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Eigenvalues of the (p, ¢, r)-Laplacian with a parametric
boundary condition

LUMINITA BARBU® and GHEORGHE MOROSANUY*

ABSTRACT. Consider in a bounded domain Q2 C RN, N > 2, with smooth boundary 052 the following
nonlinear eigenvalue problem

— ZaE{p,q,T} palou = Xa(z) |u | "2 u inQ,

(Cacipgr Po | Vu 272 ) 8% = Xb(x) | u|"~2 u on 99,
where p, ¢, 7 € (1,+00), ¢ < p, 7 € {p,q}; pp, pq, pr are positive constants; A, is the usual a-Laplacian, i.e.,
Aqu = div (|Vu|*~2Vu); vis the unit outward normal to 9Q; a € L (), b € L>(952) are given nonnegative
functions satisfying [, a dz + [;¢, b do > 0. Such a triple-phase problem is motivated by some models arising
in mathematical physics.

If r ¢ (g,p), we determine a positive number A, such that the set of eigenvalues of the above problem is
precisely {0} U (A, +00). On the other hand, in the complementary case r € (g, p) withr < g¢(N —1)/(N —q)
if ¢ < N, we prove that there exist two positive constants A < A* such that any A € {0} U [A\*,00) is an
eigenvalue of the above problem, while the set (—o0,0) U (0, A«) contains no eigenvalue X of the problem.

1. INTRODUCTION

Let Q ¢ RN, N > 2, be a bounded domain with smooth boundary 0f2. Consider the
eigenvalue problem
Au = —Apu — Aju — Apu = Xa(z) |u |72 u inQ,
Ou — \b(x) | u "2 u on 99,

Ova

(1.1)

under the following hypotheses
(hpqr) Pyq;7 € (1,400), ¢ <p, 7 ¢ {p.a};

(hap) a € L>®(Q2) and b € L*>°(01) are given nonnegative functions satisfying

(1.2) /Qa(x) dx + /asz b(o) do > 0.

In the boundary condition (1.1)o, 8871; denotes the conormal derivative corresponding to
the differential operator A, i.e.,

ou ou
— = | Vu [*72 ) —,
vy (ae{pz,q,r} ) ov

where v is the unit outward normal to 99. As usual, for every a € (1, 00), we denote by
A, the a-Laplacian, i.e., Ayu = div (|Vu|*"2Vu).

Received: 27.12.2021. In revised form: 21.04.2022. Accepted: 29.04.2022

2010 Mathematics Subject Classification. 35J60, 35]92, 35P30.

Key words and phrases. Eigenvalues, (p, q,r)-Laplacian, Sobolev space, Nehari manifold, Variational methods.
Corresponding author: Gheorghe Morosanu; morosanu@math.ubbcluj.ro

547



548 Luminita Barbu and Gheorghe Morosanu
In fact, one can consider a more general eigenvalue problem, with
Bu = ppApu + pgAqu + prdpu, pp, pgs pr >0,
instead of A, and with

%::( Z pa|Vu|“_2)%

ae{p,q,r}

instead of 8871;. However, for the sake of simplicity, we restrict our analysis to the case
pPp = pq = pr = 1. For the general case we have similar results, as shown in Section 4
below.
Such a triple-phase eigenvalue problem is motivated by some models arising in math-
ematical physics. More exactly, let us consider the operator
. Vu
Qu : d1v( \/m)
This operator appears in the electrostatic Born-Infeld equation (see [5]), in string theory,
in particular in the study of D-branes (see, e.g., [11]), and in classical relativity, where Q
represents the mean curvature operator in Lorentz-Minkowski space (see, e.g., [4] and
[9]). A second order approximation of Q) is B := —Au — Aqu — %Aﬁu (see [12]), which is
a negative (2, 4, 6)-Laplacian.
Under assumption (h,q.), the appropriate Sobolev space for problem (1.1) is W :=
Wwhmax{pr}(Q). We seek the solutions u of problem (1.1) in the space W, so that the
ou

conormal derivative z7“- exists in a trace sense. Using a Green type formula (see Casas-

Ferndndez [8, p. 71]) one can define the eigenvalues of problem (1.1) as follows.

Definition 1.1. )\ € R is an eigenvalue of problem (1.1) if there exists uy € W \ {0} such
that

/Q< | Vuy P72 4 | Vuy |72 4 | Vauy, |72 )Vu,\ -Vw dz
(1.3)

:)\(/a|u>\ "2 uyw dx + b | uy \szu,\de)VweVV.
Q

99

Conversely, if A is an eigenvalue then any eigenfunction v € W\ {0} corresponding to
it satisfies problem (1.1) in the distribution sense.

We first note that no number A < 0 can be an eigenvalue of problem(1.1). Indeed,
choosing w = u, in (1.3) we can see that the eigenvalues of problem (1.1) cannot be nega-
tive. It is also obvious that A\g = 0 is an eigenvalue of this problem and the corresponding
eigenfunctions are the nonzero constant functions. So any other eigenvalue belongs to
(0, 00).

If u is an eigenfunction corresponding to a positive eigenvalue A then, by choosing
w = 11in (1.3), we find that

(1.4) / alux |72 uy da:—l—/ bluy| "% uydo =0.
Q o0

This shows that all eigenfunctions corresponding to positive eigenvalues necessarily be-
long to the set

(1.5) C::{uEW;/a|u\7’_2udx+/ b|u\r_2ud0:0}.
Q o9

This set is a symmetric cone and using the Lebesgue Dominated Convergence Theorem
(see also [7, Theorem 4.9]) we can see that C is also a weakly closed subset of W which
contains non-zero elements (see [3, Section 2]).



Eigenvalues of the (p, q, r)-Laplacian with a parametric boundary condition 549

Now, let us introduce the notations
Ko(u):= | [Vul|*dz, a € {p,q,r},
(1.6) @
k:,»(u)::/a|u|rdac—|—/ blu|"doVueW.
Q le)

Remark 1.1. Obviously, any eigenfunction u corresponding to an eigenvalue A > 0 can-
not be a constant function (see (1.3) with v = w) and (1.2)). In addition, as k&, (uy) > 0, all
eigenfunctions corresponding to positive eigenvalues necessarily belong to the set

C\Z, Z:={veW; k.(v) =0}

In order to state our main results, let us define

. K, (v)
(1.7) A= )

A= inf (FKP(“)l_W‘I(U)7 + KT(U))

veC\Z Ky (v) Ky (v)
7K, (v)Y K. (v)
(1.8) o r o Kp(v) q(v) r
s vérclfz Py kr(v) TR )
v = PZT p.— P4 .
p—q (r—=a)'=7(p—r)

We can now state our main results

Theorem 1.1. Assume that (hpg,) and (hqp) above are fulfilled. If r & (q,p), then A, > 0 and

the set of eigenvalues of problem (1.1) is precisely {0} U (A, 00), where A, is the constant defined

by (1.7).

Theorem 1.2. Assume that (h,q.) and (ha) above are fulfilled, r € (q,p), and in addition

r<q(N—-1)/(N—-q)ifq<N.Then0 < A\, < X", every A € {0} U [\*, 00) is an eigenvalue

of problem (1.1), and for any X € (—oo, A,) \ {0} problem (1.1) has only the trivial solution.
Moreover, the constants A, \* can be expressed as follows

LK, (v) + 1K, (v) + LK. (v
(19) A = Inf Kp(’l)) + Kq(U) + KT(U)’ A\ — inf P P( ) ql q( ) p ( )
vEC\Z kr(?}) vEC\Z ;kr(’U)

Remark 1.2. Regarding the restriction r < g(N —1)/(N — ¢q) if ¢ < N in Theorem 1.2, we
point out that this is directly related to the well-known compact embedding W14(Q) <
L™(9) which holds when 1 < r < ¢*, where

.= J\?—Jj’q ifl<g<N,
oo ifg> N,

and the trace compact embedding W'4(Q2) — L™(9Q) if 1 < r < ¢ (see [1], [7, Section

9.3]), where
N-1) .
a: Q(Niiq) lf q < N,
00 if¢ > N.

We also note thatif 1 < g < p < N, then ¢* < p*and ¢ < p, ¢ < ¢*.

If b = 0 (i.e., the boundary condition is of Neumann type), Theorem 1.2 still holds if in
the case ¢ < N the condition r < ¢(N — 1)/(NN — q) is replaced by the weaker condition
r < ¢N/(N —q) since in this case we need only the compact embedding W14(Q2) < L"(Q).
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2. PRELIMINARY RESULTS

For o, f € (1,00) and < & if a < N, let C, g be the following symmetric cone
(2.10) Cop = {u e Wh(Q); / al|ulP?ude +/ blu|?~2ude =0},
Q o9
which is weakly closed in W ().
The following lemmas will be useful in the proof of our main results.
Lemma 2.1. Assume that (hqp) is fulfilled,
(2.11) a,f € (l,00)and f < @ifa < N.

Then the norm || u ||a,5:=|| Vu || Lo (q) —|—(kﬁ(u))% YV u € WHe(Q) is equivalent with the usual
norm of the Sobolev space W ().

Proof. This fact follows from [10, Proposition 3.9.55]. Indeed, (kg(u))% is a seminorm
which satisfies the two requirements of that proposition, namely

() 3da,5 > 0 such that ks (u)F < dag || ullwie Yue Whe(Q)and

(jj) if w = constant, then kg(u) = 0 implies u = 0. O

Lemma 2.2. Assume that (hqp) and (2.11) are fulfilled. Then, there exist a positive constant L,
which depends on «, 5, N and Q, such that

(2.12) kg(u)s < LEKo(u)= YV u € Cop.
Proof. Assume the contrary: V n > 1 there exists u,, € C, g such that kg(u,) =1 and
1 1
(2.13) Ko (up)= < —.
n

By Lemma 2.1 and (2.13), (u,), is a bounded sequence in W'*(Q2). Hence, after passing
to a subsequence if necessary, we can assume that there exists ug € W%(Q) such that
up — up in WHe(Q). Since W1(Q) is compactly embedded in both L#(Q2) and L?(02),
we have u, — ug in L (Q), u, — ug in L?(09Q). As kg(un) =1V n > 1and (un), C Cap,
we have kg(ug) = 1 and ug € C, 5. Now, it follows from (2.13) that K, (u,) — 0asn — oo
in L?(2), hence Vug = 0, so ug is a constant function. Since uy € Ca.p we have ug = 0
which implies ks(ug) = 0, which contradicts kz(ug) = 1. Therefore, (2.12) holds true. O

For a € (1, 00) consider the following nonlinear eigenvalue problem

—Aqu=Xa(x) |u|*?u inQ,
(2.14) A 2
| Vu [*72 5% = Ab(z) | w |*7% u on OQ.

We recall the following result (see [2, Section 2]).

Lemma 2.3. Assume that (hay) is fulfilled. Then, A := Cinf = I,:T((;’)) is the lowest positive
v€Ca,a "

eigenvalue of problem (2.14).

3. PROOF OF THE MAIN RESULTS
Let us first state the following simple result.

Lemma 3.4. Assume that (hqp), (hpgr) are fulfilled. Then X = 0 is an eigenvalue of problem
(1.1), and there is no negative eigenvalue of problem (1.1).
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Proof. We have seen in Section 1 that A = 0 is an eigenvalue of problem (1.1) with the
nonzero constant functions as the corresponding eigenfunctions. As has already been
pointed out, any other possible eigenvalue of this problem necessarily belong to (0, o).
Indeed, let A € R\ {0} be an eigenvalue of problem (1.1) and let uy € W \ {0} be a
corresponding eigenfunction. Choosing w = u, in (1.3), we obtain

Kp(ux) + Kq(ux) + K (ux) = Ay (un).

Since k,(ux) > 0 (by Remark 1.1), it is obvious from the above equality that there is no
negative eigenvalue of problem (1.1). O
Now, for A > 0 define the energy functional for problem (1.1), 7x : W — R,

1 1 1 A
(3.15) Ixa(u) = ];Kp(u) + qu(u) + ;Kr(u) - ;kr(u) YueW.
This is a C! functional whose derivative is given by

() = L)) — (K () w),
a€{p,qr}

where

(K! (u),w) = a/Q | Vu |*72 Vu - Vw dz, o € {p,q,r},

(k;(u),w>:r/a|u|”'_2 uwdw—i—r/ blu |2 wwdo Yu,w € W.
) o9

Obviously, A is an eigenvalue of problem (1.1) if and only if there exists a critical point
uy € W \ {O} of I, 1. e. jﬁ(u)\) =0.

The following lemma shows that if < p the functional defined in (3.15), restricted to
the subset C C W, is coercive for every A > 0.

Lemma 3.5. Assume that (hap), (hpqr) are fulfilled, and v < p. For every A > 0, we have
T (u) = 0.

[Ju|lw —o0,uel

Proof. By Lemma 2.2 there exists a positive constant L such that (2.12) holds for o = p, 5 =

r. Therefore,

(3.16) ky(u) < L"K,(u)? Yu € Cp, =C.

On the other hand, from (3.15) and (3.16) we easily deduce that
1

(317) W) = S Kyfu) - %UK,,m)z Vuec.

Taking into account Lemma 2.1 (for « = p > = r) and (3.16), we can see that ||u||w —
00, u € Cif and only if K,(u) — co. As r < p, we derive from (3.17) that Jy(u) — oo if
lul|w — oo, u € C, as claimed. O

3.1. Proof of Theorem 1.1. The conclusion of Theorem 1.1 will follow from several lem-
mas which are all based on the assumptions specified in the statement of Theorem 1.1.
These assumptions will no longer be explicitly mentioned in the statements of the next
lemmas.

Lemma 3.6. The constant A, defined by (1.7) is positive and is equal with the Rayleigh-type
quotient associated to the eigenvalue problem (1.1)

LK, (un) + LK (uy) + 2K, (u
(3.18) A= inf 2 o) a a(ur) + 7K ()
weC\Z ;kr(u,\))
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Moreover, for any A € (0, \,], problem (1.1) has only the trivial solution.

Proof. First we check that A, > 0. Indeed, wehaveC =C, ,ifp <r,andC =C,, if p > 7,
which implies that C \ Z C C,, \ {0}. Taking into account definition (1.7) and Lemma 2.3
for a = r we find that \, > Xr > 0. _

Next, let us prove (3.18). From (1.7), the inequality A, < A, is obvious. On the other
hand, foreachv € C\ Z,t > 0, we have tv € C \ Z and

oo 2K () K () 4 () + K ()
wee\z e (w) - For (0)

Now letting ¢t — oo if r > p,and t — 04 if r < g, then passing to infimum for v € C\ Z we
get the desired inequality. Hence ), can be expressed in two different ways (see (1.7) and
(3.18)).

To complete the proof we need to show that no eigenvalue belongs to (0, A,]. Indeed,
if there were an eigenvalue A € (0, \,] with a corresponding eigenfunction uy € W \ {0},
then from (1.3) we would have K, (ux) + K, (ux) + K, (ux) = Ak (uy). On the other hand,
asuy € C\ Z, we derive from (1.7) that

K (uy) _ My (un) — Kp(uy) — Kg(un)
k,.(u,\) k,«(U)\) k,«(U)\)

which is obviously a contradiction. O

A<, <

In what follows we shall prove that every A > A, is an eigenvalue of problem (1.1). We
distinguish two cases which are complementary to each other.

Case 1: r € (1,q).
In this case W = W1P(Q) and C = C,, in the next lemma.

Lemma 3.7. Every number X € ()., 00) is an eigenvalue of problem (1.1).

Proof. Let A > A, be an arbitrary but fixed number. We know from Lemma 3.5 that 7, is
coercive on C. Moreover, C is a weakly closed subset of the reflexive Banach space W, and
functional 7, is weakly lower semicontinuous on C with respect to the norm of W. Thus,
we can apply a standard result in the calculus of variations (see, e.g., Struwe [13, Theorem
1.2]) in order to obtain the existence of a global minimum point of J) over C, say u, € C
(which depends of \), i.e., Jx(u.) = mine Ji.

Now, from (3.18), as A > \,, we obtain that there exists ugy € C\ Z such that 7 (ugpy) <
0. We have J(u.) < Jx(uox) < 0, which implies that u, # 0.

Next, we are going to show that the minimizer u. for Jy restricted to C \ Z is a critical
point of 7, considered on the whole space W, i.e., J{(us) = 0, thus, u, is an eigenfunction
of problem (1.1) corresponding to A.

In order to show this, we make use of an argument similar to that used in [2, Lemma
3]. Let v € Lip(2) be arbitrary but fixed. For all n € N we define the C'! convex function
on : R—= R,

on(s) ==k (U* + %v + s) VseR.

Note that ¢, is coercive, since we have

|Qf|1,(/9adx+/a§zbda)—kr(u*—l—iv).

‘;Dn(s) >
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Consequently, for all n € N, ¢,, admits a minimizer s,,, such that ¢/ (s,) = 0, i.e. u, € C,
where

1
(3.19) Up :=Us + —v+ 5, VneN.
n

In addition, the sequence (nsn)n is bounded. Otherwise, up to a subsequence, ns, — co
or ns, — —ooasn — oo. Since v € Lip(12) there exists V| large enough such that we have
either

v() +ns, >0inQ, orv(-) +ns, <0inQVn > Nj.

Since the function 7 —| u. + 7 |"72 (u. + 7) is strictly increasing on R, we get

0:/a|un \7'_2undx+/ bl |72 uy, do

(3.20) @ oQ

>/a|u* |r_2u*dx+/ b| |’"_2u*d0:0VnZN17
Q a0

if v(-) + ns, > 01in Q, or the reverse inequality in the later case, when v(-) + ns, < 0in Q.
In both cases we get a contradiction.

We point out that the inequality in (3.20) is strict. Indeed, (1.2) implies that either
H{z € Q; a(z) > 0}|y > 0ora = 0ae. inQand |[{z € 9Q; b(x) > 0}|xy—1 > 0, hence
we cannot have equality above. Here | - |n, | - [nv—1 denote the Lebesgue measures of the
corresponding sets.

Therefore, ("Sn)n must be bounded. This implies that there exists S € R such that, on
a subsequence, ns, — S as n — co. So we have

(3.21) n(tn —uy) = v+ Sand u, = u, in W asn — oco.

Since u. € C\ Z, there exists N, € N such that (u,) C C\ ZVn > N,. By using the
minimality of u, we obtain that

(3.22) 0< 1i_>m n(j)\(un) — JA(u*)) Vn > Ns.
On the other hand,
(3.23) n(\%\(un) — jk(u*)) = (T (us), n(un — us)) + o(n; uy, v),

where o(n; u.,v) is a notation for the term which tends to zero in the definition of the
Fréchet deriative of 7 at u., thatis o(n; u.,v) — 0 as n — oco. It follows from (3.21)-(3.23)
in combination with u, € C that

0 < lim 7 (J(un) = Ta(us)) = Hm (J5(u), n(un = ua)) + 0(n; s, 0)
= (JA(ui),v +8) = (Ta(us),v).

A similar reasoning with —v instead of v and the density of Lipschitz functions in W
yield 73 (us) = 0, which concludes the proof. O

Case 2: 1 € (p, 00).

In this case W = WH"(Q) and C = C,,.. Let A > A, be an argitrary but fixed number.
Under the present assumption, r € (p, c0), the functional 7, is not necessarily coercive on
C.

Choosing w = uy in (1.3), we see that any eigenfunction u) corresponding to A satisfies
(J4 (ux),ux) = 0. We are going to show that J has a nonzero critical point (which will be
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an eigenfunction corresponding to \), therefore it is natural to investigate the restriction
of Jy to the Nehari type manifold (see [14]) defined by

Na = {v e C\ {0} (Jx(v), v) = 0}
= {v e C\{0}; Kp(v) + Kq(v) + K (v) = Ak (0) ]

Note that, by virtue of Remark 1.1, Ny C C\ Z. We shall prove that 7, attains its minimum
my = inj\ff JIx(w) > 0 at some point u, € Ny (which depends on \) and J3 (us) = 0.
wWEN X

First, we show that NV, is non empty. Indeed, since A > \,, we deduce from (1.7) that
there exists ug € C \ Z such that K, (ug) < Mk, (ug). The condition tug € Ny, t > 0, reads

h(t;ug) :=tP7" K, (ug) + 77" Ky (uo) + K (ug) — My (ug) = 0.
Obviously, the map defined by ¢ — h)(¢; -) is continuous on (0, o), satisfies
ha(t;ug) = Kr(ug) — Aer(ug) < 0 ast — 0o, ha(t;ug) — 0o ast — 0Oy,
so there exists ¢y € (0, 00) such that h(to; ug) = 0. Hence, for this ¢y we have tgug € N.
Lemma 3.8. There exists a point u.. € N where J attains its minimal value, m := wienj\f/A Ta(w) >
0.
Proof. Note that on NV, functional J has the form

(3.24) Talu) = LI () +

pr qr

Ky(u) >0,

therefore my > 0.
First, let us check that every minimizing sequence (uy, ) C Ny for Jy is bounded in W.
Since u,, € N, for all n, taking into account (3.24), we obtain

(3.25) In(un) = "p_er,,(un) + Tq_TqKq(un) — my, as n — oo.

Also, we have
(3.26) 0 < My (up) — Kp(up) = Kp(u) + Kq(uy).

Assume by contradiction that (u,)  is unbounded in W. Then, after passing to a subse-
quence if necessary, we have ||uy,||,, — oo (see Lemma 2.1). Now, from (3.25) we obtain
that the sequences (K, (uy)), and (K4 (uy))  are bounded and, taking into account (3.26),
Op 1= k;r(un)% — oo asn — 0o.

Set v, = uy/dn, n € N. From (3.26) we have K, (v,) < A for all n, therefore (””)n
is bounded in W. Thus there exists a vy € W such that v,, — vy in W (also in W1P(Q)
and W4(Q), by continuous inclusions) and v,, — vg in boyh L"(2) and L" (). As C is
weakly closed in W and (v,,) C C we obtain that vy € C. Now, dividing (3.26) by k;(u,),
we get

A—K,.(vp) = kr(un)ng(vn) + k‘r(un)%Kp(vn) Y n.
As k,(un) — 00, 7 > p, and the left hand side term is bounded, we obtain that K, (v,) — 0,
and so

| Vg P dx < liminf/ | Vo, |P dz = 0.

Therefore vy is a constant function. In fact, vg = 0 since vg € C. On the other hand,
1 = ky(vyn) = kr(vg) = 0as n — oo, which is a contradiction

Next, we show that my > 0. Suppose the contrary, that my = 0 and let (“”)n C Ny be
a minimizing sequence for Jy, i.e. Jx(un) — 0 as n — co. We have already proved that
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(“")n is bounded in W, thus u,, — o (on a subsequence if necessary) for some ug € W
(also in W1P(Q) and W14(Q)), and u,, — ug in L"(£2) and also in L"(992).

From (3.25) we obtain that K, (u,) — 0 as n — oo, thus ug is a constant function. Since
up € C, we get uy = 0, hence k,(u,,) — 0. As (“")n C N, we have 6,, :== kr(un)% # 0 so
we can define as before, v,, = u,,/d,, for all n. We can conclude that (vn)n is bounded in W
and there exists vy € C such that, on a subsequence, v,, — v in W and v, — vo in L"(2)
as well as in L"(09), hence k,(vg) = 1. Dividing (3.26) by d¢ and taking into account that
qg<p<r, o(u,)— 0, we find

6179 (Kr(vn) — A) = 687 1K, (v) = Kq(vn) — 0.

Next, since v,, — vg in W (also in W14(Q) and W'?(Q)), we infer that

/ | Vg [dx < liminf/ | Vo, |1 dz = 0.

Therefore vy is a constant function and in fact v9 = 0 since vg € C. This contradicts
kr(vo) =1.

To complete the proof, we need to show that Jy(u.) = m) for some u, € N). Let
(“")n C Ny bea minimizing sequence, i.e. Jy(u,) — my as n — oo. In particular, as we
have proved that the sequence (uy,) isbounded in W, (u,)  converges weakly in W to
some u, € W and strongly in both L"(Q2) and L"(912). We have

(3.27) Ta(uy) < 1irginfj>\(un) =m,.

Since (un), C N we have
(3.28) Kp(up) + Kq(upn) + Kr(up) = Mep(u,) Vn e N
It is easily seen that w, is not the null function. Indeed, assuming that «, = 0, we infer by
(3.28) that (un)n converges strongly to 0 in W, hence also in W1(Q2) and W'4(Q2). Then
(3.25) will give my = 0 which is a contradiction. Thus, u. € C \ {0}.

Letting n — oo in (3.28) yields
(3.29) Kp(us) + Kg(us) + Kp(us) < Ak (uy).

If (3.29) holds with equality then u, € Ny and we are done (cf. (3.27)). If we assume that
strict inequality holds in (3.29), we have tyu, € N, for some ¢, € (0,1). Indeed, if we
define j : (0,00) — R,

() =1 (tp’TKp(u*) T () + K () — )\kr(u*))

we have j(1) < 0 (from the strict inequality (3.29)) and ¢~"j(t) — oo as t — 0. Therefore,
there exists ¢y € (0,1) such that j(to) = 0, which implies tou. € N.
Next, using (3.24), we get

to(r —p) to(r —q)
(3.30) Ia(tous) = OTKP(U*) + OTKq(u*)~
Therefore
to(r —p) to(r —q)
0 <my < Ta(toux) = OTKP(U*) + OTKq(u*)
< PR ) + LK (uy)
r r
r—p. . r—q,. . A
< lim inf K, (uy,) + lim inf Ky (up,) < Iminf 7y (uy) = ma,

pr  n—oo qr n—oo n—00

which is impossible. O



556 Luminita Barbu and Gheorghe Morosanu

The next result states that the minimizer u,, given by Lemma 3.8, is a critical point of
J» considered on the whole space W.

Lemma 3.9. The minimizer u, € N from Lemma 3.8 is an eigenfunction of problem (1.1) with
corresponding eigenvalue \.

Proof. Itsuffices to prove that 73 (u.) = 0. Let v € Lip(f2) be an arbitrary but fixed function
and let u, € N) be the minimizer of 7, over ;. Now, using arguments similar to thouse
in Lemma 3.7, we are able to obtain a sequence (u,) CC\ Z,

1
(3.31) Up = Usx + —V+ 5, VN> 1.
n
The sequence (nsn)n is also bounded, so it converges, on a subsequence, to some S € R.
Therefore, we have
(3.32) n(unfu*) = v+ 8, U, = u, in Wasn — oo.

Since u. € Ny, we have K (u.) + Kq(us) + Ky (us) = Ak (uy), thus K, (uy) — e (uy) < 0.
Also, ky(u,) = kr(ux) > 0, thus (on a subsequence if necessary) we can assume that

(3.33) K (uy) — Nep(up) <0, kp(uy,) >0V n > 1.
Using the sequence (u,),, we shall construct a sequence (t,), C R\ {0} such that
(tnun), C N, ie.,
(3.34) 0T Ky (up) + t47 " Kq(un) + K (un) = My (ur).
Define
hyn i (0,00) = R, hp(t) =77 " Kp(un) + 77" Kq(upn) + K (un) — Mer (un).

Obviously, h,,(t) — oo as t — 0+ and hy, (t) = K, (un) — Ak (u,) < 0 (see (3.33)). So there
exists ¢, > 0 such that h,,(¢,) = 0V n > 1, hence (3.34) holds, as claimed.

In what follows we shall prove that the sequence (n(t, — 1)) is bounded. To this
purpose, we rewrite (3.34) in the equivalent form

(" — 1) Kp(uy) +n(t3" — 1) Kq(un)
= n(/\kr(un) — Kp(up) — Kq(up) — Kr(un)).

We shall prove first that the sequence (n(Mk; (un) — Kp(un) — Kq(un) — K (un))), is con-
vergent. To this purpose, let us define the C' functional

(3.36) Kxr: W =R, Kx(u) = Ak (u) — Kp(u) — Ky(u) — K (u) VueW.
Forall u,w e W
(3.37) (KA (), w) = —(K}, (u), w) — (Kg(w), w) — (K7 (u), w) + Mk (u), w).

(3.35)

Since u, € N, we infer that K (u,) = 0 and taking into account (3.36) we get
(3.38) n(Mer(un) — Kp(un) — Kq(un) — Kr(un)) = n(Kx(un) — Ka(uy)).
We have

(3.39) n(Kx(un) — Kx(us)) = (Ki(us),v + S) as n — oo.

From (3.38) and (3.39) we deduce that the sequence (n(Ak,(un) — Kp(uy) — Kq(un) —
K. (uy)), has a finite limit.

Returning to (3.35), we observe that (K, (un)), , (Kq(us)), , (Kr(uy))  are bounded se-
quences with positive limits. If we assume the contrary, that the sequence (n(t5~" — 1))
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has an unbounded subsequence converging, e.g., to +o0o, then the corresponding subse—
quence of (n(t™" — 1)) will have positive terms (since ¢ —r < Oand p —r < 0), s
the sequence defined by the left hand side of (3.35) will be unbounded, thus Contradlct—
ing the fact that the right hand side defines a convergent sequence. A similar argument
works in the case of a subsequence converging to —oco. Therefore, (n(t~" — 1)) is a
bounded sequence. Hence, there is M > 0 such that foralln > 1, n | 77 — 1 |< M,
which implies 1 — M/n < 7" <1+ M/nV n > 1. Since, there exists N; € N such that
1—M/n>0Vn> Nj, wehave

(3.40) n((1+ M/n) 77 — 1) < nlta—1) <n((1- M/n)7 — 1)¥n> N

Taking into account the relations
(1 — Mz)Y/ =) — ]

14+ M)/ - _1
lig (L1 M) = M/(p—r), lim ——M/(p—1),

z—0 x z—0 x

we infer from (3.40) that the sequence (n(t, — 1)), is bounded, thus, by possibly passing
to a subsequence, there exists T’ € R, such that n(t, — 1) — T as n — oco. We define

1
(3.41) Zn = tp (u* + —v+ sn) =tyun, YV > Ny,
n
with (Z")n C N,. In addition, as (n(t, — 1))n is a bounded sequence, we can see that
(3.42) tn, = 1IinR, 2z, = u, in W asn — oo.
By using the minimality of u. and the fact that (z,) C N we obtain that
(3.43) 0< r}l—{rolon(jA(Z”) = Ta(uy)).
Since functional 7, € C*(W;R), we can write
(3.44) B( (o) — T () = (T 1)y (om — )} + (s, ),

with o(n; u,,v) = 0 as n — oo. Taking into account (3.41) and (3.42), we can see that

(3.45) n(zn—u*)—n( —1)u*+u+nsn—>Tu*+v+Sasn—>oomW
It follows from (3.43) and (3.45) that
(3.46) 0 < (IS (us), v+ S+ Tuy).

Since u, € Ny, we obtain that (73 (u.), u.) = 0, (J5(us),S) = 0, hence (3.46) implies 0 <
(T3 (us),v). A similar reasoning with —v instead of v shows that the converse inequality
holds, hence 0 = (J(u+),v). Finally, using the density of Lipschitz functions in W we
obtain that J3 (u.) = 0, which concludes the proof. O

Finally, the conclusion of Theorem 1.1 follows from Lemmas 3.4, 3.6, 3.7 and 3.9.

3.2. Proof of Theorem 2. The conclusions of Theorem 1.2 will follow from Lemma 3.4
and the next several lemmas which rely on the assumptions specified in the statement of
Theorem 1.2. These assumptions will not be explicitly mentioned again in the statements
of the next lemmas.

In the pesent case W = W'P(Q) and C = C, . Note that, under the present assumptions,
including r € (g, p), functional 7y, is coercive on C (see Lemma 3.5). The main difficulty
is to show that the global minimizer of 7 over C is not zero.

First, let us check that 0 < A, < \*.

Lemma 3.10. The constants A, A* defined by (1.8)1 2 are positive and X, < \*.
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Proof. From (1.8);, taking into account that r < p and Lemma 2.3, we infer that

. Ki(v) e Ke(v) 5
347 A > inf > inf —X >0
(347) Z etz T (0) © veeh 2 T (0) -

It remains to prove that A, < A*. In order to show this inequality, taking into account
(1.8)1,2, it is enough to check that r/(p'~7¢?) > 1 < rP=¢ > p"~9¢gP~", which can be

rewritten as .

(1+p—7q)H < <1+ —T7q>m.
q q
So the desired inequality follows, since the function z — (1 + z) s is decreasing on (0, co)

andp—q>r—gq. |
The next result shows that the equalities (1.9) from Theorem 1.2 hold true.
Lemma 3.11. The constants A\, and X\* defined in (1.8)1 2 can be equivalently expressed by (1.9).

Proof. First we show the equalities

A\, = inf inf (Kp(t”) + Kq(tv) + K,.(m)>’

vEC\Z t>0 k. (tv)

G4 * . . %Kp(tv) + qu (tv) + K, (tv)
A=l Ky (t0)
Define forallv € C\ Z,
Qi) Aoy BRI, gy RO IATD TR
ult) = Ru(to) = S R,
20 ST ) 4 BT K (0) £ K ()
ho(t) := R*(tv) = o Vit > 0.

It is easy to check that the function g, achieves its minimal value A(v) > 0 on (0, 00) for
t = t(v) > 0, where

Kp(v)! K (v) | K (v) (r — 9 Ky(v) 7=
3.51 Av) =T=—2 2 ,tv) = (—1< )
(351) (v) kr(v) kr(v) (v) ((p— T)Kp(v))
But then,
_ K (te) + Ky (tv) + K (t)
Av) = Ru(t(v)v) = inf Ton (£0)

and, taking the infimum over all v € C \ Z, we obtain the first equality in (3.48).

Define

« = Inf R,(v), p*:= inf R*(v).
o= Il Ru(v), = lnf ROQV)

According to the definition of ;. and (3.48);, we have pu.. > \,. Let us prove the converse
inequality. Pick an arbitrary v € C\ Z. As t(v)v € C\ Z, we derive that A(v) > p.,
and taking the infimum over all v € C \ Z, we infer that p, < A, therefore the desired
equality holds true. By a similar reasoning, as the h, achieves its minimal value X(v) =
r/(p=M7)A(v) > 0 on (0,00) for t = t(v) = (p/q)"/P~Dt(v) > 0, we first get the second
equality in (3.48) and then A* = p*. |

Lemma 3.12. There exists u* € C\ Z such that \* = R*(u*). In addition, u* is an eigenfunction
of problem (1.1) corresponding to the eigenvalue \* and Jy~ (u*) = 0.
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Proof. First, we check that A\* = R*(u*) for some u* € C\ Z. Let (u,), C C\ Zbea
minimizing sequence for \*, that is

%KP(UTL) + gKQ(un) + Kr(un)

(3.52) () — A" asn — oo.
In particular, from (3.52) we obtain that the sequence

Kp(un)y .
(3.53) ( o (1) )n is bounded.

Since r < p < p, we get from Lemma 3.10, that there exists a positive constant L such that
kr(un) < L"Kp(uy,)"/? for all n > 1, which implies

Ky () Ky ()
TR, ()77 = T ()

This inequality combined with (3.53) and the assumption r < p shows that the sequence
(Kp(un)), is bounded. So, taking into account Lemma 3.10 with @ = 3 = p, we infer
that the sequence (un)n is bounded in W. Hence, there exists u, € W such that, on a
subsequence, u,, — u, in W, k,(u,) — kr(u.) as n — oco. Obviously, u, € C.

Next, we check that &, (u,) # 0 which will imply that w, # 0. Let us assume, by way of
contradiction, that &, (u,) — k,(u.) = 0. Define the sequence v,, := u,,/ kr(un)l/ "Vn>1.
From (3.52) we obtain that

Vn>1.

(3.54) (M) . is bounded.

Taking into account the relation K, (u,)/kr(u,) = k:T (un)K4(vy,) and the assumption
k,(un) — 0, we deduce from (3.54) that K,(v,,) — 0 as n — oc.

Since r < ¢ and (vn)n C C, according to Lemma 2.2, there exists a positive constant L,
such that

(kr(v)) ™ < Ly (Ky(vn)) 7 ¥,

By passing to the limit as n — oo and taking into account that k,.(v,) = 1 we obtain a
contradiction, therefore we conclude that u* # 0.

Now, let us show that \* = R*(u*). Indeed, since the numerator of the fraction from
the definition of R* is a weakly lower semicontinuous function, we have

liminf( LK, (uy) + SKq(un) + Ky (uy)

< liminfR*(u,) = \*,
T For () < lim inf R (un)
n—oo

which implies that \* = R*(u*) and also Jy-(u*) = 0. Hence, - (u*) = ming\ z I~ = 0.
Finally, by an argument similar to that used in the proof of Lemma 3.7, one can show
that J. (u.) = 0 so in particular \* is an eigenvalue of problem (1.1).
O

Lemma 3.13. Every number A € (A\*, 00) is an eigenvalue of problem (1.1). In addition, for every
X > \* there exists an eigenfunction uy corresponding to the eigenvalue X such that Jy(uy) < 0.

Proof. Choose an arbitrary A > A*. Taking into account Lemma 3.5 and using arguments
similar to those from the proof of Lemma 3.7, we obtain the existence of a global minimizer
uy € C for J, restricted to C, i.e., Jx(uy) = ming J.

Now, let us prove that uy # 0.
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Since A > A\* and k,.(u*) # 0 (see Remark 1.1), we infer, based on Lemma 3.12, that
1 1 1 ¥

0=Iu")=-K,(u)+ -K,;(u) + —K,(u) — —k,.(u"

()pp()qq()q()r()

> ) Kyu) 4 () = Sk (') = ().

As u* € C, using the fact that 7 (uy) = min¢ Jx < Jx(u*) < 0, we deduce that uy # 0.
Then, as in the proof of Lemma 3.7, we deduce that the global minimizer uy for Jy

restricted to C is a critical point of ) considered on the whole space W, i.e. J;(uy) = 0.

In other words, u) is an eigenfunction of problem (1.1) corresponding to A. O

Next, let us prove that there is no eigenvalue of problem (1.1) in the interval (0, \,).
Lemma 3.14. Problem (1.1) has no nontrivial solution for A € (0, \,).

Proof. The result is a simple consequence of Lemma 3.11. Assume, by way of contradic-
tion, that there exists a A € (0, A\,) and uy € C \ Z which satisfy the relation (1.3) from
Definition 1.1. Choosing here w = u, yields
Kp(ua) + Kq(un) + K (ur)

Er(ux) ’
which, by virtue of the equivalent definition of A, in (1.8);, implies that A > A.. This
contradicts the choice of \. |

(3.55) A=

Summarizing, the conclusions of Theorem 1.2 follow from Lemmas 3.4 and 3.10-3.14.

4. THE GENERAL CASE
Both Theorem 1.1 and Theorem 1.2 above remain valid for the general problem
{ Bu = —pp,Apu — pgAgu — prAvu = da(z) |u |72 u inQ,
Ou — \p(x) | u|""2 u on 99,

ovi

(4.56)

where p,, py, pr are given positive constants, and

ou a2 Ou
&%F(%ggfﬂvﬁ ") o

Definition 1.1 is modified by replacing the left hand side of (1.3) with

Z pa/ | Vuy |*72 Vuy - Vw da.
Q

ae{p,q,r}
Define
SV Kr(v)
(4.57) Ar 1= veHCl{Z Prm,
5 o (oKp(0) VK (0) K (v)
Ay 1= f [T—2 d N ,
Ue”é\z< W) )
—x ) —= K,(v)' 7K, (v)" K, (v)
(4.58) N = inf ([T—L 22 a
woz\ g B @) )
N Sl Py pq(p—q)
Cp—q¢ (=g

Theorems 1.1 and 1.2 can be reformulated as follows.
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Theorem 4.3. Assume that py, pg, pr are positive constants, and (hpqr), (hap) are fulfilled. If
r & (q,p), then N, > 0 and the set of eigenvalues of problem (4.56) is precisely {0} U (A, o0),
where X, is the constant defined by (4.57).

Theorem 4.4. Assume that p,, p,, p are positive constants, (hpq.) and (hay) are fulfilled, r €
(p, q), and in addition r < q(N—1)/(N—q)ifq < N. Then0 < X, < X ,every A € {0}U[X", c0)
is an eigenvalue of problem (4.56) and for any X € (—oo, A.) \ {0}, problem (4.56) has only the
trivial solution.

Moreover, the constants A, X' can be expressed as follows

Z paKa(v) Z %Kﬂt(v)

~ . a€{p,q,m} < . a€{p,q,m}
4.59 N, = inf N = inf
(4:59) etz ko (0) ve\z Lk (v)
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