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Some sequences of Euler type, their convergences and their
stability

DAN ŞTEFAN MARINESCU and MIHAI MONEA

ABSTRACT. The aim of this paper is to present some sequences of Euler type. We will explore the sequences
(Fn)n≥1 , defined by Fn (x) =

∑n
k=1 f (k) −

∫ n+x
1 f (t) dt, for any n ≥ 1 and x ∈ [0, 1] , where f is a local

integrable and positive function defined on [1,∞). Starting from some particular example we will find that this
sequence is uniformly convergent to a constant function. Also, we present a stability result.

1. INTRODUCTION

One of the more important result from calculus says that the sequence

xn = 1 +
1

2
+

1

3
+ ...+

1

n
− lnn

is convergent. Its limit is denoted γ and is called Euler-Mascheroni constant [15]. Today
we find more papers to this topic, including [13], where it was proven the next inequalities
about the asymptotic behavior of harmonic sum:

1

2n+ 2
5

< 1 +
1

2
+

1

3
+ ...+

1

n
− lnn− γ <

1

2n+ 1
3

, (n ≥ 1)

More authors tries to study a more general case, respectively the sequence (yn)n≥1 defined
by

yn =

n∑
k=1

f (k)−
∫ n

1

f (t) dt, (n ≥ 1) ,

where f is a real continuous function defined on [1,∞) . For example, the readers can find
the papers [10], [11], [12] or [14].

Recently, a very interesting result of the same type, due to Ivan [4], was published. It is
included in the following proposition.

Propostion 1.1. Let f : [1,∞) → R a differentiable function with limx→∞ f (x) = 0. Suppose
that f ′ is strictly monotone, does not vanish anywhere and limn→∞

f ′(n+1)
f ′(n) = 1. Then, the limit

lim
n→∞

(
n∑

k=1

f (k)−
∫ n

1

f (t) dt

)
exists and it is finite. Moreover, if we denote γf the value of this limit, then we have

lim
n→∞

∑n
k=1 f (k)−

∫ n

1
f (t) dt− γf

f (n)
=

1

2
.

The readers can find the original proof in [5].
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The aim of this paper is to present our contributions to this topic. First, we present a
synthesis of the most relevant results, based on the Sándor [10] or Trif [14] paper. Our
contribution is represented by some improvement of the original proofs. The main results
are presented on the third section where we will prove a stronger result about the conver-
gence of this type of sequence. We will complete with a stability result about the limit of
these sequences. Finally, we will obtain Ivan’s result as consequences of the results from
previous section.

2. SOME SEQUENCES WITH EQUAL LIMITS

Throughout this paper, we consider a local integrable function f : [1,∞) → (0,∞) . For
any x ∈ [0, 1] and any positive integer n,we define the sequence of functions (Fn)n≥1 by

Fn (x) =

n∑
k=1

f (k)−
∫ n+x

1

f (t) dt.

We will obtain some important conclusion about this sequence starting from some partic-
ular cases.

First, we consider the sequences (an)n≥1 , (bn)n≥1 and (cn)n≥1 defined, for any integer
n ≥ 1, by an = Fn (1) , bn = Fn (0) and cn = Fn

(
1
2

)
. Their properties are described in the

following two theorems.

Theorem 2.1. ([10], Theorem 1) We assume that f is a decreasing function.
a) For any integer n ≥ 1, we have an ≤ an+1 < bn+1 ≤ bn;
b) The sequences (an)n≥1 and (bn)n≥1 are convergences;
c) If limx→∞ f (x) = 0 then limn→∞ an = limn→∞ bn.

Proof. a) First we evaluate the difference an+1 − an and we obtain

an+1 − an = f (n+ 1)−
∫ n+2

n+1

f (t) dt.

Hence f is decreasing, we have∫ n+2

n+1

f (t) dt ≤
∫ n+2

n+1

f (n+ 1) dt = f (n+ 1) ,

also an+1− an ≥ 0. In the same mode, we obtain bn+1− bn = f (n+ 1)−
∫ n+1

n
f (t) dt ≤ 0.

Further,, we have

bn+1 − an+1 =

∫ n+2

n+1

f (t) dt > 0,

hence f is non-constant and positive.
b) The previous inequalities led us to the conclusion that the sequences (an)n≥1 and

(bn)n≥1 are monotone and bounded, so they are convergences.

c) The equality bn+1 − an+1 =
∫ n+2

n+1
f (t) dt goes to f (n+ 2) ≤ bn+1 − an+1 ≤ f (n) .

The hypothesis limx→∞ f (x) = 0 give us limn→∞ (bn+1 − an+1) = 0 and the conclusion
follows now. □

Theorem 2.2. ( [14], Theorem 1) We suppose that f is a convex and decreasing function.
a) The sequence (cn)n≥1 is decreasing;
b) an < cn < bn;
c) If limx→∞ f (x) = 0 then limn→∞ cn = limn→∞ an.
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Proof. a) We have

cn+1 − cn = f (n+ 1)−
∫ n+3/2

n+1/2

f (t) dt.

Hence f is convex, we are using the Hermite-Hadamard inequalities, for example see [8],
and we obtain ∫ n+3/2

n+1/2

f (t) dt ≥ f

(
n+ 1

2 + n+ 3
2

2

)
= f (n+ 1) .

Then cn+1 − cn ≤ 0 and (cn)n≥1 is decreasing.
b) The function f is positive, so we have∫ n

1

f (t) dt <

∫ n+1/2

1

f (t) dt <

∫ n+1

1

f (t) dt,

for any positive integer n. Now the inequalities an < cn < bn are clear.
c) The result is consequences of the previous point and Theorem 2.1.c. □

The previous theorems shows us that, if the function f is convex and decreasing with
limx→∞ f (x) = 0, the sequences (an)n≥1 , (bn)n≥1 and (cn)n≥1 are convergences and have
the same limit. The common limit will be denoted γf . It is depending exclusively by f.
The next theorem present a first result involving this constant.

Theorem 2.3. ( [14], relation 7) We suppose that f is a convex and decreasing function with
limx→∞ f (x) = 0. For any positive integer n there exists a unique point xn ∈ (0, 1) such that
Fn (xn) = γf .

Proof. From Theorem 2.1 we find an < γf < bn, also Fn (1) < γf < Fn (0) , for any
positive integer n. The intermediary value theorem give us a point xn ∈ (0, 1) such that
Fn (xn) = γf .

If we suppose that this point is not unique, then there exists yn ∈ (0, 1) such that
Fn (yn) = γf . From Fn (yn) = Fn (xn) , we obtain

∫ n+yn

1
f (t) dt =

∫ n+xn

1
f (t) dt, also∫ n+yn

n+xn
f (t) dt = 0. Hence, f is positive, we find n+ yn = n+ xn, so yn = xn and the proof

is complete. □

Theorem 2.3 give us a sequence (xn)n≥1 . The properties of this sequence are included
in the following result.

Theorem 2.4. ([14], Theorem 2) We suppose that f is a convex and decreasing function with
limx→∞ f (x) = 0.

a) For any n ≥ 1, we have 1
2 ≤ xn ≤ 1

4

(
1 + f(n)

f(n+1)

)
;

b) If limn→∞
f(n+1)
f(n) = 1 then limn→∞ xn = 1

2 .

Proof. a) From Theorem 2.2 we obtain cn ≥ γf , also Fn

(
1
2

)
≥ Fn (xn) . The definition of

Fn goes to
∫ n+1/2

1
f (t) dt ≤

∫ n+xn

1
f (t) dt, also

∫ n+xn

n+1/2
f (t) dt ≥ 0. Hence f is positive, we

obtain xn ≥ 1
2 .

Hence f is a convex function then the Hermite-Hadamard inequalities goes to∫ n+xn

n+1/2

f (t) dt ≥ f

(
n+ 1/2 + n+ xn

2

)(
xn − 1

2

)
.

The monotonicity of f lead us to

f

(
n+ 1/2 + n+ xn

2

)
≥ f

(
n+ 1/2 + n+ 1

2

)
= f

(
n+

3

4

)
≥ f (n+ 1) .
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Now, we consider the sequence (yn)n≥1 defined by yn = cn + f(n+1)−f(n)
4 , n ≥ 1. We

have

yn+1 − yn = (cn+1 − cn) +

(
f (n+ 2)− f (n+ 1)

4
− f (n+ 1)− f (n)

4

)
= f (n+ 1)−

∫ n+3/2

n+1/2

f (t) dt+
f (n+ 2)− 2f (n+ 1) + f (n)

4

=
1

2
· f (n+ 2) + f (n+ 1)

2
+

1

2
· f (n+ 1) + f (n)

4
−
∫ n+3/2

n+1/2

f (t) dt

≥ 1

2

(
f

(
n+

3

2

)
+ f

(
n+

1

2

))
−
∫ n+3/2

n+1/2

f (t) dt

≥ 0.

The last inequality is true due to the Hermite-Hadamard inequalities. We obtain that the
sequence (yn)n≥1 is increasing. Hence limn→∞ yn = limn→∞ cn = γf , we obtain that

yn ≤ γf , also cn + f(n+1)−f(n)
4 ≤ γf . This is equivalent with∫ n+xn

n+1/2

f (t) dt ≤ f (n)− f (n+ 1)

4
.

With the previous relations, we obtain

f (n+ 1)

(
xn − 1

2

)
≤ f (n)− f (n+ 1)

4

and the conclusion follow now.
b) It is clear from the previous point. □

We conclude this section with a theorem that present the convergence order of the
sequences (an)n≥1 , (bn)n≥1 and (cn)n≥1 .

Theorem 2.5. We assume that the function f is decreasing, convex and limx→∞ f (x) = 0. If
limn→∞

f(n+1)
f(n) = 1 then

a) limn→∞
an−γf

f(n) = − 1
2 ;

b) limn→∞
bn−γf

f(n) = 1
2 ;

c) limn→∞
cn−γf

f(n) = 0.

Proof. First, we observe that Fn(x)−γf

f(n) = 1
f(n)

∫ n+xn

n+x
f (t) dt, for any x ∈ [0, 1] and n ≥ 1.

a) Hence an = Fn (1) we obtain an−γf

f(n) = − 1
f(n)

∫ n+1

n+xn
f (t) dt. The function f is de-

cresing so

(n+ 1) (1− xn) ≤
∫ n+1

n+xn

f (t) dt ≤ f (n+ xn) (1− xn) ≤ f (n) (1− xn) .

We obtain
f (n+ 1)

f (n)
(1− xn) ≤

1

f (n)

∫ n+1

n+xn

f (t) dt ≤ 1− xn

and the conclusion follows due to hypothesis and Theorem 2.4.b.
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b) Since bn = Fn (0) we obtain bn−γf

f(n) = 1
f(n)

∫ n+xn

n
f (t) dt. The function f is decresing

so

f (n+ xn)xn ≤
∫ n+xn

n

f (t) dt ≤ f (n)xn.

Since f (n+ xn) ≥ f (n+ 1) we obtain

f (n+ 1)

f (n)
xn ≤ 1

f (n)

∫ n+xn

n

f (t) dt ≤ xn.

Now the conclusion follows due to hypothesis and Theorem 2.4.b.
c) In the same mode, we obtain cn−γf

f(n) = − 1
f(n)

∫ n+xn

n+1/2
f (t) dt. The function f is decreas-

ing so

f

(
n+

1

2

)(
xn − 1

2

)
≤
∫ n+xn

n+1/2

f (t) dt ≤ f (n+ xn)

(
xn − 1

2

)
.

Moreover, we obtain

f (n+ 1)

(
xn − 1

2

)
≤
∫ n+xn

n+1/2

f (t) dt ≤ f (n)

(
xn − 1

2

)
.

Then

f (n+ 1)

f (n)

(
xn − 1

2

)
≤ 1

f (n)

∫ n+xn

n+1/2

f (t) dt ≤
(
xn − 1

2

)
.

Now the conclusion follows due to the hypothesis and Theorem 2.4.b. □

3. THE MAIN RESULTS

This section is reserved to the main results of this paper. First, we will prove that the
sequence of functions (Fn)n≥1 , defined on the second section, is uniformly convergent
and we include the results from Theorem 2.2 and 2.5 in a more general case. Recall that
the common limit of the sequences (Fn (0))n≥1 ,

(
Fn

(
1
2

))
n≥1

and (Fn (1))n≥1 is denoted
γf .

Theorem 3.6. We assume that f is a decreasing and convex function with limx→∞ f (x) = 0.
a) The sequence of functions (Fn)n≥1 is uniformly convergent to γf ;

b) If limn→∞
f(n+1)
f(n) = 1, then, for any x ∈ [0, 1] , we have limn→∞

Fn(x)−γf

f(n) = 1
2 − x.

Proof. a) We have

|Fn (x)− γf | = |Fn (x)− Fn (0) + Fn (0)− γf |
≤ |Fn (x)− Fn (0)|+ |Fn (0)− γf |

=

∫ n+x

n

f (t) dt+ |Fn (0)− γf |

≤ f (n)x+ |Fn (0)− γf |
≤ f (n) + |Fn (0)− γf | .

Since limx→∞ f (x) = 0 and limn→∞ Fn (0) = γf , we obtain the conclusion.
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b) We have

lim
n→∞

Fn (x)− γf
f (n)

= lim
n→∞

Fn (x)− Fn (0) + Fn (0)− γf
f (n)

= lim
n→∞

Fn (0)− γf
f (n)

+ lim
n→∞

Fn (x)− Fn (0)

f (n)

= lim
n→∞

bn − γf
f (n)

− lim
n→∞

∫ n+x

n
f (t) dt

f (n)

=
1

2
− lim

n→∞

∫ n+x

n
f (t) dt

f (n)
.

The function f is decreasing, so f (n+ x) · x ≤
∫ n+x

n
f (t) dt ≤ f (n) · x. Hence f (n+ 1) ≤

f (n+ x) , we obtain f(n+1)
f(n) · x ≤ 1

f(n)

∫ n+x

n
f (t) dt ≤ x. As consequences we obtain

limn→∞

∫ n+x
n

f(t)dt

f(n) = x and limn→∞
Fn(x)−γf

f(n) = 1
2 − x. □

Further, we present a stability result involving the constant γf . The parents of the sta-
bility concept is considered Ulam and Hyers ( see [2] and [3]). In fact, it was proven that,
for any ε > 0 and for any function f : U → V between two Banach spaces and satisfying

∥f (x+ y)− f (x)− f (y)∥ < ε,

for all x, y ∈ U, there exists δ > 0 and a unique additive function A : U → V such that

∥A (x)− f(x)∥ < δ,

for all x ∈ U.
This result opened a new research direction and a new mathematical concept was born.

Now it is said that the Cauchy additive functional equation, f(x+y) = f(x)+f(y), satisfies
the Hyers–Ulam stability. This concept has influenced more mathematicians studying the
stability problems of functional equations (a large collection of results can be found in
[6]). Today, the terminologies Hyers-Ulam stability is also applicable to the case of other
mathematical objects as linear recurrences [9] or the intermediary point arising from the
mean value theorems [7].

Now, we will prove that the γf are stable relating to function f. Denote A the set of all
convex and decreasing functions h : [1,∞) → (0,∞) with the property limx→∞ h (x) = 0.
Also, let γh the constant associated to h by Theorem 3.6.a.

Theorem 3.7. For any function f ∈ A and any ε > 0 there exists δ > 0 such that for any
function g ∈ A, satisfying the condition |g (t)− f (t)| < δ, for all t ∈ [1,∞) , we have

|γg − γf | < ε.

Proof. First, let f ∈ A. Then, for any positive integer n, there exists xn ∈ (0, 1) such that

γf =

n∑
k=1

f (k)−
∫ n+xn

1

f (t) dt.

Further, let g ∈ A and δ > 0 such that |g (t)− f (t)| < δ, for all t ∈ [1,∞) . For any
positive integer n, there exists yn ∈ (0, 1) such that

γg =

n∑
k=1

g (k)−
∫ n+yn

1

g (t) dt.
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Then, we have

|γg − γf | =

∣∣∣∣∣
n∑

k=1

g (k)−
∫ n+yn

1

g (t)−
n∑

k=1

f (k) +

∫ n+xn

1

f (t) dt

∣∣∣∣∣
=

∣∣∣∣∣
n∑

k=1

(g (k)− f (k))−
∫ n+yn

1

(g (t)− f (t)) dt+

∫ n+xn

n+yn

f (t) dt

∣∣∣∣∣
≤

n∑
k=1

|g (k)− f (k)|+
∫ n+yn

1

|g (t)− f (t)| dt+
∣∣∣∣∫ n+xn

n+yn

f (t) dt

∣∣∣∣
≤ nδ +

∫ n+1

1

|g (t)− f (t)| dt+
∫ n+1

n

f (t) dt,

that led us to
|γg − γf | < 2nδ + f (n) ,

for any positive integer n.
Now, let ε > 0. Hence limn→∞ f (n) = 0, there exists a positive integer M such that

f (n) < ε
2 , for any positive integer n ≥ M. We consider δ = ε

4M . From previous inequality,
we obtain

|γg − γf | < 2Mδ + f (M)

< 2M · ε

4M
+

ε

2
= ε

and the proof is complete. □

We can remark that the result from previous theorem is not only a stability result. If
we consider the functional T : A → R, defined by T (f) = γf and a sequence of function
(fn)n≥1 from A, uniformly convegent to f, then limn→∞ T (fn) = T (f) .

Now, we conclude our paper by presenting our proof to Proposition 1.1. from the first
section.

Proof of Proposition 1.1. Hence f ′ (x) ̸= 0, for any x ∈ [1,∞) , then we can assume that f ′ is
negative. If limx→∞ f (x) = 0, we obtain f is positive. If we assume that f ′ is decreasing,
we obtain that f is concave which contradicts with f positive and limx→∞ f (x) = 0. It
remains that f ′ is increasing and f is convex.

Further, we will proof that limn→∞
f(n+1)
f(n) = 1. First, we evaluate limn→∞

f(n+2)−f(n+1)
f(n+1)−f(n) .

From mean value theorem we find un ∈ (n, n+ 1) and vn ∈ (n+ 1, n+ 2) such that

f (n+ 2)− f (n+ 1)

f (n+ 1)− f (n)
=

f ′ (vn)

f (un)
.

Hence un < vn and f ′ is increasing, we obtain f ′(vn)
f(un)

> 1. By the other side, we have

f ′ (vn)

f (un)
<

f ′ (n+ 2)

f ′ (n)
=

f ′ (n+ 2)

f ′ (n+ 1)
· f

′ (n+ 1)

f ′ (n)
.

Hence limn→∞
f ′(n+1)
f ′(n) = 1, we obtain limn→∞

f ′(vn)
f(un)

= 1. As conclusion, we find

lim
n→∞

f (n+ 2)− f (n+ 1)

f (n+ 1)− f (n)
= 1.

The Cesaro-Stolz lemma on the case 0
0 (see [1]) concludes that limn→∞

f(n+1)
f(n) = 1.
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Now the sequence
∑n

k=1 f (k) −
∫ n

1
f (t) dt has finite limit as consequence of Theorem

2.1.
If f ′ is positive, we use similar reasoning for −f.
The second result is consequences of Theorem 2.1.b and Theorem 2.5.b. □
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