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On the real projections of zeros of analytic almost periodic
functions

J. M. SEPULCRE and T. VIDAL

ABSTRACT. This paper deals with the sets of real projections of zeros of analytic almost periodic functions
defined in a vertical strip. By using our equivalence relation introduced in the context of the complex functions
which can be represented by a Dirichlet-like series, this work provides practical results in order to determine
whether a real number belongs to the closure of such a set. Its main result shows that, in the case that the Fourier
exponents of an analytic almost periodic function are linearly independent over the rational numbers, such a set
has no isolated points.

1. INTRODUCTION

The theory of almost periodic functions, which was created and developed in its main
features by H. Bohr during the 1920’s, opened a way to study a wide class of trigonomet-
ric series of the general type and even exponential series. This theory shortly acquired
numerous applications to various areas of mathematics, from harmonic analysis to dif-
ferential equations. In the case of functions that are defined on the real numbers, the
notion of almost periodicity is a generalization of purely periodic functions and, in fact,
as in classical Fourier analysis, every almost periodic function is associated with a Fourier
series with real frequencies.

Let us briefly recall some notions concerning the theory of the almost periodic functions
of a complex variable, which was theorized in [4] (see also [3, 5, 8, 12]). A function f(s),
s = σ+it, analytic in a vertical stripU = {s = σ+it ∈ C : α < σ < β} (−∞ ≤ α < β ≤ ∞),
is called almost periodic in U if to any ε > 0 there exists a number l = l(ε) such that each
interval t0 < t < t0 + l of length l contains a number τ satisfying

|f(s+ iτ)− f(s)| ≤ ε ∀s ∈ U.

We will denote as AP (U,C) the space of analytic almost periodic functions in a vertical
strip U . It is known that every almost periodic function in AP (U,C) is determined by an
exponential series of the form

∑
n≥1 ane

λns with complex coefficients an and real expo-
nents λn, called Fourier exponents of f . This associated series is called the Dirichlet series
of the given analytic almost periodic function (see [3, p.147], [8, p.77] or [12, p.312]).

Moreover, the set of analytic almost periodic functions in a vertical strip U coincides
with the set of the functions which can be approximated uniformly in every reduced strip
by exponential polynomials of the form

(1.1) a1e
λ1s + . . .+ ane

λns, aj ∈ C, n ≥ 2

where {λ1, λ2, . . . , λn} is an ordered set of real numbers (see for example [8, Theorem
3.18]). In fact, it is convenient to recall that, even in the case that the sequence of the partial
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sums of its Dirichlet series does not converge uniformly, there exists a sequence of expo-
nential polynomials, called Bochner-Fejér polynomials, of the typePk(s) =

∑
j≥1 pj,kaje

λjs

where for each k only a finite number of the factors pj,k differ from zero, which converges
uniformly to f in every reduced strip in U and converges formally to the Dirichlet series
on U [3, Polynomial approximation theorem, pp. 50,148].

In the context of the complex functions which can be represented by a Dirichlet-like se-
ries (in particular those almost periodic functions in AP (U,C)), we established in 2018
a new equivalence relation among them, say the ∗-equivalence, which led to refining
Bochner’s result that characterizes the almost periodicity (see [19, Theorem 5]) and a thor-
ough extension of Bohr’s equivalence theorem (see [22, Theorem 1]). This new equiv-
alence relation, which is widely used in this paper, coincides with that of Bohr for the
particular case of general Dirichlet series whose sets of exponents have an integral basis
(see [22, Proposition 1]). Other important results derived from this equivalence relation
can be seen in [19, 20, 21, 22, 23].

On the other hand, the study of the zeros of the class of exponential polynomials of
type (1.1) has become a topic of increasing interest, see for example [2, 6, 10, 11, 13, 14, 15,
17, 18, 19, 21]. In this paper, we will study certain properties on the zeros of an analytic
almost periodic function f(s) in its vertical strip of almost periodicity U = {s = σ + it :
α < σ < β}. Specifically, consider the values af and bf defined as

(1.2) af := inf {Re s : f(s) = 0, s ∈ U}

and

(1.3) bf := sup {Re s : f(s) = 0, s ∈ U} .

In general, if f has at least one zero in U , it is satisfied −∞ ≤ af ≤ bf ≤ ∞ (it also depends
on U ). Given such a function f(s) with af , bf ∈ R, the bounds af and bf allow us to define
an interval If := [af , bf ] which contains the closure of the set of the real parts of the zeros
of f(s) in U . If either af = ∞ or bf = ∞, the interval If is of the form (−∞, bf ], [af ,∞) or
(−∞,∞). In this paper, we will focus our attention on the set

(1.4) Rf := {Re s : f(s) = 0, s ∈ U} ∩ (α, β).

In this respect, the density properties of the zeros of several groups of exponential
polynomials have also become a topic of increasing interest. In particular, the topological
properties of the set Rζn = {Re s : ζn(s) = 0} associated with the partial sums ζn(s) =
1 + 2−s + . . . + n−s, n ≥ 2, of the Riemann zeta function has been studied from different
approaches. For example, an auxiliary function associated with ζn(s) was used in [17,
Theorem 9] in order to establish conditions to decide whether a real number is in the set
Rζn . This auxiliary function, which is called the “companion function” of ζn in [24, p. 163],
can also be adapted from a known result of C.E. Avellar and J.K. Hale [2, Theorem 3.1]
in order to obtain analytical criterions about RP in the more general case of exponential
polynomials P (s) of type (1.1).

In this paper, by analogy to the case of exponential polynomials, we first introduce an
auxiliary function, of countably many real variables, which is associated with a prefixed
almost periodic function f(s) in a vertical strip U (see section 2). Secondly, we will see
that this auxiliary function leads us to a practical characterization of the points of the set
Rf associated with f(s) (see Theorem 3.2). See also Theorem 3.1 which provides another
characterization of the points in Rf and extends other results such as [7, Lemma 3] or [16,
Lemma 4]. Thirdly, we study the closure set of the real parts of the zeros of almost periodic
functions f(s) whose Fourier exponents {λ1, λ2, . . . , λk, . . .} are linearly independent over
the rational numbers (see section 4). Under these hypothesis, this study provides a new
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pointwise characterization of the setRf in terms of the inequalities (4.8) (see Theorem 4.3),
which facilitates the obtaining of Proposition 4.1, about the boundary points of Rf , and
corollaries 4.1 and 4.2 about some extra conditions under which we can state that Rf ̸= ∅
(concerning this topic, see also Example 4.1). Finally, also under Q-linear independence
of {λ1, λ2, . . . λk, . . .}, with k > 2, we prove that the set of the real projections of the zeros
of f(s) has no isolated point in (α, β) (see Theorem 4.4), which generalizes [13, Theorem
7].

2. AUXILIARY FUNCTIONS ASSOCIATED WITH ALMOST PERIODIC FUNCTIONS

Let SΛ denote the class consisting of exponential sums of the form∑
j≥1

aje
λjp, aj ∈ C, λj ∈ Λ,

where Λ = {λ1, λ2, . . . , λj , . . .} is an arbitrary countable set of distinct real numbers (not
necessarily unbounded), which are called a set of exponents or frequencies.

Also, let GΛ = {g1, g2, . . . , gk, . . .} be a basis of the vector space over the rationals gen-
erated by a set Λ of exponents, which implies that GΛ is linearly independent over the
rational numbers and each λj is expressible as a finite linear combination of terms of GΛ,
say

λj =

qj∑
k=1

rj,kgk, for some rj,k ∈ Q.

By abuse of notation, we will say that GΛ is a basis for Λ. Moreover, we will say that GΛ

is an integral basis for Λ when rj,k ∈ Z for any j, k. Finally, we will say that GΛ is the
natural basis for Λ, and we will denote it as G∗

Λ, when it is constituted by elements in Λ
as follows. Firstly if λ1 ̸= 0 then g1 := λ1 ∈ G∗

Λ. Secondly, if {λ1, λ2} are Q-rationally
independent, then g2 := λ2 ∈ G∗

Λ. Otherwise, if {λ1, λ3} are Q-rationally independent,
then g2 := λ3 ∈ G∗

Λ, and so on.
Let A1(p) and A2(p) be two exponential sums in the class SΛ, say A1(p) =

∑
j≥1 aje

λjp

and A2(p) =
∑
j≥1 bje

λjp. It is said that A1 is ∗-equivalent to A2, and it is denoted as
A1

∗∼ A2, if for each integer value n ≥ 1, with n ≤ ♯Λ (cardinal of Λ), there exists a
Q-linear map ψn : spanQ({λ1, . . . , λn}) → R such that

bj = aje
iψn(λj), j = 1, . . . , n.

The important aspect in the ∗-equivalence, which is inspired by that of Bohr given for the
case of general Dirichlet series, is the condition of existence of the Q-linear maps ψn for
each integer value n ≥ 1, with n ≤ ♯Λ (see [19]).

If the formal series in SΛ are handled as exponential sums of a complex variable on
which we fix a summation procedure, we can introduce an auxiliary function which will
be an important tool in this paper. To do this, we first consider the definition of the classes
DΛ of almost periodic functions in the following terms.

Definition 2.1. Let Λ = {λ1, λ2, . . . , λj , . . .} be an arbitrary countable set of distinct real
numbers. We will say that a function f : U ⊂ C → C is in the class DΛ if it is an almost
periodic function in AP (U,C) whose associated Dirichlet series is of the form

(2.5)
∑
j≥1

aje
λjs, aj ∈ C, λj ∈ Λ,

where U is a strip of the type {s ∈ C : α < Re s < β}, with −∞ ≤ α < β ≤ ∞.
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Now, with respect to our particular case of almost periodic functions with the Bochner-
Fejér summation method (see, in this regard, [3, Chapter 1, Section 9]), to every almost
periodic function f ∈ DΛ we can associate an auxiliary function Ff of countably many
real variables as follows (see [22, Definition 5]). For this, let 2πZm = {(c1, c2, . . . , cm) ∈
Rm : ck = 2πnk,with nk ∈ Z, k = 1, 2, . . . ,m}.

Definition 2.2. Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, let f(s) ∈ DΛ be an
almost periodic function in {s ∈ C : α < Re s < β}, −∞ ≤ α < β ≤ ∞, whose Dirichlet
series is given by

∑
j≥1 aje

λjs. For each j ≥ 1 let rj be the vector of rational components
satisfying the equality λj =< rj ,g >=

∑qj
k=1 rj,kgk, where g := (g1, . . . , gk, . . .) is the

vector of the elements of the natural basis G∗
Λ for Λ. Then we define the auxiliary function

Ff : (α, β)× [0, 2π)♯G
∗
Λ ×

∏
j≥1 2πZ♯G

∗
Λ → C associated with f , relative to the basis G∗

Λ, as

(2.6) Ff (σ,x,p1,p2, . . .) :=
∑
j≥1

aje
λjσe<rj ,x+pj>i,

where σ ∈ (α, β), x ∈ [0, 2π)♯G
∗
Λ , pj ∈ 2πZ♯G∗

Λ and series (2.6) is summed by Bochner-
Fejér procedure, applied at t = 0 to the sum

∑
j≥1 aje

<rj ,x+pj>ieλjs.

We first note that, if
∑
j≥1 aje

λjs is the Dirichlet series of f ∈ AP (U,C), for every choice
of x ∈ R♯GΛ and pj ∈ 2πZ♯GΛ , j = 1, 2, . . ., the sum

∑
j≥1 aje

<rj ,x+pj>ieλjs represents the
Dirichlet series of an almost periodic function which is connected with f through the
∗-equivalence (see [19, Lemma 3] and [22, Proposition 2]).

We next introduce the following notation which will be used to show the direct relation
between an almost periodic function and the auxiliary function associated with it.

Definition 2.3. Given Λ = {λ1, λ2, . . . , λj , . . .} a set of exponents, let f(s) ∈ DΛ be an
almost periodic function in an open vertical strip U , and σ0 = Re s0 with s0 ∈ U . We de-
fine Img (Ff (σ0,x,p1,p2, . . .)) to be the set of values in the complex plane taken on by the
auxiliary function Ff (σ,x,p1,p2, . . .) when σ = σ0; that is Img (Ff (σ0,x,p1,p2, . . .)) =

{s ∈ C : ∃x ∈ [0, 2π)♯G
∗
Λ and pj ∈ 2πZ♯G∗

Λ such that s = Ff (σ0,x,p1,p2, . . .)}.

The notation Img (Ff (σ0,x,p1,p2, . . .)) is well-posed because this set is independent of
the basis GΛ (see [22, Lemma 1]). Also, given a function f(s), take the notation

Img (f(σ0 + it)) = {s ∈ C : ∃t ∈ R such that s = f(σ0 + it)}.

It is convenient to remark that, concerning the classes DΛ and the ∗-equivalence, it was
proved in [22, Proposition 4, ii)] that Img (Ff (σ0,x,p1,p2, . . .)) =

⋃
fk

∗∼f Img (fk(σ0 + it)).

Moreover, it was proved in [22, Theorem 1] that if E is an open set of real numbers in-
cluded in (α, β), then ⋃

σ∈E
Img (f1(σ + it)) =

⋃
σ∈E

Img (f2(σ + it)) ,

where f1, f2 ∈ DΛ are two equivalent almost periodic functions inU . That is, the functions
f1 and f2 take the same set of values on the region {s = σ + it ∈ C : σ ∈ E}.

3. THE CLOSURE SET OF THE REAL PROJECTIONS OF THE ZEROS IN THE GENERAL CASE

This section is mainly devoted to show two point-wise characterizations of the sets Rf
defined in (1.4) associated with an almost periodic function f(s).

We first extend and improve some results in the style of [7, Lemma 3] or [16, Lemma
4].
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Theorem 3.1. Let f(s) be an almost periodic function in an open vertical strip U = {σ+ it ∈ C :
α < σ < β}, and σ0 ∈ (α, β). Then σ0 ∈ Rf if and only if there exists a sequence {tj}j=1,2,... of
real numbers such that

(3.7) lim
j→∞

f(σ0 + itj) = 0.

Proof. Note that f(s), and its derivatives, are bounded on every reduced strip of U [3, pp.
142-144]. Suppose first the existence of {tj}j=1,2,... ⊂ R satisfying (3.7). In order to apply
[14, Lemma, p.73], we next prove that there exist positive numbers δ and l such that on any
segment of length l of the line x = σ0 there is a point σ0 + iM such that |f(σ0 + iM)| ≥ δ.

Indeed, let t0 be a real number such that |f(σ0 + it0)| > 0 and take δ =
|f(σ0 + it0)|

2
.

Then, since f(s) is an almost periodic function in U , there exists a positive real number
l = l(δ) such that every interval of length l on the imaginary axis contains at least one
translation number iT , associated with δ, satisfying |f(s+ iT )− f(s)| ≤ δ for all s ∈ U .
Thus, by taking s = σ0 + it0, we have |f(σ0 + i(t0 + T ))− f(σ0 + it0)| ≤ δ and, according
to the choice of δ, it follows that |f(σ0 + i(t0 + T ))| ≥ δ. Therefore, |f(σ0 + iM)| ≥ δ, with
M := t0 + T . Consequently, the function f(s) has the properties needed to apply [14,
Lemma, p.73] and thus f(s) has zeros in every strip

Sϵ := {s ∈ C : σ0 − ϵ < Re s < σ0 + ϵ} ,
for any arbitrary ϵ > 0, which proves that σ0 ∈ Rf .

Conversely suppose that σ0 ∈ Rf . This means that there exists a sequence {sj}j≥1 ⊂ U ,
with sj = σj + itj , such that f(sj) = 0 and limj→∞ σj = σ0. Consider the sequence of
functions given by fj(s) := f(s + tj), s ∈ U , j = 1, 2, . . . which is uniformly bounded on
every strip Sϵ ⊂ U . By Montel’s theorem [1, Section 5.1.10], {fj(s)}j≥1 has a subsequence,
which we denote again by {fj(s)}, converging uniformly on compact subsets of Sϵ to a
function h(s) analytic in Sϵ. In this way, it is clear that

h(σ0) = lim
j→∞

fj(σ0) = lim
j→∞

f(σ0 + itj) = 0.

Indeed, note that h(σ0) = 0 in virtue from fj(σj) = 0, j = 1, 2, . . ., and limj→∞ σj = σ0.
□

We next give a characterization of the sets Rf by means of an ad hoc version of [2, The-
orem 3.1], which is obtained through the auxiliary function Ff analysed in the previous
section (see (2.6)).

Theorem 3.2. Let f(s) be an almost periodic function in a vertical strip U = {s = σ + it : α <

σ < β}. Consider σ ∈ (α, β). Then σ ∈ Rf if and only if there exist some vectors x ∈ [0, 2π)♯G
∗
Λ

and pj ∈ 2πZ♯G∗
Λ such that Ff (σ,x,p1,p2, . . .) = 0, where Λ is the set of Fourier exponents of

f(s).

Proof. Let σ0 ∈ Rf . Then there exists a sequence {sj}j=1,2,... ⊂ U , with sj = σj + itj , of
zeros of f(s) such that σ0 = limj→∞ σj . Consider the sequence of functions {fj(s)}j≥1

defined as fj(s) := f(s + itj), which are analytic in U . Then it is clear that each fj(s) is
equivalent to f(s) (see [19, Lemma 1]), that is fj

∗∼ f where
∗∼ is the equivalence relation

considered in [19, 22]. Now, by taking into account [19, Propositions 3 and 4], we can
extract a subsequence of {fj(s)}j≥1 which converges uniformly on every reduced strip
of U to a function h(s) in the same equivalence class as f . Moreover, we have h(σ0) = 0.
Indeed h(σ0) = limj→∞ fj(σ0) = 0. Otherwise, there would existD(σ0, ε) such that h(s) ̸=
0 ∀s ∈ D(σ0, ε) and, by Hurwitz’s theorem [1, Section 5.1.3], there would exist j0 ∈ N such
that fj(s) ̸= 0 ∀s ∈ D(σ0, ε) and each j ≥ j0, which is a contradiction because fj(σj) = 0.
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Consequently, as h(σ0) = 0 and Img (Ff (σ0,x,p1,p2, . . .)) =
⋃
fk

∗∼f Img (fk(σ0 + it)) [22,

Proposition 4, ii)], we have that there exist x ∈ [0, 2π)♯G
∗
Λ and pj ∈ 2πZ♯G∗

Λ such that
0 = Ff (σ0,x,p1,p2, . . .).

Conversely, suppose that Ff (σ,x,p1,p2, . . .) = 0 for some real number σ ∈ (α, β) and
some vectors x = (x1, x2, . . . , xk, . . .) ∈ [0, 2π)♯G

∗
Λ and pj ∈ 2πZ♯G∗

Λ . Again by [22, Propo-
sition 4, ii)], we have that Img (Ff (σ,x)) =

⋃
fk

∗∼f Img (fk(σ + it)). Hence there exists

fk
∗∼ f such that fk(σ + it) = 0 for some real number t. Furthermore, by [22, Theorem 1],

for any ε > 0 sufficiently small it is accomplished that the functions fk and f take the same
set of values on the region {s ∈ C : Re s ∈ (σ − ε, σ + ε)}. This means that σ ∈ Rf . □

4. THE CLOSURE SET OF THE REAL PROJECTIONS OF THE ZEROS UNDER Q-LINEAR
INDEPENDENCE OF THE FOURIER EXPONENTS

We first recall that if the Fourier exponents of an almost periodic function f in a vertical
strip U = {s = σ + it : α < σ < β} are linearly independent over the rational numbers,
then the Dirichlet series expansion of f converges to f itself and, in fact, it converges
absolutely in the open strip U ([9, Theorem 3.6] and [3, p. 154]). Moreover, in this case it
is obvious that the set of Fourier exponents has an integral basis.

We next prove the following characterization of the points in the setRf associated with
an almost periodic function f whose Fourier exponents are Q-linearly independent, that
is, when its exponents are linearly independent over the rational numbers.

Theorem 4.3. Let f(s) be an almost periodic function in a vertical strip U = {s = σ + it : α <
σ < β} whose Dirichlet series is given by

∑
n≥1 ane

λns with {λ1, λ2, . . . , λk, . . .} Q-linearly
independent and k > 2. Let σ0 ∈ (α, β). Then σ0 ∈ Rf if and only if

(4.8) |aj | eσ0λj ≤
∑

i≥1, i̸=j

|ai| eσ0λi (j = 1, 2, . . . , k, . . .) .

Proof. Without loss of generality, take G∗
Λ = {λ1, λ2, . . .} as the basis of the vector space

over the rationals generated by the set of Fourier exponents of f . Suppose that σ0 ∈ Rf ,
then by Theorem 3.2 there exist some vectors x ∈ [0, 2π)♯G

∗
Λ and pj ∈ 2πZ♯G∗

Λ such that
Ff (σ,x,p1,p2, . . .) = 0 or, equivalently,

∑
n≥1

ane
λnσ0exni = 0 (by taking g = (λ1, λ2, . . .)

and hence rn,k = 0 if k ̸= n and rn,n = 1). Therefore,

aje
λjσ0exji = −

∑
k≥1,k ̸=j

ake
σ0λkexki, j = 1, 2, . . .

and, by taking the modulus, we get

|aj |eλjσ0 ≤
∑

k≥1,k ̸=j

|ak|eσ0λk , j = 1, 2, . . . .

Conversely, suppose that the positive real numbers |aj |eσ0λj , j = 1, 2, . . ., satisfy in-
equalities (4.8). We recall that, by [9, Theorem 3.6] or [3, p.154], it is accomplished that∑
j≥1 |aj |eσ0λj < ∞. Thus, given ε > 0 there exists n0 ∈ N such that

∑
j≥n0

|aj |eσ0λj < ε.
Hence, for ε > 0 sufficiently small we can index the terms in decreasing order so that
m1 is such that |am1

|eσ0λm1 := max{|ak|eσ0λk : k = 1, 2, . . . , n0 − 1}, m2 such that
|am2

|eσ0λm2 := max{|ak|eσ0λk : k = 1, 2, . . . , n0 − 1, k ̸= m1}, etc. Therefore, by taking
r :=

∑
j≥n0

|aj |eσ0λj , there is at least one n0-sided polygon whose sides have the lengths
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|amj
|eσ0λmj , j = 1, 2, . . . , n0 − 1 and r [14, p.71]. That means that there exist real numbers

θ1, θ2, . . . , θn0
satisfying

n0−1∑
k=1

|ak|eσ0λkeiθk + reiθn0 = 0.

Consequently, by taking x ∈ R♯GΛ the vector with components xk = θk − Arg(ak) for
k = 1, . . . , n0 − 1, and xk = θn0 − Arg(ak) for each k ≥ n0, where Arg(ak) denotes the
principal argument of ak, we have

Ff (σ0,x,0,0, . . .) =
∑
k≥1

ake
λkσ0exki = 0.

Hence, from Theorem 3.2, σ0 ∈ Rf . □

From now on we will analyse some properties of the set Rf defined by

{Re s : f(s) = 0, s ∈ U} ∩ (α, β),

associated with an almost periodic function f(s) in a vertical strip U = {s = σ + it : α <
σ < β} with rationally independent Fourier exponents.

Concerning inequalities (4.8), given such a function f(s) and a boundary point σ0 of the
set Rf , we next prove that the equality is attained at σ0 in only one of these inequalities.

Proposition 4.1. Let f(s) be an almost periodic function in a vertical stripU = {s = σ+it : α <
σ < β} whose Fourier exponents {λ1, λ2, . . . , λk, . . .}, with k > 2, are Q-linearly independent.
Let σ0 ∈ (α, β). If σ0 is a boundary point of Rf , then it satisfies all the inequalities (4.8) and only
one of them is an equality.

Proof. Let f(s) be an almost periodic function in a vertical strip U = {s = σ+ it : α < σ <
β} whose Dirichlet series is given by

∑
n≥1 ane

λns, with {λ1, λ2, . . . , λk, . . .} Q-linearly
independent and k > 2. As Rf is closed in (α, β), the boundary of Rf is a subset of Rf
itself. Then σ0 ∈ Rf and, by Theorem 4.3, inequalities (4.8) are obviously satisfied for σ0.
Moreover, if some of the inequalities (4.8) is an equality, as any couple of equalities are
incompatible, the lemma follows. Otherwise we have the following strict inequalities

(4.9) |aj | eσ0λj <
∑

i≥1, i̸=j

|ai| eσ0λi , (j = 1, 2, . . . , k, . . .) .

Now, as σ0 is a boundary point ofRf = {Re s : f(s) = 0, s ∈ U}∩(α, β), there exists ε > 0
such that either Rcf ⊃ (σ0 − ε, σ0) or Rcf ⊃ (σ0, σ0 + ε), where Rcf denotes (α, β) \ Rf . Let
σ1 be a point in (σ0 − ε, σ0 + ε) ∩ Rcf . In virtue of Theorem 4.3, it is plain that there exists
a single j0 ≥ 1 so that

(4.10) |aj0 | eσ1λj0 >
∑

i≥1, i̸=j0

|ai| eσ1λi .

Thus, by continuity, we deduce from (4.9) and (4.10), for this j0, that there exists σ2 be-
tween σ0 and σ1 such that

(4.11) |aj0 | eσ2λj0 =
∑

i≥1, i̸=j0

|ai| eσ2λi .

Moreover, by (4.11) it is clear that

|aj | eσ2λj ≤
∑

i≥1, i ̸=j

|ai| eσ2λi , (j = 1, 2, . . . , k, . . .) .

which yields, again by Theorem 4.3, that σ2 ∈ Rf . This is a contradiction and hence the
result holds. □
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We first prove that the set Rf associated with an almost periodic function in U = C,
whose Fourier exponents are linearly independent over the rational numbers, is not the
empty set.

Corollary 4.1. Let f(s) be an almost periodic function in C whose Fourier exponents
{λ1, λ2, . . . , λk, . . .}, with k > 2, are Q-linearly independent. Then Rf ̸= ∅.

Proof. Let f(s) be an almost periodic function in C whose Dirichlet series is given by∑
n≥1 ane

λns. By reductio ad absurdum, suppose Rf = ∅. By Theorem 4.3, there exists
j0 ≥ 1 so that

(4.12) |aj0 | eσλj0 >
∑

i≥1, i ̸=j0

|ai| eσλi , for all σ ∈ R.

Otherwise (if the inequality is not true for all σ ∈ R), by continuity, there would exist
σ0 ∈ R such that |aj0 | eσ0λj0 =

∑
i≥1, i ̸=j0 |ai| e

σ0λi and hence, by Theorem 4.3, it is clear
that σ0 would be in Rf .

However, we next show that (4.12) is a contradiction. Indeed, take k ̸= j0. Since
λk ̸= λj0 , it is plain that there exists σ0 ∈ R such that |ak|eσ0λk = |aj0 |eσ0λj0 , which yields
that ∑

i≥1, i̸=j0

|ai| eσ0λi > |ak|eσ0λk = |aj0 |eσ0λj0 ,

which contradicts (4.12). Now the result holds. □

It is worth noting that the condition U = C in Corollary 4.1 is necessary. That is, an
almost periodic function f(s) in a vertical strip U , with U ̸= C, such that its Fourier
exponents are Q-linearly independent could satisfy Rf = ∅.

Example 4.1. Let {1, λ1, λ2, . . . , λn, . . . , ρ1, ρ2, . . . , ρn, . . .} be an ordered set of positive real
numbers which are linearly independent over the rational numbers and satisfy λn > n2

(hence ρn > n2) for each n = 1, 2, . . .. It is clear that such a set can be constructed from an
arbitrary Hamel basis for R over Q in virtue of the density of rational numbers in R.

On the one hand, consider the exponential sum

S1(s) =
∑
n≥1

1

λn
eλns.

Note that the exponents of S1 are linearly independent over the rational numbers. More-
over, S1(s) converges absolutely on U1 = {s = σ + it ∈ C : σ < 0}. Indeed, for any σ < 0,
it is satisfied that ∑

n≥1

1

λn
eλnσ ≤

∑
n≥1

1

λn
≤

∑
n≥1

1

n2
=
π2

6

and the derivative of S1(s) accomplishes

S′
1(σ) =

∑
n≥1

eλnσ,

which implies that S1(s) diverges when σ > 0.
On the other hand, consider the exponential sum

S2(s) =
∑
n≥1

1

ρn
e−ρn(s+1) =

∑
n≥1

1

ρn
e−ρne−ρns.
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Note that the exponents of S2 are linearly independent over the rational numbers. More-
over, S2(s) converges absolutely on U2 = {s = σ + it ∈ C : σ > −1}. Indeed, for any
σ > −1, it is satisfied that∑

n≥1

1

ρn
e−ρne−ρnσ ≤

∑
n≥1

1

ρn
≤

∑
n≥1

1

n2
=
π2

6

and the derivative accomplishes

S′
2(σ) =

∑
n≥1

−e−ρn(σ+1),

which implies that S2(s) diverges when σ < −1.

In this way, let S(s) := S1(s) + S2(s) +
eπ2

3
es, s ∈ C. By above, it is accomplished that

S(s) is an exponential sum, whose exponents are linearly independent over the rationals,
which converges uniformly in U = U1 ∩ U2 = {s = σ + it ∈ C : −1 < σ < 0}. In fact, U is
the largest open vertical strip of almost periodicity of S(s). Moreover,

|S1(s) + S2(s)| ≤ 2
π2

6
=
π2

3
<

∣∣∣∣eπ2

3
es
∣∣∣∣ ∀s ∈ U.

Consequently, S(s) has no zeros in U and hence RS = ∅.

In this respect, we next study the following more general result.

Corollary 4.2. Let f(s) be an almost periodic function in a vertical strip U = {s = σ + it : α <
σ < β} whose Dirichlet series is given by

∑
n≥1 ane

λns and {λ1, λ2, . . . , λk, . . .}, with k > 2,
are Q-linearly independent. Suppose that U is the largest open vertical strip of almost periodicity
of f and some of the following conditions is satisfied:

a) lim
σ→α+

∑
i≥1

|ai|eσλi > 2 sup{|ai|eαλi : i ≥ 1};

b) lim
σ→β−

∑
i≥1

|ai|eσλi > 2 sup{|ai|eβλi : i ≥ 1}.

Then Rf ̸= ∅.

Proof. Let f(s) be an almost periodic function in U whose Dirichlet series is given by∑
n≥1 ane

λns and {λ1, λ2, . . . , λk, . . .}, with k > 2, are Q-linearly independent. By [3,
p. 154, first theorem],

∑
n≥1 ane

λns is absolutely convergent in U and hence f(s) =∑
n≥1 ane

λns for any s ∈ U . Let f1(s) :=
∑
n≥1 |an|eλns, which is clearly anaytic on U ,

then U is the largest open vertical strip of almost periodicity of f1. Indeed, it is plain that
f1 is almost periodic on U (it converges absolutely on U ). Moreover, if there was an open
vertical strip V ⊃ U , with U ̸= V and f1 almost periodic on V , then∣∣∣∣∣∣

∑
n≥1

ane
λns

∣∣∣∣∣∣ ≤
∑
n≥1

|an|eλnσ = f1(σ) <∞ ∀s = σ + it ∈ V

and hence V would be an open vertical strip where f converges absolutely, which is a
contradiction.

Now, by reductio ad absurdum, suppose Rf = ∅. By Theorem 4.3, there exists j0 ≥ 1
so that

(4.13) |aj0 |eσλj0 >
∑

i≥1, i ̸=j0

|ai|eσλi , for all σ ∈ (α, β).



498 J. M. Sepulcre and T. Vidal

Otherwise (if the inequality is not true for all σ ∈ (α, β)), by continuity, there would exist
σ0 ∈ (α, β) such that |aj0 |eσ0λj0 =

∑
i≥1, i ̸=j0 |ai|e

σ0λi and hence, by Theorem 4.3, it is clear
that σ0 would be in Rf . Let g(σ) :=

∑
i≥1, i ̸=j0 |ai|e

σλi − |aj0 |eσλj0 , σ ∈ (α, β). We deduce
from (4.13) that

(4.14) g(σ) < 0 for all σ ∈ (α, β).

However, we next show that this is a contradiction. Note first that, by taking into account
[3, p. 154, second theorem], α and β are singular points of f1(s). By hypothesis (condition
a)), given ε > 0, there exists σ1 ∈ (α, α+ ε) such that∑

i≥1

|ai|eσλi > 2 sup{|ai|eαλi : i ≥ 1} ≥ 2|aj0 |eαλj0 ∀σ ∈ (α, σ1)

or (condition b)) there exists σ2 ∈ (β − ε, β) such that∑
i≥1

|ai|eσλi > 2 sup{|ai|eβλi : i ≥ 1} ≥ 2|aj0 |eβλj0 ∀σ ∈ (σ2, β).

Therefore, by continuity, there exists 0 < τ < min{σ1 −α, β − σ2}, sufficiently small, such
that ∑

i≥1

|ai|eσλi > 2|aj0 |e(α+τ)λj0 ∀σ ∈ (α, σ1)

or ∑
i≥1

|ai|eσλi > 2|aj0 |e(β−τ)λj0 ∀σ ∈ (σ2, β).

In particular, we get

(4.15)
∑
i≥1

|ai|e(α+τ)λi > 2|aj0 |e(α+τ)λj0

or

(4.16)
∑
i≥1

|ai|e(β−τ)λi > 2|aj0 |e(β−τ)λj0 .

Since (4.15) and (4.16) imply g(α+ τ) > 0 and g(β − τ) > 0, respectively, we get a contra-
diction with (4.14). Now the result follows. □

We next focus our attention on the real solutions of the equations

(4.17) |aj | eλjσ =
∑

i≥1, i ̸=j

|ai| eλiσ, j = 1, 2, . . . , k, . . . .

Lemma 4.1. Let f(s) be an almost periodic function in a vertical strip U = {s ∈ C : α < Re s <
β} whose Fourier exponents {λ1, λ2, . . . , λk, . . .}, with k > 2, are Q-linearly independent. Then
each equation (4.17) has at most 2 real solutions in (α, β).

Proof. Let f(s) be an almost periodic function in U = {s ∈ C : α < Re s < β} whose
Dirichlet series is given by

∑
n≥1 ane

λns with {λ1, λ2, . . . , λk, . . .} Q-linearly independent
and k > 2. Fixed j = 1, 2, ..., k, . . ., we define the real function

fj(σ) :=
∑

i≥1,i̸=j

|ai| eλiσ − |aj | eλjσ, σ ∈ (α, β).

Also, by dividing by |aj |eλjσ , consider

Bj(σ) :=
fj(σ)

|aj |eλjσ
=

∑
i≥1,i̸=j

|ai|
|aj |

e(λi−λj)σ − 1, σ ∈ (α, β).
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It is worth noting that, since f(s) is analytic in U , then it is uniformly continuous in every
open interval interior to U together with all its derivatives [3, p. 142]. Thus it is easy
to check that B

′′

j (σ) ≥ 0 for all σ ∈ (α, β), i.e. Bj(σ) is convex in (α, β). Consequently,
equation B(σ) = 0, σ ∈ (α, β), has at most two solutions. Thus the result holds. □

At this point, we prove the following important result which generalizes [13, Theorem
7].

Theorem 4.4. The set of the real projections of the zeros of an almost periodic function in an open
vertical strip U = {s ∈ C : α < Re s < β}, whose Fourier exponents {λ1, λ2, . . . , λk, . . .}, with
k > 2, are Q-linearly independent, has no isolated point in (α, β).

Proof. If the real projection of a zero s0 ∈ U of f(s), say σ0, were an isolated point of
the set {Re s : f(s) = 0, s ∈ U}, necessarily σ0 would be a boundary point of the set
Rf = {Re s : f(s) = 0, s ∈ U} ∩ (α, β), with σ0 ∈ (α, β). By Proposition 4.1, it satisfies all
the inequalities (4.8), that is,

|aj | eσ0λj ≤
∑

i≥1, i ̸=j

|ai| eσ0λi , (j = 1, 2, . . . , k, . . .) ,

and only one of them is an equality, say

(4.18) |ak| eλkσ =
∑

i≥1, i ̸=k

|ai| eλiσ.

Now, from Lemma 4.1, we have that equation (4.18), which is satisfied by σ0 ∈ (α, β), has
1 or 2 solutions in (α, β). This means that the equation Bk(σ) = 0 has 1 or 2 solutions in
(α, β), where

Bk(σ) :=
∑

i≥1,i̸=k

|ai|
|ak|

e(λi−λk)σ − 1, σ ∈ (α, β).

Thus, sinceBk(σ) is continuous and convex in (α, β) (see also the proof of Lemma 4.1), we
can assure the existence of some ε > 0 such that any σ in the interval (σ0 − ε, σ0) ⊂ (α, β)
or (σ0, σ0 + ε) ⊂ (α, β) satisfies Bk(σ) ≥ 0, which implies that σ satisfies inequalities
(4.8). Then, by Theorem 4.3, the interval (σ0 − ε, σ0) or (σ0, σ0 + ε) is in Rf , which is a
contradiction because σ0 is an isolated point in Rf . □

Under the conditions of the previous result, it is now clear that the setRf is the union of
a denumerable amount of disjoint nondegenerate intervals. In this respect, the following
result concernes the gaps of the set Rf .

Corollary 4.3. Let f(s) be an almost periodic function in a vertical strip U = {s ∈ C : α <
Re s < β} whose Fourier exponents {λ1, λ2, . . . , λk, . . .}, with k > 2, are Q-linearly independent.
Then the gaps of Rf are produced by those equations (4.17) having two real solutions in (α, β).

Proof. Let σ0 ∈ (α, β) be a boundary point of Rf . Then, by Proposition 4.1, σ0 satisfies
only one of equalities (4.17), say

(4.19) |ak| eλkσ =
∑

i≥1, i ̸=k

|ai| eλiσ.

If we suppose that equation (4.19) has only the solution σ0 in (α, β), it follows from theo-
rems 4.3 and 4.4 that

|ak| eλkσ <
∑

i≥1, i ̸=k

|ai| eλiσ ∀σ ∈ (α, β) \ {σ0}.
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Therefore, in virtue from continuity and Theorem 4.3, we can assure the existence of some
ε > 0 such that the interval (σ0 − ε, σ0 + ε) is in Rf , which is a contradiction because σ0 is
a boundary point in Rf . Consequently, by Lemma 4.1, equation (4.19) has two solutions
in (α, β), which means that the gaps of Rf are only produced by those equations (4.17)
having two real solutions in (α, β). □

5. CONCLUSIONS AND FURTHER DEVELOPMENTS

Our goal was to verify to what extent several known results on the sets of real projec-
tions of zeros of certain classes of exponential polynomials can be extended to the case
of analytic almost periodic functions defined in vertical strips of the form U = {s =
σ + it ∈ C : α < σ < β}, with −∞ ≤ α < β ≤ ∞. This approach is possible in the
general case because there exists a way of summation, called Bochner-Fejér procedure,
which gives rise to a sequence of finite exponential sums that converges uniformly to a
prefixed almost periodic function f(s) in every reduced strip in U . In fact, given such a
function f(s), this procedure allows us to introduce an auxiliar function associated with
it, of countably many real variables, which is a key tool in order to characterize the sets
Rf := {Re s : f(s) = 0, s ∈ U} ∩ (α, β). The proof of this first characterization is based
on an equivalence relation which we previously introduced in the context of the complex
functions which can be represented by a Fourier-like or Dirichlet-like series (as in the case
of the spaces of Bohr’s almost periodic functions).

For the case that the Fourier exponents of such an almost periodic function f(s) are lin-
early independent over the rational numbers, we know that the Dirichlet series expansion
of f(s) is absolutely convergent in U (in fact, it is also uniformly convergent to f(s)). Due
to the circumstances surrounding this particular case, we have provided a new pointwise
characterization of the setRf in terms of the inequalities (4.8), which leads to determining
the possible boundary points of Rf . Under this condition and with at least three Fourier
exponents, our main result in this paper shows that the set of the real projections of the
zeros of f(s) has no isolated point in (α, β), which extends a known result which was
previously demonstrated for the case of exponential polynomials.

Remark 5.1. Every result in Section 4 has been formulated for the case where the set of
Fourier exponents has at least three elements and all of them are Q-linearly independent.
However, these results are also certain for other cases such as that where one of the Fourier
exponents is λ1 = 0 and the set of the remaining Fourier exponents has at least two el-
ements and all of them are Q-linearly independent. Indeed, if f(s) is an almost periodic
function whose Fourier exponents {0, λ2, λ3, . . .} satisfy these new conditions, then the
function g(s) = f(s)eµs, where µ is chosen so that it is not in the Q-vector space generated
by {λ2, λ3, . . .}, has the same set of zeros as that of f(s) and its Fourier exponents satisfy
the conditions of the results of this section.

Finally, note that for the case where the set of Fourier exponents of an almost periodic
function f has only two elements (and they are Q-linearly independent) it is clear that the
zeros of f(s) are located on a vertical line, and consequently Theorem 4.4 is not satisfied
in this case.

It would be interesting to study in more detail the more general case where the sets
of Fourier exponents associated with an almost periodic function f(s) are not necessarily
linearly independent over the rational numbers. In particular, the consideration of other
specific conditions on the Fourier exponents or coefficients could also lead to sets Rf
without isolated points. In general, it is proposed the search of specific results on the
possible gaps of the sets Rf and the reasons why they are produced.
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