 +


2

3

∫ 1

−1
k(t, s)

[
tan−1 x(s) + tan−1 x(s− 1) + tan−1 x(s+ 1)

]
ds, t ∈ I,

0, t ∈ [−2,−1] ∪ [1, 2],

where k is a Green’s function given by (4.24).
It can be verified that the function u ∈ C(J,R) defined by

u(t) = 1 +

−4
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

is a lower solution of the BVP (4.25) on J . Similarly, the function v ∈ C(J,R) defined by

v(t) = 1 +

4
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

is an upper solution of the BVP (4.25) on J .
Hence, by an application of Theorem 3.4, the BVP (4.25) has a unique solution ξ∗ and the

sequence {xn}∞n=0 of successive approximations defined by

x0(t) = 1 +

−4
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

xn+1(t) = 1 +


2

3

∫ 1

−1
k(t, s)

[
tan−1 xn(s) + tan−1 xn(s− 1) + tan−1 xn(s+ 1)

]
ds, t ∈ I,

0, t ∈ [−2,−1] ∪ [1, 2],

converges monotone nondecreasingly to ξ∗. Similarly, the sequence {yn}∞n=0 of successive approx-
imations defined by

y0(t) = 1 +

4
∫ 1

−1
k(t, s) ds, t ∈ [−1, 1],

0, t ∈ [−2,−1] ∪ [1, 2],

yn+1(t) = 1 +


2

3

∫ 1

−1
k(t, s)

[
tan−1 yn(s) + tan−1 yn(s− 1) + tan−1 yn(s+ 1)

]
ds, t ∈ I,

0, t ∈ [−2,−1] ∪ [1, 2],

converges monotone nonincreasingly to the unique solution ξ∗. Furthermore, since u ⪯ v, the
functions ξ∗ is a unique solution of the BVP (4.25) in the vector segment [u, v] with the relation

u = x0 ⪯ x1 ⪯ · · · ⪯ xn ⪯ ξ∗ ⪯ yn ⪯ · · · ⪯ y1 ⪯ y0 = v.

5. THE CONCLUSION

Finally in the conclusion, we mention that the existence and approximation results for
the BVP (1.1) and (1.2) on J may also be obtained by using other iteration methods already
known in the literature. In case of well-known Picard iteration method, the nonlinearity
f is required to satisfy a certain so called strong Lipschitz condition whereas in our Theo-
rems 3.3 and 3.4, it is not a requirement. Similarly, in case of monotone iterative technique
for the BVP (1.1) and (1.2), we need to have the existence of both comparable lower as
well as upper solutions along with a cumbersome comparison result for getting theoretic
approximation of the solution (see [11, 12] and references therein). However, here in the
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present approach of this paper we get rid of above stringent conditions and still obtain the
existence of an approximate solution in an easy straight forward way. Again, in the case
of existence result via generalized iteration method developed by Heikkilä and Laksh-
mikantham [9] (see also Dhage and Heikkilä [8] and references therein), we also need the
existence of both comparable upper as well as lower solutions together with some other
conditions such as integrability of the nonlinearity f , notwithstanding it does not yield
any algorithm for the solution. Furthermore, the conclusion of the upper and lower solu-
tions method is a by-product of our monotone iteration method as mentioned in Remark
3.2. Therefore, in view of above observations, we conclude that our monotone iteration
method of this paper is an elegant, relatively better and more powerful than all the above
mentioned frequently used iteration methods because it provides the additional informa-
tion of algorithm along with the monotonic characterization of the convergence of the
sequence of iterations to the approximate solution of the BVP (1.1) and (1.2) defined on J
under weaker conditions.
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