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Analysis of a nonlinear financial model

G. MOZA, E. GRECU and L. TIRTIRAU

ABSTRACT. A three-dimensional nonlinear differential system for modeling inflation rate in a given econ-
omy is proposed and investigated in this article. Using a bifurcation-based method in the study, we describe
the conditions leading to regions of stability for the long-term behavior of the model, which are economically
desirable, along with regions of instability, which should be avoided in an economy.

1. INTRODUCTION

In this paper we have carried out a reassessment of a studied economic model, taking
into account a nonlinear evolution. Thus, compared to the model studied in [10], for
calculating the time variation of the inflation rate, we added the effect generated by the
economic agents’ expectations on the evolution of the real interest rates. In this way, the
model becomes

(1.1) ẋ = z + x (y − a) , ẏ = 1− by − x2, ż = −x− cz +mxy,

where x = x (t) is the real interest rate (calculated as the difference between the nominal
interest rate and the inflation rate), y = y (t) the investment demand, z = z (t) the inflation
rate, a ∈ R the amount (of money) saved, b > 0 the cost per investment, c > 0 the elasticity
of the demand on the commercial market [10] and m > 0 the effect of the anticipations on
the evolution of the real interest rate.

The adding of the new term mxy is based on the following facts. The decisions of the
economic agents are influenced not only by the objective characteristics of the economic-
social environment in which they operate, but also by their anticipations (expectations)
regarding the future, which they make, taking into account all the significant information
they have [3]. Anticipations regarding the future evolution of monetary policy interest
rates influence a wide spectrum of real rates x (t) of long-term interest rates of economic
agents (as well banks and markets). Also, expectations influence investment y (t) and pri-
vate consumption. For example, if higher profits are anticipated, companies will tend to
increase their investment spending. If households expect higher real incomes as a result of
increased anticipated labor productivity, they will be inclined to increase their consumer
spending [7]. Therefore, in general, strengthening investor and consumer confidence is
associated with increased aggregate demand and vice versa in the case of decreased con-
fidence, in the sense of decreased aggregate demand.

The paper is organized as it follows. In the first section we define the model and present
links with other financial models. Section 2 is devoted to the mathematical analysis of the
model and economic interpretations of the results. It contains five sub-sections. The first
one is dedicated to the mathematical analysis of the model around its first equilibrium
point, which is followed by a sub-section dealing with economic interpretations of the
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results. Sub-section three is dedicated to the study of the model around the other equi-
librium points, followed by sub-section four where we present economic relevance of the
results. A discrete-time analysis is presented in sub-section five. The paper ends with
conclusive remarks.

2. ANALYSIS OF THE MODEL

Denote further by α = c+m−abc−b
c+m . Notice that c + m ̸= 0. For α ≤ 0 the system has a

single equilibrium point A
(
0, 1

b , 0
)
, while two more equilibria arise when α > 0, namely

B

(√
α,

ac+ 1

c+m
,−

√
α
1− am

c+m

)
and C

(
−
√
α,

ac+ 1

c+m
,
√
α
1− am

c+m

)
.

Remark 2.1. Notice that B and C lie in the same plane y = y0, where y0 = ac+1
c+m , and are

symmetrical with respect to the y−axis.

2.1. Properties of the equilibrium A.

Theorem 2.1. The following assertions are true. 1) If α < 0, A is an attractor for 1−ab−bc < 0,
respectively, a saddle for 1− ab− bc > 0.

2) If α < 0 and 1− ab− bc = 0, the system (1.1) undergoes a Hopf bifurcation at A.
3) If α > 0, then A is a saddle-node.

Proof. 1) The characteristic equation at A reads

(λ+ b)
(
bλ2 − (1− ab− bc)λ− α (c+m)

)
= 0.

Thus, the eigenvalues at A satisfy λ1 = −b < 0, respectively, λ2λ3 = − c+m
b α and λ2+λ3 =

1−ab−bc
b . If α < 0, A is an attractor on 1 − ab − bc < 0 because λ1 < 0 and Re (λ2,3) < 0,

respectively, a saddle on 1 − ab − bc > 0 with dim (W s) = 1 and dim (Wu) = 2 because
λ1 < 0 and Re (λ2,3) > 0. More exactly, A is a saddle-node if ∆ > 0, respectively, saddle-
focus if ∆ < 0, where ∆ = (1− ab− bc)

2
+ 4bα (c+m) .

2) Assume a, c,m fixed with a + c > 0 and m < 1−c2

c+a , and let b varies with α < 0.

Notice that 0 < m < 1−c2

c+a is well-defined for all c with 0 < c < 1 and a + c > 0.

Then, at b = b0, where b0 := 1
a+c , the complex eigenvalues at A become ±iω0, where

ω0 =
√
1− c2 −m (a+ c) > 0. Since ∂Re(λ2,3)

∂b

∣∣∣
b=b0

= − 1
2 (a+ c)

2 ̸= 0, a Hopf bifurcation

occurs at A. The bifurcation is non-degenerate if the first Lyapunov coefficient l1 (0) ̸= 0
and degenerate if l1 (0) = 0.

3) It is clear that A is a saddle when α > 0 since λ2λ3 < 0. It is also a node because
λ2λ3 < 0 yields λ2,3 ∈ R. Thus, A is a saddle-node. Since λ1 = −b < 0 and λ2 < 0 or
λ3 < 0, it follows that dim (W s) = 2 and dim (Wu) = 1. □

Remark 2.2. Since the model (1.1) depends on four parameters a, b, c, m, the expression of
l1 (0) is typically complex. It can be obtained easier in particular cases of the parameters.

Corollary 2.1. Due to the Hopf bifurcation at 1−ab−bc = 0 for α < 0, when l1 (0) ̸= 0 a unique
periodic orbit (limit cycle) arises around the equilibrium A. More exactly, when l1 (0) < 0, the
limit cycle is stable and exists when A is unstable (saddle-focus), that is for b < 1

a+c , respectively,
when l1 (0) > 0, the limit cycle is unstable and exists when A is attractor, b > 1

a+c .

Remark 2.3. The existence of a stable periodic orbit around an unstable (saddle-focus)
equilibrium point A, changes significantly the economic interpretation of the model, as
we will see in the following.
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2.2. Economic interpretation of the model around A. Four main cases arise depending
on the stability of A and the existence of the Hopf bifurcation.

1) Assume α < 0 and 1−ab−bc < 0, thus, A is an attractor. Then, for any starting value
u0 = (x (0) , y (0) , z (0)) sufficiently close to A

(
0, 1

b , 0
)
, the dynamics of the economic sys-

tem is one that converges towards A, that is, (x (t) , y (t) , z (t)) tends to the point
(
0, 1

b , 0
)

for t increasing and sufficiently large, which is constituted as a stable (node or focus) sta-
tionary state. If a very low real interest rate x (0) and inflation rate z (0) are taken, both
around 0, and the investment demand y (0) is approximately equal to the inverse of the
cost per investment (y (0) ≈ 1/b), then the economy will converge to the equilibrium
point A.

Thus, because the real interest rate x (t) (which tends, in the case of this balance A, to
0) is given by the difference between the nominal interest rate and the inflation rate z(t)
(which tends also to 0 ), it turns out that the nominal interest rate will be equal to 0. In
such a situation, (theoretically) nominal interest rates can no longer be reduced and prices
tend to remain constant [6]. A monetary policy that maintains price stability, i.e. z (t) → 0,
generally has positive effects on economic activity. If prices are stable, economic agents
(companies and consumers) do not risk misinterpreting the changes in the general level
of prices, considering them variations in relative prices, and can make decisions related to
consumption and investments in the informed case. From a theoretical point of view, in
order to stimulate demand and avoid falling prices, budget deficits should be increased,
which is not desirable [11].

On the other hand, when approaching the equilibrium point A in the model, it may
appear cases when x (t) < 0, or even the starting point could be negative, x (0) < 0. Thus,
the model reaches the situation where a negative interest rate policy should be instituted.
This is an unusual monetary policy instrument in which nominal interest rates are set at
a negative value, below the theoretical lower limit of zero percent. Such a situation is
not advisable. “Zero-bound” is an expanding monetary policy tool, where a central bank
reduces short-term interest rates to zero, if necessary, to stimulate the economy [9]. ”Zero-
bound” is the lower limit at which rates can be reduced, but not beyond that. When this
level is reached and the economy is still under performing, the central bank can no longer
provide incentives through interest rates. ”Liquidity trap” is the term used by economists
to describe this scenario [9]. A liquidity trap is a situation where interest rates are low and
savings rates high (which makes monetary policy inefficient) [11]. In a liquidity trap, if a
country’s central bank tries to stimulate the economy by increasing its money supply, it
would have no effect on interest rates (as economic agents should not be encouraged to
hold additional cash) [1]. When faced with a liquidity trap, alternative monetary stimu-
lation procedures are often needed for some countries [11]. Conventionally, the idea was
that interest rates could not move in the negative territory, which means that, once interest
rates reach zero or close to zero, for example, 0.01%, monetary policy must be changed to
further stabilizes or stimulating the economy.

Thus, an economic model of type (1.1) which oscillates around a stationary attracting
state A

(
0, 1

b , 0
)

might be good, this presenting also the scenario with negative interest rate
policy.

Figure 1 presents numerically the attracting character of A (0, 1/b, 0) for a = 2.26, c =
m = 0.5 and two values of b, namely b = 0.5 and b = 2. The eigenvalues of A in the first
case are −0.26, −0.5, −0.5, while in the second −1.13 ± 0.59i and −2. Thus, A is a stable
node, respectively, focus in the two cases. We notice that b > m+c

ac+1 in order to have α < 0.

Orbits starting close to A are attracted by A.
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FIGURE 1. The steady state A attracts nearby orbits for a = 2.26, c = 0.5, m = 0.5 and
(a) b = 0.5, respectively, (b) b = 2.

2) Assume further α < 0 and 1 − ab − bc > 0, that is, m+c
ac+1 < b < 1

a+c . We assume

also 0 < m < 1−c2

c+a and l1 (0) < 0, in order to have Hopf bifurcation with negative first
Lyapunov coefficient. Thus, A is a saddle-focus (unstable) point and, because l1 (0) < 0, a
stable periodic orbit (limit cycle) Γ1 is born around A for all 1 − ab − bc > 0 with |b− b0|
sufficiently small; b0 = 1

a+c . Since λ1 < 0 and Re (λ2,3) > 0, there exist a stable manifold
W s of dimension 1 and an unstable manifold Wu of dimension 2, both passing through A
and being invariant to the model’s flow, that is, an orbit starting on W s (or Wu ) remains
on W s (or Wu ).

The behaviors of the model on the two manifolds are completely different. If an orbit
starts from an initial point u0 = (x0, y0, z0) lying on W s, then the orbit (x (t) , y (t) , z (t))
converges to A

(
0, 1

b , 0
)

for t increasing, theoretically t → ∞, while if u0 ∈ Wu then the
orbit (x (t) , y (t) , z (t)) departs from A but it still stays around A being attracted by the
stable limit cycle Γ1.

Thus, when starting with values from W s, the economy will stabilize towards A, while
starting from Wu, the economy will have converging tendencies towards the periodic
orbit Γ1. Moreover, starting with u0 which is neither on W s nor Wu but close to A, the
corresponding orbit (x (t) , y (t) , z (t)) will converge to Γ1 for t increasing. Therefore, an
unstable saddle-type balance will appear which is surrounded by an island of stability,
thus, yielding economic relevance.

Figures 2-3 present numerically this scenario for a = 1, b = 0.6, c = 0.4 and m = 0.4,
where A (0, 1.6, 0) is a saddle-focus with its eigenvalues 0.13± 0.2i and −0.6, surrounded
by a stable periodic orbit. Figure 4 shows the time series of the periodic orbit depicted in
Figure 3. We observe from Figure 4 that the periodic orbit enters the zone with negative
values for x(t) and z(t).

From an economic point of view, when the model presents this scenario of existing a
stable periodic orbit around the unstable steady state A, it ofers predictability and, thus,
can be recommended [4]. The existence of the stable limit cycle ensures a long-term sta-
bility of the economic model because any orbit starting at a point sufficiently close to Γ1

will oscillate around the limit cycle closer and closer to it or will tend to A [2]. This form
of predictability when the behavior of the model approximates a periodic orbit may de-
scribe better a real economy (which oscillates in a region of stability rather then tending
to a precise steady state) and would be more desirable in practice.

3) Assume α < 0, 1− ab− bc > 0 and l1 (0) > 0. This corresponds to the situation when
A is a saddle point but no stable periodic orbits exist sufficiently close to A. Thus, an orbit
starting close to A from a point u0 /∈ W s will depart from A and may escape to infinity.
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FIGURE 2. The parametric values used in this figure are a = 1, b = 0.6, c = 0.4,m = 0.4.
The figure presents the behavior of an orbit starting close to A (a), respectively, a stable
periodic orbit Γ1 arising around an unstable (saddle-focus) equilibrium A (b); the periodic
orbit was obtained with the starting point (0.033, 1.431, 0.314).
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FIGURE 3. A bunch of orbits approaching the stable periodic orbit Γ1 for a = 1, b =

0.6, c = 0.4,m = 0.4.
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FIGURE 4. The time series of the periodic orbit starting at (0.033, 1.431, 0.314) and para-
metric values a = 1, b = 0.6, c = 0.4,m = 0.4.

From an economic point of view, this steady state is not advisable in general as we explain
below.

On one hand, an increase in real interest rates, as a result of monetary policy measures,
will lead to a reduction in current spending in the economy (provided that the other vari-
ables would be maintained constant values). This will reduce the attractiveness of current
consumption among households and the current investments of companies will be dis-
couraged. On the other hand, lowering real interest rates could lead to a ”liquidity trap”
whose clear indication is given by low interest rates (and possibly increased savings rates)
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[9]. In order to stimulate demand, real interest rates may fall below 0 and bring them into
the negative territory.

Examples of zero and even negative interest rate policies sometimes arise because of
the economic turmoil that requires lowering interest rates to stimulate the economy. Neg-
ative interest rates can occur during deflationary periods, when businesses have too much
money instead of spending. This can lead to a sharp drop in demand and a sharp drop in
prices. Under such conditions, reducing the central bank’s interest rate to zero is not al-
ways sufficient to stimulate credit and lending growth. In recent years, some central banks
(from Europe and Japan) have implemented a negative interest rate policy (regarding ex-
cess bank reserves in the financial system) [8]. There are cases where negative rates have
been implemented in normal periods (economically speaking). For example, in Switzer-
land in mid-2019, the target interest rate was −0.75% to maintain very low (and negative)
rates to prevent the currency from growing too significantly (Switzerland is regarded as a
country with low inflation and with a currency considered as a safe heaven) [12]. Japan has
adopted a similar policy, with a target rate in mid-2019 of −0.1%. This tool was designed
to stimulate economic growth through expenditure and investment [8]. In this way, it has
been attempted that depositors should be encouraged to spend cash rather than deposit
it at the bank and bear a guaranteed loss (generated by negative real interest).

4) If α > 0, then A is a saddle-node with dim (W s) = 2 and dim (Wu) = 1. The model
does not undergo a Hopf bifurcation, thus, no stable periodic orbit is expected around
A. Following an argument as in 3), the behavior of the model around A does not present
economic relevance. However, as we will prove in the next section, when α > 0 the model
presents economic relevance for its behavior around the equilibrium B.

2.3. Properties of the equilibrium points B and C. We proceed in the following to study
the other equilibrium points B and C. The characteristic equation at B and C reads

(2.2) λ3 + a2λ
2 + a1λ+ a0 = 0,

where a2 = a + b + c − ac+1
c+m , a1 = 2α + bc + ab − (ac+1)b

c+m and a0 = 2α (c+m) . Denote
further by k0 =

(
am− 2ac+ cm+ c2 − 3

)
a2 + (a1 + 2ac+ 2) (c+m) .

Remark 2.4. Since λ1λ2λ3 = −a0 < 0 whenever B and C exist as non-trivial equilibria,
i.e. on α > 0, B and C cannot be repellers (i.e. λ1,2,3 > 0).

A long-term financial strategy aims to determine conditions in which an economy re-
mains in one or more zones of stability [2]. For our model, this means to determine suffi-
cient conditions for B and C to be attractors or find stable periodic orbits around B and
C. In this regard, the following result is obtained.

Theorem 2.2. Assume α > 0. Then, the following assertions are valid.
1) The equilibrium points B and C are attractors if and only if a2 > 0 and a2a1 > a0.
2) If a2a1 = a0, a1 > 0 and k0 ̸= 0, the system (1.1) undergoes a Hopf bifurcation at B and C.

Proof. 1) From Routh-Hurwitz criterion, the characteristic equation (2.2) has all roots
with negative real parts if and only if a0 > 0, a2 > 0 and a2a1 > a0. Since a0 > 0 whenever
α > 0, the proof is completed. Outside these conditions, B and C may be saddles or non-
hyperbolic.

2) The characteristic equation (2.2) has two purely complex roots of the form ±iω0 if
and only if a1 > 0 and a2a1 = a0, where ω0 =

√
a1. The equation (2.2) reads in this case

(λ+ a2)
(
λ2 + a1

)
= 0. Notice that this occurs when a2 = a0/a1 > 0, thus, the real root at

the bifurcation value is negative, λ1 = −a2 < 0.
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Fix further a ∈ R, c > 0 and m > 0 while b can vary, thus, b is the bifurcation parameter.
We can find b from a2a1 − a0 = 0 in the form

b0 =
1

δ

(
h1 ±

√
h2

)
,

where h1 = h1 (a, c,m) and h2 = h2 (a, c,m) are two smooth functions of their arguments
and δ = 2

(
2ac− am− cm− c2 + 3

)
, provided that h2 ≥ 0. Thus, b0 is the Hopf bifurca-

tion value.
Differentiating with respect to b in (2.2), we get

(2.3)
(
3λ2 + 2a2λ+ a1

) ∂λ
∂b

+
∂a2
∂b

λ2 +
∂a1
∂b

λ+
∂a0
∂b

= 0.

Then, at a2a1 = a0 we have λ = ±iω0, which by (2.3) gives rise to

∂ (Reλ)

∂b

∣∣∣∣
a2a1=a0

= − k0
2 (a22 + a1) (c+m)

̸= 0.

Notice that a2 and a1 from the expression of k0 are expressed at b = b0. Thus, a Hopf bifur-
cation occurs at B and C, which is non-degenerate if l1 (0) ̸= 0, respectively, degenerate if
l1 (0) = 0. An expression of l1 (0) is complex. It can be obtained easier in particular cases
of the parameters. □

Remark 2.5. Since the first coordinate of C
(
−
√
α, ac+1

c+m ,
√
α 1−am

c+m

)
is negative, the behav-

ior of the model around C does not present economic relevance.

Remark 2.6. The existence of Hopf bifurcation at a2a1 = a0 enriches the economic inter-
pretation of the model due to stable periodic orbits which are born by the bifurcation.

2.4. Economic interpretation around B. Three main situations should be considered here
based on the corresponding type of B.

1) B is an attractor, that is, a2 > 0 and a2a1 > a0. We impose also 1 − am < 0 in
order to have B with positive coordinates. In this case the values of the real interest rates,
investments and the inflation rate are different from zero and converge to a point that has
the characteristic of stability, the equilibrium B. This is a stable node or focus (attractor).
From an economic point of view, this is a situation of interest and the tendency to reach
such a steady state should be encouraged [2].

A numerical example with B attractor can be obtained for a = 2.26, c = 1/2 and
m = 1/2. B is well-defined in this case with positive coordinates if 0 < b < 0.469. A Hopf
bifurcation occurs at b ≃ 0.23 when B changes its stability and type: it is a saddle-focus
on 0 < b < 0.23, respectively, an attractor on 0.23 < b < 0.469. For example, at b = 0.4,
the eigenvalues of B (0.38, 2.13, 0.05) are −0.11 ± 0.59i and −0.80, thus, Re (λi) < 0 for
all i = 1, 2, 3. In Figure 5 we see a bunch of orbits starting close to B and C and spiraling
towards the points.

Remark 2.7. Since the coordinates of B are all strictly positive and each of them can be
chosen far from 0, the economic relevance of the model around an attractor B is more
significant than around an attractor A, since an orbit (x (t) , y (t) , z (t)) staying around B
will not meet x (t) ≤ 0, while an orbit oscillating around A may enter such a zone.

2) B is a saddle with l1 (0) < 0. Then, dim (W s) ≥ 1 and dim (Wu) ≥ 1. If an orbit
starts with an initial value u0 ∈ W s, there is a tendency of economic stabilization since
(x (t) , y (t) , z (t)) converges to B for t increasing, but if it starts at u0 ∈ Wu, the economy
will depart from the steady state B, thus x (t) may become larger and larger. However,
since the model has a Hopf bifurcation at B and l1 (0) < 0, then similar to A, a stable
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FIGURE 5. B and C are attractors of type focus for a = 2.26, b = 0.4, c = 0.5 and
m = 0.5. The pictures show more orbits spiraling to B and C.

periodic orbit Γ2 (limit cycle) is born around B when the bifurcation parameter b crosses
the value b0 and |b− b0| is sufficiently small. All orbits starting in a small neighborhood
of Γ2 (including Wu) will tend to Γ2 for t increasing.

In Figure 6 we present numerically such a stable periodic orbit formed around the
unstable equilibrium B. We consider a = 2.26, b = 0.1, c = 0.5 and m = 0.5 which lead
to B (0.88, 2.13, 0.11) with the eigenvalues 0.07± 1.3i and −0.88. Thus, dim (W s) = 1 and
dim (Wu) = 2. Figure 7(a) shows the time series of the periodic orbit Γ2 depicted in Figure
6, from which we see that the periodic orbit enters the zone with negative values for x(t)
and z(t).
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FIGURE 6. The figures are obtained for a = 2.26, b = 0.1, c = 0.5 and m = 0.5. (a) An
orbit starting close to B at (0.8, 2.1, 0.1) approaches the periodic orbit Γ2. (b) Approxima-
tion of a stable periodic orbit Γ2 surrounding the unstable (saddle-focus) B. The orbit was
obtained with the starting point (2.1, 2.15, 0.67).

3) B is a saddle with l1 (0) > 0. Then no stable periodic arises around B by the Hopf
bifurcation and an orbit starting at a point u0 /∈ W s will depart from the steady state B.
From an economic point of view, this steady state is not advisable since no predictability
can be achieved. For example, an increasing interest rate x (t) beyond

√
α will decrease

aggregate demand, this phenomenon being a tightening of monetary policy [9]. At the
same time, a decreasing interest rate x (t) beyond

√
α will generate an increase in aggre-

gate demand, which may lead to a relaxation of monetary policy [12].

Remark 2.8. We notice that the system (1.1) proposed in this work has two equilibrium
points with economic relevance, that is, A and B, while the initial system studied in [10],
which corresponds to m = 0 in (1.1), has only A as steady state. On the other hand, as
it can be seen from the subsections 2.3 and 2.4, the new point B enriches the economic
relevance of the system (1.1) in this new framework with m > 0.
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FIGURE 7. (a) The time series of the periodic orbit Γ2 starting at (2.1, 2.15, 0.67) and
parametric values a = 2.26, b = 0.1, c = 0.5, m = 0.5. (left); (b) The values (yn, zn) where
orbits starting nearby the periodic orbit Γ2 intersect the section x = 0 (right).

FIGURE 8. The discrete values yn, respectively, zn on the Poincaré section x = 0 of the
orbit starting at (2.1, 2.15, 0.67) when a ranges from 1 to 3 with a step of 0.01. The other
parametric values are fixed at b = 0.1, c = 0.5, m = 0.5.

2.5. Discrete dynamics. Insights on the local behavior of the model around a periodic
orbit can be obtained by using discrete dynamics, more exactly, by studying the recurrent
flow’s intersection with a surface (Poincaré section) transversal to the flow, that is, defin-
ing a Poincaré map. As cross-section we take the surface S =

{
(x, y, z) ∈ R3, x = 0

}
. Since

dx
dt

∣∣
x=0

= z, all orbits γ (t) = (x (t) , y (t) , z (t)) with z (t) ̸= 0 at x (t) = 0, cross transver-
sally the section S. In Figure 7 (b) we determine the points (yn, zn) , where more orbits
starting nearby the periodic orbit Γ2 at points of the form γ0 (s) =

(
2.1− s, 2.15− s

2 , 0.67−
s
4

)
,

with s ranging from 0 to 2 in step of 0.1, intersect the cross-section S. While yn > 0, we
notice that the flow intersects S at positive and negative values of zn. The code in Matlab
(version R2020b) we used to obtain Figure 7 (b) is below (left).

In Figure 8, we determine the values yn and zn where an orbit starting at γ0 (0) inter-
sects S, when a ranges from 1 to 3 in step of 0.01, that is, a = an = 1+(n− 1) ·10−2, n ≥ 1,
while the other parameters are fixed at b = 0.1, c = 0.5 and m = 0.5. In Figure 9 we find
the same values yn and zn, but when b varies. The code in Matlab when a varies, Figure
8, is presented below (right). For Figure 9 the code is similar.
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clear; a = 2.26; b = 0.1; c = 0.5;m = 0.5; clear; b = 0.1; c = 0.5;m = 0.5;
for s = 0 : 0.1 : 2 for a = 1 : 0.01 : 3
y0 = [2.1− s, 2.15− s/2, 0.67− s/4]; y0 = [2.1, 2.15, 0.67];
[t, y] = ode45(@system, [0 : 0.1 : 103], y0); [t, y] = ode45(@(t, y) system(t, y, a),

[0 : 0.1 : 100], y0);
n = size(t)− 1; n = size(t)− 1;
for i = 1 : n(1) for i = 1 : n(1)
if (y(i, 1) ∗ y(i+ 1, 1) <= 0) if (y(i, 1) ∗ y(i+ 1, 1) <= 0)
plot(y(i, 2), y(i, 3),′ r∗′); hold on; plot(a, y(i, 2),′ r∗′); hold on;
end end
end end
end end
%define the function ’system’; % define a function ’system’ on a;
function dy = system(t, y) function dydt = system(t, y, a)
a = 2.26; b = 0.1; c = 0.5;m = 0.5; b = 0.1; c = 0.5;m = 0.5;
dy = zeros(3, 1); dydt = zeros(3, 1);
dy(1) = y(3)− a ∗ y(1) + y(1) ∗ y(2); dydt(1) = y(3)− a ∗ y(1) + y(1) ∗ y(2);
dy(2) = 1− b ∗ y(2)− y(1) ∗ y(1); dydt(2) = 1− b ∗ y(2)− y(1) ∗ y(1);
dy(3) = −y(1)− c ∗ y(3) +m ∗ y(1) ∗ y(2); dydt(3) = −y(1)− c ∗ y(3) +m ∗ y(1) ∗ y(2);
end end

The Matlab codes for obtaining the Figures 7 (b), 8, 9.

FIGURE 9. The discrete values yn, respectively, zn on the Poincaré section x = 0 of the
orbit starting at (2.1, 2.15, 0.67) when b ranges from 0.3 to 2 with a step of 0.01. The other
parametric values are fixed at a = 2.26, c = 0.5, m = 0.5.

3. CONCLUSIONS

Often, complex economic systems seem too chaotic to be able to recognize in them a
certain typology. However, the use of differential equations for studying dynamic eco-
nomic systems allows the identification of useful elements for economic decision-makers
[5], [13]. The representation of dynamic economic systems in the form of graphs may
indicate that there is a certain state in which the system is trying to reach. The objec-
tive characteristics of the economic-social environment, correlated with the expectations
of the economic agents, can provide important and relevant signals on the evolution of
economic systems. Therefore, the economic decision-makers should take into account the
evolution of the dynamic systems so as to favor the creation of stable equilibrium situa-
tions, as well as to avoid the emergence of unstable regions.
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