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Classification of pure metallic metric geometries

FERNANDO ETAYO, ARACELI DEFRANCISCO and RAFAEL SANTAMARÍA

ABSTRACT. Metallic Riemannian manifolds with null trace and metallic Norden manifolds are generaliza-
tions of almost product Riemannian and almost golden Riemannian manifolds with null trace and almost Nor-
den and almost Norden golden manifolds respectively. All these pure metrics geometries can be unified under
the notion of α-metallic metric manifold. We classify this kind of manifolds in a consistent way with the well-
known classifications of almost product Riemannian manifolds with null trace and almost Norden manifolds.
We also characterize all classes of α-metallic metric manifolds by means of the first canonical connection which
is a distinguished adapted connection.

1. INTRODUCTION

The golden ratio is the most known number of the family of “real metallic numbers”
which are the positive root of the polynomials x2 − px − q, p, q ∈ N, p2 + 4q > 0; i.e., the

numbers of the form p+
√
p2+4q

2 . Analogously one can introduce the “complex metallic

numbers” as the family of numbers of the form p+i
√
p2+4q

2 , where p, q ∈ N, p2 + 4q > 0,
which are one of the roots of the polynomials x2 − px + 2p2+4q

4 . Then the golden (resp.
complex golden) ratio is the real (resp. complex) metallic number when p = q = 1.

Both families of numbers can be unified as follows. According to α = −1 or α = 1,

the numbers of the form p+
√
α(p2+4q)

2 , where p, q ∈ N, p2 + 4q > 0, called “α-metallic
numbers”, are the complex and real metallic numbers respectively, which are one of the
roots of the polynomials

(1.1) x2 − px− p2(α− 1) + 4qα

4
p, q ∈ N, p2 + 4q > 0.

Almost complex and almost product structures on manifolds are the two most studied
polynomial structures of degree 2. Inspired by them, Crasmareanu and Hreţcanu in [4]
introduced almost complex golden and almost golden structures on manifolds which are
also polynomial structures of degree 2. The above structures can be unified under the
notions of α-structure and α-golden structure where α ∈ {−1, 1}, which are polynomial
structures of degree two whose characteristic polynomials are

x2 − α, x2 − x− 5α− 1

4
,

respectively. Note that an α-structure is a tensor field J of type (1, 1) satisfying J2 = αId,
where Id is the identity tensor field of type (1, 1); i.e., if α = −1 (resp. α = 1) then J is an
almost complex (resp. almost product) structure. In the case of an α-golden structure, an
almost complex golden structure is a tensor field ϕ of type (1, 1) satisfying ϕ2 = ϕ − 3
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if α = −1, while if α = 1 a tensor field ϕ of type (1, 1) satisfying ϕ2 = ϕ+ Id is an almost
golden structure.

The generalization of golden and complex golden ratio give rise to the introduction
of α-metallic numbers. Analogously, the notion of α-metallic structure on manifolds can
be viewed as the generalization of α-structures and α-golden structures. Given p, q ∈ N,
p2 + 4q > 0, a polynomial structure ϕ of degree 2 on M whose characteristic polynomial
is (1.1); i.e., if it satisfies

(1.2) ϕ2 = pϕ+
p2(α− 1) + 4qα

4
Id,

is called an α-metallic structure. In this case (M,ϕ) is called an α-metallic manifold. Note
that if α = −1, almost complex and almost complex golden structures are α-metallic
structures when (p, q) = (0, 1) and (p, q) = (1, 1) respectively. In the case α = 1, almost
product and almost golden structures are α-metallic structures when (p, q) = (0, 1) and
(p, q) = (1, 1) respectively. Complex and real metallic structures according α = −1 and
α = 1 were introduced in [2] and [11] respectively.

Now, we show the closely relationship between α-structures and α-metallic structures
on a manifold. Given p, q ∈ N, p2 + 4q > 0, if J is an α-structure on M then ϕJ is an
α-metallic structure, and reciprocally, if ϕ is an α-metallic structure on M then Jϕ is an
α-structure, where

(1.3) ϕJ =
p

2
Id+

α
√
p2 + 4q

2
J, Jϕ =

(−α)√
p2 + 4q

(pId− 2ϕ)

(see [2, Sec. 5] and [11, Prop. 3.2]). A direct calculus shows that ϕJϕ = ϕ and JϕJ
= J ,

thus, there exist a 1: 1 correspondence between α-structures and α-metallic structures as
follows:

(1.4) J 7→ ϕJ , ϕ 7→ Jϕ.

The next step is to introduce pure metrics on α-metallic manifolds. Let (M,ϕ) be an
α-metallic manifold and let g be a pseudo-Riemannian metric on M if α = −1 or a Rie-
mannian metric if α = 1. One says that g is a pure metric if it satisfies one of the two
equivalent conditions

g(ϕX, Y ) = g(X,ϕY ), g(ϕX,ϕY ) = pg(ϕX, Y ) +
p2(α− 1) + 4qα

4
g(X,Y ),

for all vector fields X , Y on M . In the above conditions (M,ϕ, g) is an almost (pseudo)-
Riemannian metallic manifold (see [2] and [11]).

It is easy to prove that the following conditions are equivalent

(1.5) g(ϕX, Y ) = g(X,ϕY ), g(JϕX,Y ) = g(X, JϕY ), ∀X,Y ∈ X(M).

These identities allow to claim that the metric g is pure respect to ϕ and Jϕ simultaneously.
In the above conditions, if α = −1 then g is a pseudo-Riemannian metric of signature

(n, n) and (M,Jϕ, g) is an almost Norden manifold, while if α = 1 and the trace of the
polynomial structure of the almost product Riemannian manifold (M,Jϕ, g) vanishes then
the manifold has also even dimension. This last kind of metric manifolds are called almost
product Riemannian manifolds with null trace.

On the other hand, there are some articles devoted to study the case characterized by

g(ϕX, Y ) = −g(X,ϕY ), ∀X,Y ∈ X(M),

i.e., metallic manifolds endowed with anti-pure metrics (see [1] and [13]).
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Almost Norden manifolds and almost product Riemannian manifolds with null trace
can be unified under the notion of α-metric manifolds as follows. Given an even dimen-
sional manifold M endowed with an α-structure J and a pseudo-Riemannian metric g (in
fact, a Riemannian metric if α = 1 such that J has null trace), one says that (M,J, g) is an
α-metric manifold if it satisfies one of the two following equivalent conditions

(1.6) g(JX, JY ) = αg(X,Y ), g(JX, Y ) = g(X, JY ), ∀X,Y ∈ X(M).

Note that α-metric manifolds are (α, ε)-metric manifolds such that αε = 1 (see [7]). The
introduction of the notion of α-metric manifold allows us to classify in a unified way
almost Norden manifolds and almost product Riemannian manifolds with null trace.

Hereinafter, we restrict our study to even dimensional almost (pseudo)-Riemannian
metallic manifolds (M,ϕ, g) such that (M,Jϕ, g) be an α-metric manifold. We call α-
metallic metric manifolds to this kind of manifolds. In the case α = −1 we say that
(M,ϕ, g) is an almost metallic Norden manifold, while if α = 1 we say that (M,ϕ, g) is an
almost metallic Riemannian manifold with null trace.

The bijection (1.4) between α-structures and α-metallic structures can be extended to
the metric case because of (1.5). Given p, q ∈ N, p2+4q > 0, the α-metallic metric manifold
(M,ϕ, g) and the α-metric manifold (M,Jϕ, g) are 1: 1 related in the same way as the ϕ
and Jϕ.

This bijection allows to classify α-metallic metric manifolds starting from the classifica-
tion of α-metric manifolds as follows: an α-metallic metric manifold (M,ϕ, g) belongs to
certain class of manifolds of those showed in Theorem 2.1 if and only if the α-metric mani-
fold (M,Jϕ, g) belongs to this class of manifolds. To classify α-metallic metallic manifolds
is the main goal of our paper. This one should be consistent with the classifications of
almost Norden manifolds and almost product Riemannian manifolds with null trace ob-
tained in [9] and [12], because an α-metallic metric manifold such that (α, p, q) = (−1, 0, 1)
is an almost Norden manifold, while if (α, p, q) = (1, 0, 1) the α-metric metallic manifold
is an almost product Riemannian manifold with null trace.

The Levi-Civita connection plays a key role in the classification of α-metric manifolds.
But there exist another connections which allow characterize easily some classes of this
kind of pure metric manifolds. One of them is the first canonical connection of an α-
metric manifold (M,J, g) which is an adapted connection to (J, g); i.e., it is a connection
that parallelize the α-structure J and the metric g (see [7]). The first canonical connection
∇0 of (M,J, g) and its torsion tensor T0 are given by

∇0
XY = ∇g

XY +
(−α)

2
(∇g

XJ)JY,(1.7)

T0(X,Y ) =
(−α)

2
((∇g

XJ)JY − (∇g
Y J)JX) , ∀X,Y ∈ X(M),(1.8)

where ∇g denotes the Levi-Civita connection of the metric g.
It is well-known that the Nijenhuis tensorNJ of an almost Norden or an almost product

Riemannian manifold (M,J, g) can be expressed as follows:

NJ(X,Y ) = J2[X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ]

= (∇g
XJ)JY + (∇g

JXJ)Y − (∇g
Y J)JX − (∇g

JY J)X, ∀X,Y ∈ X(M).
(1.9)

Starting from the above identities it is easy to prove the next one

(1.10) T0(JX, JY ) + αT0(X,Y ) = −1

2
NJ(X,Y ),∀X,Y ∈ X(M),
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(see also [7, Prop. 5.1]), thus, an α-metric manifold (M,J, g) is integrable if and only if the
torsion tensor of the first canonical connection satisfies T0(JX, JY ) + αT0(X,Y ) = 0, for
all vector fields X,Y on M .

In this paper we also characterize all classes of α-metric manifolds using the first canon-
ical connection instead of the Levi-Civita connection.

The above 1: 1 correspondence is a very useful tool. Mathematical objects univocally
attached to an α-metric structure can be associated to its corresponding α-metric metallic
structure. For instance, this property allows to introduce the first canonical connection of
(M,ϕ, g) as the first canonical connection of (M,Jϕ, g). We also characterize all classes of
α-metric metallic manifolds using this connection.

The organization of the paper is as follows:
In Section 2 we will classify α-metric manifolds (Theorem 2.1). Later, the torsion tensor

of the first canonical will allow us to get new defining conditions of all classes of α-metric
manifolds (Theorem 2.2).

In Section 3 we will focus on α-metallic metric manifolds. Given an α-metallic metric
manifold (M,ϕ, g), we will show useful relationships between tensors and forms defined
from the α-metallic metric structure (ϕ, g) with other ones defined from its corresponding
α-metric structure (Jϕ, g), which allow us to classify the α-metallic metric manifolds ac-
cording to Definition 3.1 (Theorem 3.3). Later, in Definition 3.4, we will introduce the first
canonical of an α-metallic metric manifold, which allows us to characterize all classes of
α-metallic metric manifolds using its torsion tensor (Theorem 3.4).

We will consider smooth manifolds and operators being of class C∞. As in this Intro-
duction, X(M) denotes the module of vector fields of a manifold M .

2. CLASSIFICATION OF α-METRIC MANIFOLDS

We will show the classification of α-metric manifolds that unifies the previous clas-
sifications of almost Norden and almost product Riemannian manifolds with null trace
obtained by Ganchev and Borisov and Staikova and Gribachev in [9] and [12] respec-
tively. All classes of 2n-dimensional α-metric manifolds are characterized by imposing
conditions that involve tensors and forms introduced defined from∇gJ .

The tensor field∇gJ of type (1, 2) is defined as follows:

(∇g
XJ)Y = ∇g

XJY − J∇
g
XY, ∀X,Y ∈ X(M).

As direct consequence of the above identity it is easy to prove the next result.

Lemma 2.1. Let (M,J, g) be an α-metric manifold. The following relations hold:

g((∇g
XJ)Y,Z) = g((∇g

XJ)Z, Y ),(2.11)

g((∇g
XJ)JY, Z) = −g((∇g

XJ)Y, JZ),(2.12)

g((∇g
XJ)JY, Z) = −g((∇g

XJ)JZ, Y ), ∀X,Y, Z ∈ X(M).(2.13)

The tensor field Φ of type (0, 2) and its covariant derivative respect to the Levi-Civita
connection of g are given by

Φ(X,Y ) = g(JX, Y ),

(∇g
XΦ)(Y, Z) = g((∇g

XJ)Y,Z), ∀X,Y, Z ∈ X(M).(2.14)

As direct consequence of (2.13) the above tensor field of type (0, 3) satisfies

(2.15) (∇g
XΦ)(JY, Y ) = g((∇g

XJ)JY, Y ) = 0, ∀X,Y ∈ X(M).
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We recall a 1-form, called the codifferential of Φ, which can be locally defined as fol-
lows:

(2.16) δΦ(X) =

2n∑
i,j=1

gijg((∇g
Xi
J)Xj , X), ∀X ∈ X(M),

where (X1, . . . , X2n) is a local basis of TM and the matrix (gij)1≤i,j≤2n is the inverse
matrix of (g(Xi, Xj))1≤i,j≤2n.

The vanishing of the tensor field ∇gΦ and the 1-form δΦ characterize the classes W0

and W2 ⊕ W3 of almost Norden manifolds and almost product Riemannian manifolds
with null trace. Integrable and quasi-Kähler manifolds are characterized by the vanishing
of the Nijenhuis tensor of J and the tensor field ÑJ , which can be expressed as follows:

(2.17) ÑJ(X,Y ) = (∇g
XJ)JY + (∇g

JXJ)Y + (∇g
Y J)JX + (∇g

JY J)X, ∀X,Y ∈ X(M).

Here we will obtain new characteristic conditions of the classesW3 andW1 ⊕W3 dif-
ferent from the original ones showed in [9] and [12], which are identities (2.18) and (2.21).

Lemma 2.2. Let (M,J, g) be an α-metric manifold. The following conditions are equivalent:

ÑJ(X,Y ) = 0, ∀X,Y ∈ X(M),(2.18)

(∇g
XJ)JX + (∇g

JXJ)X = 0, ∀X ∈ X(M).(2.19)

Proof. If the tensor ÑJ vanishes, bearing in mind (2.17) it is obvious that identity (2.19) is
true.

A direct calculus shows that the tensor field ÑJ satisfies the following identity

ÑJ(X,Y ) = (∇g
X+Y J)(J(X + Y )) + (∇g

J(X+Y )J)(X + Y )

− ((∇g
XJ)JX + (∇g

JXJ)X + (∇g
Y J)JY + (∇g

JY J)Y ), ∀X,Y ∈ X(M).(2.20)

Thus, if ∇gJ satisfies (2.19), bearing in mind (2.20), one gets that the tensor field ÑJ van-
ishes. �

Lemma 2.3. Let (M,J, g) be a 2n-dimensional α-metric manifold. The following conditions are
equivalent:

S
XY Z

(∇g
XΦ)(Y,Z) =

1

n
S

XY Z
(g(X,Y )δΦ(Z)− αg(X,JY )δΦ(JZ)),(2.21)

g((∇g
XJ)JX, Y ) + g((∇g

JXJ)X,Y ) =
1

n
(g(JX,X)δΦ(Y )− g(X,X)δΦ(JY )),(2.22)

for all X,Y, Z vector fields on M , where S
XY Z

denotes the cyclic sum by X,Y, Z.

Proof. As direct consequence of (1.6), (2.11), (2.14) and (2.15), if one evaluates identity
(2.21) on (X,Y, JX) then one obtains (2.22).

Given X,Y, Z vector fields on M , taking into account (2.11), (2.12) and (2.17), one has

g(ÑJ(X,Y ), JZ) = −αg((∇g
XJ)Y,Z)− g((∇g

JXJ)JY, Z)

− αg((∇g
Y J)Z,X)) + g((∇g

JY J)JZ,X),

then one obtains

(2.23) S
XY Z

g(ÑJ(X,Y ), JZ) = −2α S
XY Z

g((∇g
XJ)Y,Z).
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Given X,Y, Z vector fields on M , identities (1.6), (2.20) and (2.22) lead to the next ones

g(ÑJ(X,Y ), Z) =
1

n
(g(JX + JY,X + Y )δΦ(Z)− g(X + Y,X + Y )δΦ(JZ))

− 1

n
(g(JX,X)δΦ(Z)− g(X,X)δΦ(JZ))

− 1

n
(g(JY, Y )δΦ(Z)− g(Y, Y )δΦ(JZ))

=
2

n
(g(JX, Y )δΦ(Z)− g(X,Y )δΦ(JZ)),

S
XY Z

g(ÑJ(X,Y ), JZ) =
2

n
S

XY Z
(g(JX, Y )δΦ(JZ)− αg(X,Y )δΦ(Z)),

then, taking into account (1.6), (2.14) and (2.23), one obtains easily identity (2.21) from the
above one. �

The above results and the classifications of almost Norden manifolds and almost prod-
uct Riemannian manifolds with null trace allow to classify both kind of metric manifolds
in a unified way as follows.

Theorem 2.1. Let (M,J, g) be a 2n-dimensional α-metric manifold. Then one has the following
classes of this kind of manifolds:
i) The classW0 or Kähler manifolds characterized by one of the following equivalent conditions

∇gΦ = 0, ∇gJ = 0.

ii) The classW1 characterized by the condition

(∇g
XΦ)(Y,Z) =

1

2n
(g(X,Y )δΦ(Z) + g(X,Z)δΦ(Y ))

+
(−α)

2n
(g(X, JY )δΦ(JZ) + g(X, JZ)δΦ(JY )), ∀X,Y, Z ∈ X(M).

(2.24)

iii) The classW2 characterized by the conditions

δΦ = 0, NJ = 0.

iv) The classW3 or quasi-Kähler manifolds characterized by the condition

(∇g
XJ)JX + (∇g

JXJ)X = 0, ∀X ∈ X(M).

v) The classW1 ⊕W2 or integrable manifolds characterized by the condition

NJ = 0.

vi) The classW2 ⊕W3 characterized by the condition

δΦ = 0.

vii) The classW1 ⊕W3 characterized by the condition

g((∇g
XJ)JX, Y ) + g((∇g

JXJ)X,Y ) =
1

n
(g(X, JX)δΦ(Y )− g(X,X)δΦ(JY )),

for all vector fields X , Y on M .
viii) The classW or the whole class of α-metric manifolds.

To characterize all classes of 2n-dimensional α-metric manifolds showed above by
means of the first canonical connection, we need to extend the definition of the torsion
form of the first canonical connection of almost product Riemannian manifold with null
trace to the Norden case (see [8, Lemma 3.1]).



Unified classification of pure metric geometries 423

Analogously to the 1-form δΦ (see identity (2.16)), the torsion form t0 of the first canon-
ical connection of an α-metric manifold (M,J, g) can be locally defined as follows:

t0(X) =

2n∑
i,j=1

gijg(T0(X,Xi), Xj), ∀X ∈ X(M),

where (X1, . . . , X2n) is a local basis of TM and the matrix (gij)1≤i,j≤2n is the inverse
matrix of (g(Xi, Xj))1≤i,j≤2n.

The next result shows the closely relationship between the 1-forms δΦ and t0 on an
α-metric manifold.

Lemma 2.4. Let (M,J, g) be a 2n-dimensional α-metric manifold. Then one has

(2.25) δΦ(X) = 2t0(JX), ∀X ∈ X(M).

Proof. Given a vector field X on M and given a local basis (X1, . . . , X2n), as (gij)1≤i,j≤2n
is a symmetric matrix, because of (2.13) one obtains

2n∑
i,j=1

gijg((∇g
JXJ)JXi, Xj) = 0,

thus, taking into account (1.8), (2.11) and (2.16), one obtains

g(T0(JX,Xi), Xj) =
(−α)

2

(
g((∇g

JXJ)JXi, Xj)− αg((∇g
Xi
J)Xj , X)

)
, i, j = 1, . . . , 2n,

t0(JX) =
(−α)

2

2n∑
i,j=1

gijg((∇g
JXJ)JXi, Xj) +

1

2

2n∑
i,j=1

gijg((∇g
Xi
J)Xj , X)

=
1

2
δΦ(X).

�

The next result provides defining conditions of all classes of α-metric manifolds using
the first canonical connection instead of the Levi-Civita connection like in Theorem 2.1.

Theorem 2.2. Let (M,J, g) be a 2n-dimensional α-metric manifold. The classes given in Theorem
2.1 can be characterized by means of the first canonical connection as follows:
i) The classW0 or Kähler manifolds characterized by the condition

T0(X,Y ) = 0, ∀X,Y ∈ X(M).

ii) The classW1 characterized by the condition

(2.26) T0(X,Y ) =
1

2n
(t0(X)Y − t0(Y )X − αt0(JX)JY + αt0(JY )JX), ∀X,Y ∈ X(M).

iii) The classW2 characterized by the conditions

t0(X) = 0, T0(JX, JY ) + αT0(X,Y ) = 0, ∀X,Y ∈ X(M).

iv) The classW3 or quasi-Kähler manifolds characterized by the condition

(2.27) g(T0(JX, Y ), JX) + αg(T0(X,Y ), X) = 0, ∀X,Y ∈ X(M).

v) The classW1 ⊕W2 or integrable manifolds characterized by the condition

(2.28) T0(JX, JY ) + αT0(X,Y ) = 0, X, Y ∈ X(M).

vi) The classW2 ⊕W3 characterized by the condition

t0(X) = 0, ∀X ∈ X(M).
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vii) The classW1 ⊕W3 characterized by the condition

g(T0(JX, Y ), JX) + αg(T0(X,Y ), X) =
1

n
(g(X, JX)t0(JY )− αg(X,X)t0(Y )),

for all vector fields X,Y on M .
viii) The classW or the whole class of α-metric manifolds.

Proof.
i) The manifold (M,J, g) belongs to the classW0 if and only if ∇gJ = 0; i.e., ∇0 = ∇g.

Therefore, (M,J, g) is a Kähler manifold if and only if∇0 is a torsion-free connection.
ii) GivenX,Y, Z vector fields onM , taking into account (1.6), (1.8), (2.14) and the defin-

ing condition (2.24) of the classW1, one gets
1

2
g((∇g

XJ)JY, Z) =
1

4n
(g(X,JY )δΦ(Z) + g(X,Z)δΦ(JY )),

− 1

4n
(g(X,Y )δΦ(JZ) + g(X, JZ)δΦ(Y )),

1

2
g((∇g

Y J)JX,Z) =
1

4n
(g(Y, JX)δΦ(Z) + g(Y, Z)δΦ(JX)),

− 1

4n
(g(Y,X)δΦ(JZ) + g(Y, JZ)δΦ(X)),

g(T0(X,Y ), Z) =
(−α)

4n
g(δΦ(JY )X − δΦ(JX)Y − δΦ(Y )JX + δΦ(X)JY, Z),

then, bearing in mind (2.25), one obtains the next identity which is an equivalent condition
to (2.26)

(2.29) g(T0(X,Y ), Z) =
1

2n
g(t0(X)Y − t0(Y )X − αt0(JX)JY + αt0(JY )JX,Z).

Reciprocally, given X,Y, Z vector fields on M , as the first canonical connection is an
adapted connection, according to [7, Prop. 3.6], one concludes the following equality

g((∇g
XJ)Y, Z) = −g(T0(X, JY ), Z) + g(T0(JY, Z), X)− g(T0(Z,X), JY ),

then, if one considers (1.6), (2.25), (2.29) and the above equality, by straightforward calcu-
lations one gets

g((∇g
XJ)Y,Z) =

1

n
(g(X,Y )t0(JZ) + g(X,Z)t0(JY ))− g(X, JY )t0(Z)− g(X, JZ)t0(Y ))

=
1

2n
(g(X,Y )δΦ(Z) + g(X,Z)δΦ(Y )),

+
(−α)

2n
(g(X, JY )δΦ(JZ) + g(X, JZ)δΦ(JY )),

which is the defining condition (2.24) of the classW1.
iii) The characterization of the classW2 is a direct consequence of (1.10) and (2.25).
iv) Given X,Y vector fields on M , identities (1.8), (2.13) and (2.15) carry to the follow-

ing ones

g(T0(X,Y ), X) =
α

2
g((∇g

XJ)JX, Y ),

g(T0(JX, Y ), JX) =
1

2
g((∇g

JXJ)X,Y ),

g(T0(JX, Y ), JX) + αg(T0(X,Y ), X) =
1

2
g((∇g

XJ)JX + (∇g
JXJ)X,Y ).(2.30)

Thus, the defining condition (2.27) is a direct consequence of identity (2.19) and the above
one.
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v) The defining condition (2.28) is a direct consequence of (1.10).
vi) The characterization of the classW2 ⊕W3 is a direct consequence of (2.25).
vii) Given X,Y vector fields on M , bearing in mind (2.22), (2.25) and(2.30), one obtains

g(T0(JX, Y ), JX) + αg(T0(X,Y ), X) =
1

n
(g(X, JX)t0(JY )− αg(X,X)t0(Y )),

which is another characterization of the classW1 ⊕W3. �

The above theorem allows to recover the classification of almost Riemannian manifolds
using the first canonical connection obtained in [8, Theor. 3.5] in the case α = 1.

3. CLASSIFICATION OF α-METALLIC METRIC MANIFOLDS

We want to classify the α-metallic metric manifolds using the classification of α-metric
manifolds showed in Theorem 2.1 and the 1: 1 correspondence between α-metric and
α-metallic metric manifolds.

Definition 3.1. Let (M,ϕ, g) be an α-metallic metric manifold. We say that (M,ϕ, g) be-
longs to certain class according to the classification given in Theorem 2.1 if its correspond-
ing α-metric manifold (M,Jϕ, g) belongs to this class of manifolds.

Almost Norden golden and almost golden Riemannian manifolds with null trace were
classified in [6] and [8] as it is indicated in the previous definition. There are also some
classes of almost metallic Norden and metallic Riemannian manifolds introduced in the
same way (see [2, Prop. 5.1] and [10, Prop. 2.3]).

To use the defining conditions of all classes of α-metric manifolds to classify α-metallic
metric manifolds, we need to relate tensors fields and 1-forms related with (Jϕ, g) in-
volved in Theorem 2.1 with other ones defined from (ϕ, g). Now we introduce a 1-form
on α-metallic metric manifolds in analogous way to the codifferential of Φ of an α-metric
manifold starting from (ϕ, g) instead of (Jϕ, g) as follows.

Definition 3.2. Let (M,ϕ, g) be a 2n-dimensional α-metallic metric manifold. There exist
a 1-form δϕ, called the codifferential of ϕ, which locally can be defined as follows:

(3.31) δϕ(X) =

2n∑
i,j=1

gijg((∇g
Xi
ϕ)Xj , X) ∀X ∈ X(M),

where (X1, . . . , X2n) is a local basis of TM and the matrix (gij)1≤i,j≤2n is the inverse
matrix of (g(Xi, Xj))1≤i,j≤2n

Starting from (1.3), (1.9), (2.16) and (3.31), by straightforward calculations, it is easy to
prove the following equalities between tensor fields and 1-forms defined from (ϕ, g) and
(Jϕ, g)

(∇g
XJϕ)Y =

2α√
p2 + 4q

(∇g
Xϕ)Y, g(X, JϕY ) =

α√
p2 + 4q

g(X, 2ϕY − pY ),

δΦ(X) =
2α√
p2 + 4q

δϕ(X), NJϕ(X,Y ) =
4

p2 + 4q
Nϕ(X,Y ), ∀X,Y ∈ X(M).(3.32)

The above equalities allow to characterize all classes of α-metallic metric manifolds
easily according to Definition 3.1. For instance, given X,Y vector fields on M , identities
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(3.33) and (3.34) of the next result can be obtained starting from (2.19) and (2.22) respec-
tively bearing in mind (1.3) and (3.32) by means of the next ones

(∇g
XJϕ)JϕX + (∇g

JϕX
Jϕ)X =

4

p2 + 4q

(
(∇g

Xϕ)ϕX + (∇g
ϕXϕ)X − p(∇g

Xϕ)X
)
,

g(X, JϕX)δΦ(Y )− g(X,X)δΦ(JϕY ) =
4

p2 + 4q
(g(X,ϕX)δϕ(Y )− g(X,X)δϕ(ϕY )).

Theorem 3.3. Let (M,ϕ, g) be a 2n-dimensional α-metallic metric manifold. Then one has the
following classes of this kind of manifolds:
i) The classW0 or Kähler metallic manifolds characterized by the condition

∇gϕ = 0.

ii) The classW1 characterized by the condition

g((∇g
Xϕ)Y,Z) =

1

(p2 + 4q)n
g(X,Y )δϕ

(
p2(1− α) + 4q

2
Z + αpϕZ

)
+

1

(p2 + 4q)n
g(X,Z)δϕ

(
p2(1− α) + 4q

2
Y + αpϕY

)
+

α

(p2 + 4q)n
(g(X,ϕY )δϕ(pZ − 2ϕZ) + g(X,ϕZ)δϕ(pY − 2ϕY )),

for all vector fields X,Y, Z on M .
iii) The classW2 characterized by the conditions

δϕ = 0, Nϕ = 0.

iv) The classW3 or quasi-Kähler metallic manifolds characterized by the condition

(3.33) (∇g
Xϕ)ϕX + (∇g

ϕXϕ)X − p(∇g
Xϕ)X = 0, ∀X ∈ X(M).

v) The classW1 ⊕W2 or integrable metallic manifolds characterized by the condition

Nϕ = 0.

vi) The classW2 ⊕W3 characterized by the condition

δϕ = 0.

vii) The classW1 ⊕W3 characterized by the condition

g((∇g
Xϕ)ϕX + (∇g

ϕXϕ)X − p(∇g
Xϕ)X,Y ) =

1

n
g(X,ϕX)δϕ(Y )

− 1

n
g(X,X)δϕ(ϕY ),

(3.34)

for all vector fields X,Y on M .
viii) The classW or the whole class of α-metallic metric manifolds.

We introduce the notion of adapted connection on α-metallic metric manifolds below.

Definition 3.3. Let (M, g, ϕ) be an α-metallic metric manifold and let ∇ be a connection
onM . One says that∇ is an adapted connection to (ϕ, g) if it satisfies∇ϕ = 0 and∇g = 0.

The first equality of (3.32) allows us to claim that a connection∇ on an α-metallic metric
manifold (M,ϕ, g) is adapted to (ϕ, g) if and only if ∇ is also adapted to (Jϕ, g).

Using the 1: 1 correspondence between α-metric manifolds and α-metallic metric man-
ifolds we can attach one distinguished adapted connection to an α-metallic metric mani-
fold as follows.
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Definition 3.4. Let (M, g, ϕ) be an α-metallic metric manifold. We call the first canoni-
cal connection of (M,ϕ, g) to the first canonical connection of its corresponding α-metric
manifold (M,Jϕ, g).

Bearing in mind (1.3), (1.7) and (3.32), one obtains that the first canonical connection
∇0 of (M,ϕ, g) is given by

∇0
XY = ∇g

XY +
αp

p2 + 4q
(∇g

Xϕ)Y − 2α

p2 + 4q
(∇g

Xϕ)ϕY, ∀X,Y ∈ X(M).

Bearing in mind identity (1.2), it is easy to prove the following equality

(∇g
Xϕ)ϕY = p(∇g

Xϕ)Y − ϕ(∇g
Xϕ)Y, ∀X,Y ∈ X(M).

The above identities leads to the following alternative expression of the first canonical
connection

∇0
XY = ∇g

XY −
αp

p2 + 4q
(∇g

Xϕ)Y +
2α

p2 + 4q
ϕ(∇g

Xϕ)Y, ∀X,Y ∈ X(M).

This adapted connection was already introduced on α-metallic metric manifolds in
another way. The above expression is those that appears in [3, Theor. 3.1].

The first canonical connection allows us to characterize all classes of α-metallic metric
manifolds carrying the defining conditions of all classes of α-metric manifolds collected
in Theorem 2.2 using the bijection between both kind of metric manifolds.

Theorem 3.4. Let (M,ϕ, g) be a 2n-dimensional α-metallic metric manifold. The classes given
in Theorem 3.3 can be characterized by means of the first canonical connection as follows:
i) The classW0 or Kähler metallic manifolds characterized by the condition

T0(X,Y ) = 0, ∀X,Y ∈ X(M).

ii) The classW1 characterized by the condition

T0(X,Y ) =
1

(p2 + 4q)n
t0
(
p2(1− α) + 4q

2
X + αpϕX

)
Y

− 1

(p2 + 4q)n
t0
(
p2(1− α) + 4q

2
Y + αpϕY

)
X

+
α

(p2 + 4q)n
(t0(pX − 2ϕX)ϕY − t0(pY − 2ϕY )ϕX),

for all vector fields X,Y on M .
iii) The classW2 characterized by the conditions

t0(X) = 0,

p2 + (p2 + 4q)α

2
T0(X,Y ) + 2T0(ϕX,ϕY ) = p(T0(ϕX, Y ) + T0(X,ϕY )),

for all vector fields X,Y on M .
iv) The classW3 or quasi-Kähler metallic manifolds characterized by the condition

p2 + (p2 + 4q)α

2
g(T0(X,Y ), X) = −2g(T0(ϕX, Y ), ϕX)

+ p(g(T0(ϕX, Y ), X) + g(T0(X,Y ), ϕX)),

for all vector fields X,Y, Z ∈ X(M).
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v) The classW1 ⊕W2 or integrable metallic manifolds characterized by the condition

p2 + (p2 + 4q)α

2
T0(X,Y ) + 2T0(ϕX,ϕY ) = p(T0(ϕX, Y ) + T0(X,ϕY )),

for all vector fields X,Y ∈ X(M).
vi) The classW2 ⊕W3 characterized by the condition

t0(X) = 0, ∀X ∈ X(M).

vii) The classW1 ⊕W3 characterized by the condition

p2 + (p2 + 4q)α

2
g(T0(X,Y ), X) = −2g(T0(ϕX, Y ), ϕX)

+ p(g(T0(ϕX, Y ), X) + g(T0(X,Y ), ϕX))

+
1

n
g(X,X)t0

(
p2(1− α)− 4qα

2
Y − pϕY

)
− 1

n
g(X,ϕX)t0(pY − 2ϕY ),

for all vector fields X,Y on M .
viii) The classW or the whole class of α-metallic metric manifolds.

If (α, p, q) = (1, 1, 1), the above result allows to recover the classification of almost
golden Riemannian manifolds with null trace using the first canonical previously ob-
tained in [8, Theor. 4.3]. Obiously, it also allows to recover the classification of α-metric
manifolds showed in Theorem 2.2 in the case (p, q) = (0, 1).

Defining conditions as the above ones can be found in the Mathematical Literature. For
instance, in [3, Prop. 3.1], Blaga and Nannicini characterize the class of integrable metallic
manifolds by the condition

(3.35) T0(ϕX, Y ) + T0(X,ϕY ) = pT0(X,Y ), X, Y ∈ X(M).

Indeed, according to Definition 3.1, (M,ϕ, g) is an integrable manifold if and only if
(M,Jϕ, g) is an integrable manifold too, class of manifolds characterized by (2.28) which
it is equivalent to the next one

T0(JϕX,Y ) + T0(X,JϕY ) = 0, X, Y ∈ X(M),

then taking into account identity (1.3) one obtains the below defining condition equivalent
to (3.35)

T0(pX − 2ϕX, Y ) + T0(X, pY − 2ϕY ) = 0, X, Y ∈ X(M).

Remark 3.1. To classify α-metallic metric manifolds as it is indicated in Definition 3.1
allow us to obtain interesting results like the following. In [2, Defin. 3.1], the authors
introduced nearly Kähler Norden manifolds (M,J, g) as almost Norden manifolds sat-
isfying (∇g

XJ)Y + (∇g
Y J)X = 0, for all X,Y vector fields on M and they proved that

4-dimensional manifolds in the previous conditions belong to the Kähler class. They also
introduced nearly locally metallic manifolds like those almost metallic Norden manifolds
such that their corresponding almost Norden manifolds are nearly Kähler Norden man-
ifolds. As direct consequence of [5, Theor. 4], one obtains that nearly Kähler Norden
manifolds are always Kähler Norden manifolds. Thus, nearly locally metallic manifolds
are always Kähler Norden metallic manifolds.
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