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On instability in the theory of dipolar bodies with
two-temperatures

M. MARIN1 , S. VLASE2, I. M. FUDULU1 and G. PRECUP1

ABSTRACT. In this paper we approach a generalized thermoelasticity theory based on a heat conduction
equation in bodies with dipolar structure, the heat conduction depends on two distinct temperatures, the ther-
modynamic temperature and the conductive temperature. In our considerations the difference between two
temperatures is highlighted by the heat supply. For the mixed initial boundary value problem defined in this
context, we prove the uniqueness of a solution corresponding some specific initial and boundary conditions.
Also, if the initial energy is negative or null, we prove that the solutions of the mixed problem are exponentially
unstable.

1. INTRODUCTION

It is known that the studies dedicated to classical thermoelasticity used a heat conduc-
tion equation which are based on the classical Fourier law. As a consequence, the heat flux
vector is depending on the gradient of temperatures and, as a consequence, the thermal
signals will propagate with an infinite speed. But this contradicts the causality princi-
ple. To avoid this contradiction, a series of new theories of thermoelasticity have emerged
that propose different alternatives to the classical heat conduction equation. This is how
various models appeared, of which the best known in the literature are Green and Lind-
say [7], Lord and Shulman [17], Green and Naghdi [8]-[12], More-Gibson-Thompson [24].
In all these models, the thermal waves propagate with finite speeds and all results from
thes generalized theorie are more general and physically more realistic than in the classi-
cal theory. In our study we have a temperature rate dependent on two temperatures, by
changing the relation between the two temperatures, namely, the thermodynamic tem-
perature and the conductive temperature.

There are many studies that take into account the two temperatures, of which we men-
tion [3], [4], [26] and [17]. Other generalizations of the heat conduction equation can be
found in many articles, of which we list [1], [19], [22]. Our uniqueness result is obtained
by assuming the initial energy is not strictly positive. Other uniqueness results are based
on the assumption that the elastic tensor is a positively defined one. But there are con-
crete thermoelastic situations in which the positive definition of the elastic tensor cannot
be guaranteed. And our result on exponential instability is also obtained on the assump-
tion that the initial energy is not strictly positive. We must emphasize that our mixed
problem is considered both in the theory in which it is considered dependent on the rate
of both temperature, and the theory depends on the rate of thermodynamic temperature,
but not on the rate of the conductive temperature. However, the calculations are quite
similar in both situations, which is why the demonstrations are made in detail only in the
case of dependence on the rate of thermodynamic temperature.
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We must also say what is the motivation that we took into account the effect due to the
dipolar structure. In opinion of many researchers, it is known that this effect makes an
important contribution to the general deformations of the media. It is enough to refer to
media that have a granular structure, for instance, polymers, human bones or graphite.
Also, other concrete usefulness of this effect are for the various materials with pores or
composite materials which are reinforced with chopped fibers. From the large number of
studies dedicated to media with dipole structure we have selected a few: [2], [5], [6], [13],
[18]-[21], [23], [27].

2. THE MIXED INITIAL-BOUNDARY VALUE PROBLEM

Consider that the thermoelastic body with dipolar structure occupies the
three-dimensional domain Ω from the Euclidian space R3. The closure of Ω is denoted
by Ω̄ and we have Ω̄ = Ω∪ ∂Ω, where ∂Ω is the border of the domain Ω and is considered
regular enough to allow the application of the divergence theorem. The outward unit nor-
mal to ∂Ω has the components marked with ni. The vector and tensors fields are denoted
by letters in boldface. The notation vi is used for the components of a vector field v, the
notation uij is used for the components of a tensor field u of second order, and so on. For
the material time derivative we will use a superposed dot. By convention, the subscripts
are understood to range over integers (1, 2, 3). The summation rule regarding repeated
subscripts is also implied. For the partial differentiation of a function f regarding the spa-
tial variables xj we will use the notation fj , to simplify the writing. When there are no
possibilities of confusion, the time variable and/or the spatial variables of a function may
not be highlighted. A fixed system of Cartesian axes Oxi, i = 1, 2, 3 will be used to refer
the motion of the thermoelastic body.
In order to characterize the behavior of our media we use the set of variables (vi, ϕij , φ, ϑ),
where we denoted by vi the components of the vector of displacement , by ϕij the com-
ponents of the microdeformation tensor, by φ the conductive temperature and by ϑ the
thermodynamic temperature measured from the constant absolute temperature ϑ0 of the
body in its reference state.
By using the internal variables (vi, ϕij) we can introduce the kinematic characteristics of
the body, that is, the strain tensors, through the following geometrical equations:

eij =
1

2
(vj,i + vi,j) , ϵij = vj,i − ϕji, γijk = ϕij,k.(2.1)

As usual, the notation tij is used for the components of the tensor of stress, τij for the
components of the tensor of microstress and σijk for the components of the tensor of
stress moment, all over Ω.
For a homogeneous thermoelastic body, which have in its reference state a center of sym-
metry at each point, but is otherwise non-isotropic, we can define the stress tensors by
means of the following constitutive equations:

tij = Aijklekl + Eijklεkl + Fijklmγklm − αij

(
ϑ+ aϑ̇

)
,

τij = Eklijekl +Bijklεkl +Gijklmγklm − βij

(
ϑ+ aϑ̇

)
,

σijk = Fijklmelm +Gijklmεlm + Cijklmnγlmn − δijk

(
ϑ+ aϑ̇

)
,(2.2)

ρS = αijeij + βijεij + δijkγijk + dϑ+ hϑ̇,

qi = κijφ,j .

In the absence of body force, of body moment and of heat supply fields, The field of basic
equations for the two-temperature thermoelasticity of dipolar bodies are:
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- the motion equations:

ρv̈i = (tji + τji),j ,(2.3)

Ijkϕ̈ik = σkij,k + τji;(2.4)

- the energy equation:

ρṠ = qi,i;(2.5)

- two type of the two-temperatures equations:

φ− c (κijφ,i),j = ϑ+ aϑ̇;(2.6)

aφ̇+ φ− c (κijφ,i),j = ϑ+ aϑ̇.(2.7)

It is easy to see that the equation (2.6) will be considered in the theory dependent on rate
of conductive temperature and on rate of thermodynamic temperature, where (2.1) and
(2.2) are the equations of motion and (2.3) is the equation of energy.
In the above equations we have used the following notations: ρ is the reference constant
mass density, S is the specific entropy per unit mass, qi are the components of heat flux
vector.
The above coefficients Aijkl, Bijrs, ..., Cijklmn, αij , ..., κij , c, d, h and a are used to describe
the material structure and they satisfy the following symmetry relations:

Aijkl = Aklij = Ajikl, Bijkl = Bklij , Cijklmn = Clmnijk,

Eijkl = Ejikl, Fijklm = Fjiklm, αij = αji, κij = κji.(2.8)

We wish to outline that the coefficients a, c, d and h are specific constants of the heat.
The temperature ϑ0 and density ρ are given strict positive constants. From the entropy
production inequality (see Gren and Lindsay [7]) we obtain the following conditions

c > 0, h > 0, da− h ≥ 0,(2.9)

and, according to the same entropy inequality, we assume that Aijkl, Bijkl, Cijklmn and
kij are positive definite tensors, i.e.

Aijklxijxkl ≥ k1xijxij , k1 > 0, ∀ xij = xji,

Bijklyijykl ≥ k2yijyij , k2 > 0, ∀ yij = yji,(2.10)
Cijklmnzijkzlmn ≥ k3zijkzijk, k3 > 0, ∀ zijk,

κijxixj ≥ k4xixi, k4 > 0, ∀ xi.

Along with the above basic equations (2.3)-(2.7), we consider the following homogeneous
boundary conditions of Dirichlet type:

vi = 0, ϕij = 0, ϑ = 0, φ = 0 on ∂Ω× [0,∞).(2.11)

To this system of equations we adjoin the following initial conditions:

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x),

ϕij(x, 0) = ϕ0
ij(x), ϕ̇ij(x, 0) = ϕ1

ij(x),(2.12)

φ(x, 0) = φ0(x), ϑ(x, 0) = ϑ0(x), ϑ̇(x, 0) = ϑ1(x),

which are satisfied for any x ∈ Ω.
Considering the geometric equations and the constitutive equations (2.2), which are in-
troduced in the basic equations (2.3)-(2.5), we are led the following system of partial dif-
ferential equations:



462 M. Marin, S. Vlase, I. M. Fudulu and G. Precup

(Aijmn + Eijmn) vn,mj + (Emnij +Bijmn) (vn,mj − ϕmn,j)+

+ (Fijklm +Dijklm)ϕlm,kj − (αij + βij)
(
ϑ,j + aϑ̇,j

)
= ρv̈i,

Fjklmnvn,mj+Dmnjkl (vn,mj−ϕmn,j)+Ckljmnrϕnr,mj−δklj

(
ϑ,j+aϑ̇,j

)
+(2.13)

+Eklmnvm,n+Bklmn(vn,m−ϕmn)+Dklmnrϕnr,m− βkl

(
ϑ+ aϑ̇

)
=Ikrϕ̈lr,

which are satisfied for any (x) ∈ Ω× (0,∞).
By a solution of the mixed initial boundary value problem in the two temperatures ther-
moelastic theory of dipolar bodies in the cylinder Ω × [0,∞) we mean an ordered array
(vi, ϕij , φ, ϑ) which satisfies the system of equations (2.13), the boundary conditions
(2.11) and the initial conditions (2.12).

3. MAIN RESULTS

At the beginning of this section we must specify an energy conservation law in the
case we consider the rate of the conductive temperature, that is, we consider the two-
temperatures relation (2.7):

W1(t) = W1(0), t ∈ [0,∞),(3.14)

where

W1(t) =
1

2

∫
Ω

[
ρv̇i(t)v̇i(t) + Ijkϕ̇ij(t)ϕ̇ik(t) +Aijkleij(t)ekl(t)+

+2Eijkleij(t)εkl(t) + 2Fijklmeij(t)γklm(t) +Bijklεij(t)εkl(t) +

+2Gijklmεij(t)γklm(t) + Cijklmnγijk(t)γlmn(t) +

+cκijφ,i (t)φ,j (t) + d

(
ϑ(t) +

h

d
ϑ̇(t)

)2

+ h

(
a− h

d

)
ϑ̇2 (t)

]
dV +

+

∫ t

0

∫
Ω

[
κijφ,i(s)φ,j(s) + c

(
(κijφ,i(s)),j

)2

+ (ad− h)ϑ̇2(s)

]
dV ds.

In the case we don’t take into account the rate of conductivity temperature, that is, we
consider the relation (2.6), the energy conservation law receives the form

W2(t) = W2(0), t ∈ [0,∞),(3.15)

where

W2(t) =
1

2

∫
Ω

[
ρv̇i(t)v̇i(t) + Ijkϕ̇ij(t)ϕ̇ik(t) +Aijkleij(t)ekl(t) +

+2Eijkleij(t)εkl(t) + 2Fijklmeij(t)γklm(t) +Bijklεij(t)εkl(t) +

+2Gijklmεij(t)γklm(t) + Cijklmnγijk(t)γlmn(t)+

+d

(
ϑ(t) +

h

d
ϑ̇(t)

)2

+ h

(
a− h

d

)
ϑ̇2(t)

]
dV +

+

∫ t

0

∫
Ω

[
κijφ,i(s)φ,j(s) + c

(
(κijφ,i(s)),j

)2

+ (ad− h)ϑ̇2(s)

]
dV ds.

Let us denote by P the mixed problem consists in system of equations (2.13), the bound-
ary conditions (2.11) and the initial conditions (2.12).
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Our two main results, namely, an uniqueness and an instability results for the solution
of our mixed problem, will be obtained in the simpler case in which we consider equa-
tion (2.6). For uniqueness we use the usual procedure: we will show that the problem P
admits only the null solution, if it is considered that the initial data are null.

Theorem 3.1.. The mixed initial-boundary value problem P , in the case of null initial data, admits
only the null solution.

Proof. We denote by (vi, ϕij , φ, ϑ) the difference of two solutions of the problem P . Our
proof is based on a logarithmic convexity argument, as such we will use a function E(t)
with convex logarithm of the form

E(t) =
1

2

∫
Ω

[ρvi(x)vi(x) + Ijkϕij(x)ϕik(x)] dV+

+
1

2

∫ t

0

∫
Ω

[
κijξ,i(x, τ)ξ,j(x, τ)+c

(
(κijξ,i(x, τ)),j

)
+(ad−h)ϑ2(x, τ)

]
dV dτ,(3.16)

where the ξ is an antiderivative function of the function φ, that is

ξ(x, s) =

∫ s

0

φ(x, τ)dτ.

Also, for (3.16) we consider the equation (2.6).
By direct calculations, we can compute the first two derivative of the function E, starting
from (3.16)

Ė(t) =

∫
Ω

[
ρvi(x)v̇i(x) + Ijkϕij(x)ϕ̇ik(x)

]
dV +

+
1

2

∫
Ω

[
κijξ,i(x)ξ,j(x)+c

(
(κijξ,i(x)),j

)
+(ad−h)ϑ2(x)

]
dV,

Ë(t) =

∫
Ω

[ρ (v̇i(x)v̇i(x) + vi(x)v̈i(x))+

+Ijk

(
ϕ̇ij(x)ϕ̇ik(x) + ϕij(x)ϕ̈ik(x)

)]
dV +(3.17)

+

∫
Ω

[
κijξ,i(x)φ,j(x)+(ad−h)ϑ(x)ϑ̇(x)+

+c
(
(κijξ,i(x)),j

)(
(κmnφ,m(x)),n

)]
dV.

Taking into account the constitutive equations (2.2), we can obtain the following identity:∫
Ω

[
ρvi(x)v̈i(x) + Ijkϕij(x)ϕ̈ik(x) +Aijkleij(x)ekl(x)+

+2Eijkleij(x)εkl(x) + 2Fijklmeij(x)γklm(x) +Bijklεij(x)εkl(x) +(3.18)
+2Gijklmεij(x)γklm(x) + Cijklmnγijk(x)γlmn(x)] dV =

=

∫
Ω

(αijeij(x) + βijεij(x) + δijkγijk(x))
(
ϑ(x) + aϑ̇(x)

)
dV.

On the other hand, starting from (2.6) we deduce:∫
Ω

[
κijξ,i(x)φ,j(x)+

(
ϑ(x) + aϑ̇(x)

)(
dϑ(x) + hϑ̇(x)

)
+

+c
(
(κijξ,i(x)),j

)(
(κmnφ,m(x)),n

)]
dV =(3.19)

= −
∫
Ω

(αijeij(x) + βijεij(x) + δijkγijk(x))
(
ϑ(x) + aϑ̇(x)

)
dV.
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Clearly, considering (3.18) and (3.19) we deduce the equation:

∫
Ω

[
ρvi(x)v̈i(x) + Ijkϕij(x)ϕ̈ik(x) +Aijkleij(x)ekl(x)+

+2Eijkleij(x)εkl(x) + 2Fijklmeij(x)γklm(x) +Bijklεij(x)εkl(x) +

+2Gijklmεij(x)γklm(x) + Cijklmnγijk(x)γlmn(x)] dV +(3.20)

+

∫
Ω

[
κijξ,i(x)φ,j(x)+

(
ϑ(x)+aϑ̇(x)

)(
dϑ(x)+hϑ̇(x)

)
+

+c
(
(κijξ,i(x)),j

)(
(κmnφ,m(x)),n

)]
dV = 0.

It is easy to observe that:

(
ϑ(x)+aϑ̇(x)

)(
dϑ(x)+hϑ̇(x)

)
= (ad−h)ϑ(x)ϑ̇(x) +

+
1

d

(
dϑ(x)+hϑ̇(x)

)2

+
h

d
(ad−h)

(
ϑ̇(x)

)2

,

so that (3.20) receives the following form:

∫
Ω

[
ρvi(x)v̈i(x) + Ijkϕij(x)ϕ̈ik(x) +Aijkleij(x)ekl(x)+

+2Eijkleij(x)εkl(x) + 2Fijklmeij(x)γklm(x) +Bijklεij(x)εkl(x) +

+2Gijklmεij(x)γklm(x) + Cijklmnγijk(x)γlmn(x)] dV +

+

∫
Ω

[
κijξ,i(x)φ,j(x) + c

(
(κijξ,i(x)),j

)(
(κmnφ,m(x)),n

)]
dV +

+

∫
Ω

[
h

d
(ad− h)

(
ϑ̇(x)

)2

+ (ad− h)ϑ(x)ϑ̇(x)

]
dV +

+

∫
Ω

[
1

d

(
dϑ(x) + hϑ̇(x)

)2
]
dV = 0,

and this equation can be restated in the form that follows:

∫
Ω

[
ρvi(x)v̈i(x) + Ijkϕij(x)ϕ̈ik(x) + (ad− h)ϑ(x)ϑ̇(x)

]
dV +

+

∫
Ω

[
κijξ,i(x)φ,j(x) + c

(
(κijξ,i(x)),j

)(
(κmnφ,m(x)),n

)]
dV =

= −
∫
Ω

[Aijkleij(x)ekl(x) + 2Eijkleij(x)εkl(x)+(3.21)

+2Fijklmeij(x)γklm(x) +Bijklεij(x)εkl(x) +

+2Gijklmεij(x)γklm(x) + Cijklmnγijk(x)γlmn(x)] dV −

−
∫
Ω

[
h

d
(ad− h)

(
ϑ̇(x)

)2

+
1

d

(
dϑ(x) + hϑ̇(x)

)2
]
dV.
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With the help of (3.21) the second derivative of the function E(t), from (3.17)2, receives
the form:

Ë(t) =

∫
Ω

[
ρvi(x)v̈i(x) + Ijkϕij(x)ϕ̈ik(x)

]
dV −

−
∫
Ω

[Aijkleij(x)ekl(x) + 2Eijkleij(x)εkl(x)+

+2Fijklmeij(x)γklm(x) +Bijklεij(x)εkl(x) +(3.22)
+2Gijklmεij(x)γklm(x) + Cijklmnγijk(x)γlmn(x)] dV −

−
∫
Ω

[
h

d
(ad− h)

(
ϑ̇(x)

)2

+
1

d

(
dϑ(x) + hϑ̇(x)

)2
]
dV.

If we take into account the conservation law (3.15), from (3.21) we obtain:

Ë(t) = 2

∫
Ω

[
ρvi(x)v̈i(x) + Ijkϕij(x)ϕ̈ik(x)

]
dV +

2

∫ t

0

∫
Ω

[
(ad− h)

(
ϑ̇(x)

)2

+ κijφ,i(x)φ,j(x) + c
(
(κijφ,i(x)),j

)2
]
dV ds,

so that we can deduce that:

E(t)Ë(t)−
(
Ė(t)

)2

≥ 0, ∀t ≥ 0,

and, as a consequence, we have the following inequality

d2

dt2
(lnE(t)) ≥ 0,

from where we deduce that the function lnE(t) is convex, regarding the time variable t.
If we consider that the maximum domain of definition of the solution is [0, t0], we inte-
grate the above inequality to obtain:

E(t)

(
E(0)

E(t0)

)t/t0

≤ E(0).(3.23)

But we considered the initial data in their homogeneous form so that from (3.16) we obtain
E(0) = 0 and from (3.23) we deduce

E(t) = 0, ∀t ∈ [0, t0] ⇒ vi(t) = ϕij(t) = φ(t) = ϑ(t) = 0, ∀t ∈ [0, t0],

and the proof of uniqueness is finished. □

In our second main result we wish to prove that the solution of the mixed problem P
is exponentially unstable, if some specific conditions are satisfied.
Specifically, we will assume that the initial energy of the system is not strictly positive.
First, we present a helpful auxiliary result.
Let us note with ν(x) the function that satisfies the following boundary value problem:

(κijν,i(x)),j = dϑ1 + hϑ0 −
(
αije

0
ij + βijϵ

0
ij + δijkγ

0
ijk

)
, x ∈ Ω,

ν(x) = 0, x ∈ ∂Ω.(3.24)

The fact that the boundary value problem (3.24) has a solution can be deduced from the
usual properties of the boundary value problems attached to elliptic equations.
From (3.24) we deduce that the function ν satisfies the equation:

dϑ(x) + hϑ̇(x)− [κij (ν,i(x) + ξ,i(x))],j =

= αijeij(x) + βijϵij(x) + δijkγijk(x),
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where the function ξ(x) is defined after (3.16).
Now, we consider the above problem P in the situation of the nonhomogeneous initial
data (2.12) and homogeneous boundary data (2.11).

Theorem 3.2.. Suppose that the conditions (2.9) and (2.10) hold.
If the mixed initial-boundary value problem P , in the case of null boundary data, admits a solution
for which W2(0) ≤ 0, then this solution is exponentially unstable.

Proof. For the demonstration we will use a function, defined in a manner similar to that
defined in [15] and [16], from the study of which we will obtain the exponential growth
of the solutions of the problem P .
Let us define the function Γ(t) by:

Γ(t) = w (t+ t0)
2
+

1

2

∫
Ω

(ρvivi + Ijkϕijϕik) dV +

+
1

2

∫ t

0

∫
Ω

[
(ad− h)ϑ2+κij (ν,i+ξ,i) ξ,j+c

(
κij (ν,i+ξ,i),j

)2
]
dV ds,(3.25)

in which the choice of the positive constants w and t0 is at our disposal.
By direct calculation we obtain the first two derivatives of the function Γ(t):

Γ̇(t) = 2w (t+ t0) +

∫
Ω

(
ρviv̇i + Ijkϕij ϕ̇ik

)
dV +

+

∫ t

0

∫
Ω

[
(ad−h)ϑϑ̇+κij (ν,i+ξ, i)φ, j+c

(
(κijφ, i), j

)(
(κmn (ν,m+ξ,m)),n

)]
dV ds

+
1

2

∫
Ω

[
(ad− h)

(
ϑ0

)2
+ κijφ

0
,iφ

0
,j + c

((
κijφ

0
,i

)
,j

)2
]
dV,(3.26)

Γ̈(t) = 2w +

∫
Ω

[
ρ (viv̈i + v̇iv̇i) + Ijk

(
ϕij ϕ̈ik + ϕ̇ij ϕ̇ik

)]
dV +

+

∫
Ω

[
(ad−h)ϑϑ̇+κij (ν,i+ξ, i)φ, j+c

(
(κijφ, i), j

)(
(κmn (ν, m+ξ, m)), n

)]
dV.

Taking into account the expression of the initial energy of the system, W2, the second
derivative of the function Γ receives the following form:

Γ̈(t) = 2 (w −W2(0)) + 2

∫
Ω

(
ρv̇iv̇i + Ijkϕ̇ij ϕ̇ik

)
dV +

+2

∫ t

0

∫
Ω

[
(ad−h)

(
ϑ̇
)2

+κijφ,iφ,j+c
(
(κijφ,i),j

)2
]
dV ds.(3.27)

From (3.26) and (3.27) we can obtain the following inequality:

Γ(t)Γ̈(t)−
(
Γ̇(t)− 1

2
I

)2

≥ 2 (W2(0) + w) Γ(t),(3.28)

where, to simplify the writing, we have the note with I the following integral:

I =

∫
Ω

[
(ad−h)

(
ϑ0

)2
+κijφ

0
,iφ

0
,j+c

((
κijφ

0
,i

)
,j

)2
]
dV.

According to the theorem hypothesis, we assumed that W2(0) ≤ 0, so we can take w =

−W2(0) and we choose t0 large enough to be sure that Γ̇(0) > I . As such, from (3.28) we
deduce:

Γ(t)Γ̈(t)− Γ̇(t)
(
Γ̇(t)− I

)
≥ 0.
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From this inequality we can deduce that the function

Γ̇(t)− I

Γ(t)

is an increasing application in relation to the time variable t. As such, we deduce that:

Γ̇(t)− I

Γ(t)
≥ Γ̇(0)− I

Γ(0)
, ∀t ≥ 0,

and this inequality can be restated in the form:

Γ̇(t) ≥ Γ̇(t)− I

Γ(0)
Γ(t) + I.

Finally, we integrate the last inequality on the interval and obtain:

Γ(t) ≥ Γ(0)Γ̇(0)

Γ̇(0)− I
e

Γ̇(0)−I
Γ(0)

t − Γ(0)

Γ̇(0)− I
.

From this inequality we are led to the conclusion that the solutions exponential growth,
that is, the solutions of the problem P are exponentially unstable. With this the proof of
Theorem 3.2 ends. □

Remark 3.1. It should be noted that the two results, both uniqueness and instability, can
be obtained using a very similar procedure in the case we consider the rate of the conduc-
tive temperature, that is, we consider the two-temperatures relation (2.7). In this situation,
the initial energy W2(t) is replaced by W1(t).

REFERENCES

[1] Abbas, I.; Marin, M. Analytical Solutions of a Two-Dimensional Generalized Thermoelastic Diffusions
Problem Due to Laser Pulse, Iran. J. Sci. Technol. - Trans. Mech. Eng. 42 (2018), no. 1, 57–71.

[2] Bhatti, M. M.; Phali, L.; Khalique, C. M. Heat transfer effects on electro-magnetohydrodynamic Carreau
fluid flow between two micro-parallel plates with Darcy–Brinkman–Forchheimer medium. Arch Appl Mech
2021, https://doi.org/10.1007/s00419-020-01847-4.

[3] Chen, P. J.; Gurtin, M. E. On a theory of heat involving two temperatures. J. Appl. Math. Phys. (ZAMP), 19
(1968), 614–627.

[4] Chen, P. J.; Gurtin, M. E.; Williams, W. O. On the thermodynamics of non-simple materials with two tem-
peratures. J. Appl. Math. Phys. (ZAMP) 20 (1969), 107–112.

[5] Fried, E.; Gurtin, M. E. Thermomechanics of the interface between a body and its environment. Continuum
Mech. Therm. 19 (2007), no. 5, 253–271.

[6] Green, A. E.; Rivlin, R. S. Multipolar continuum mechanics. Arch. Ration. Mech. Anal. 17 (1964), 113–147.
[7] Green, A. E.; Lindsay, K. A. Thermoelasticity, J. Elasticity, 2 (1972), 1–7
[8] Green, A. E.; Naghdi, P. M. On undamped heat waves in an elastic solid. J. Thermal Stresses 15 (1992),

253–264.
[9] Green, A.E. and Naghdi, P.M., Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208.

[10] Green, A. E.; Naghdi, P. M. ”A unified procedure for construction of theories of deformable media. I. Clas-
sical continuum physics. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences
448 (1995), 335–356.

[11] Green, A. E.; Naghdi, P. M. A unified procedure for construction of theories of deformable media. II. Gen-
eralized continua. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences 448
(1995), 357–377.

[12] Green, A. E.; Naghdi, P. M. A unified procedure for construction of theories of deformable media. III.
Mixtures of interacting continua. Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences 448 (1995), 379–388.

[13] Gurtin, M. E. The dynamics of solid-solid phase transitions. Arch. Rat. Mech. Anal. 4 (1994), 305–335.
[14] Knops, R. J.; Payne, L. E. Growth estimates for solutions of evolutionary equations in Hilbert space with

applications in elastodynamics. Arch. Ration. Mech. Anal. 41 (1971), 363–398.
[15] Knops, R. J.; Wilkes, E. W. Theory of elastic stability S. Flügge (ed.), Handbuch der Physik , VI a/3, Springer
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