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Eigenvalues of the (p, q, r)-Laplacian with a parametric
boundary condition

LUMINIŢA BARBUa and GHEORGHE MOROŞANUb,c

ABSTRACT. Consider in a bounded domain Ω ⊂ RN , N ≥ 2, with smooth boundary ∂Ω the following
nonlinear eigenvalue problem{

−
∑

α∈{p,q,r} ρα∆αu = λa(x) | u |r−2 u in Ω,(∑
α∈{p,q,r} ρα | ∇u |α−2

)
∂u
∂ν

= λb(x) | u |r−2 u on ∂Ω,

where p, q, r ∈ (1,+∞), q < p, r ̸∈ {p, q}; ρp, ρq , ρr are positive constants; ∆α is the usual α-Laplacian, i.e.,
∆αu = div (|∇u|α−2∇u); ν is the unit outward normal to ∂Ω; a ∈ L∞(Ω), b ∈ L∞(∂Ω) are given nonnegative
functions satisfying

∫
Ω a dx +

∫
∂Ω b dσ > 0. Such a triple-phase problem is motivated by some models arising

in mathematical physics.
If r ̸∈ (q, p), we determine a positive number λr such that the set of eigenvalues of the above problem is

precisely {0} ∪ (λr,+∞). On the other hand, in the complementary case r ∈ (q, p) with r < q(N − 1)/(N − q)
if q < N , we prove that there exist two positive constants λ∗ < λ∗ such that any λ ∈ {0} ∪ [λ∗,∞) is an
eigenvalue of the above problem, while the set (−∞, 0) ∪ (0, λ∗) contains no eigenvalue λ of the problem.

1. INTRODUCTION

Let Ω ⊂ RN , N ≥ 2, be a bounded domain with smooth boundary ∂Ω. Consider the
eigenvalue problem

(1.1)

{
Au := −∆pu−∆qu−∆ru = λa(x) | u |r−2 u in Ω,
∂u
∂νA

= λb(x) | u |r−2 u on ∂Ω,

under the following hypotheses
(hpqr) p, q, r ∈ (1,+∞), q < p, r ̸∈ {p, q};

(hab) a ∈ L∞(Ω) and b ∈ L∞(∂Ω) are given nonnegative functions satisfying

(1.2)
∫
Ω

a(x) dx+

∫
∂Ω

b(σ) dσ > 0.

In the boundary condition (1.1)2, ∂u
∂νA

denotes the conormal derivative corresponding to
the differential operator A, i.e.,

∂u

∂νA
:=
( ∑

α∈{p,q,r}

| ∇u |α−2
)∂u
∂ν

,

where ν is the unit outward normal to ∂Ω. As usual, for every α ∈ (1,∞), we denote by
∆α the α-Laplacian, i.e., ∆αu = div (|∇u|α−2∇u).
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In fact, one can consider a more general eigenvalue problem, with

Bu := ρp∆pu+ ρq∆qu+ ρr∆ru, ρp, ρq, ρr > 0,

instead of A, and with
∂u

∂νB
:=
( ∑

α∈{p,q,r}

ρα | ∇u |α−2
)∂u
∂ν

instead of ∂u
∂νA

. However, for the sake of simplicity, we restrict our analysis to the case
ρp = ρq = ρr = 1. For the general case we have similar results, as shown in Section 4
below.

Such a triple-phase eigenvalue problem is motivated by some models arising in math-
ematical physics. More exactly, let us consider the operator

Qu := −div
( ∇u√

1− | ∇u |2
)
.

This operator appears in the electrostatic Born–Infeld equation (see [5]), in string theory,
in particular in the study of D-branes (see, e.g., [11]), and in classical relativity, where Q
represents the mean curvature operator in Lorentz–Minkowski space (see, e.g., [4] and
[9]). A second order approximation of Q is B := −△u −△4u − 3

2△6u (see [12]), which is
a negative (2, 4, 6)-Laplacian.

Under assumption (hpqr), the appropriate Sobolev space for problem (1.1) is W :=

W 1,max{p,r}(Ω). We seek the solutions u of problem (1.1) in the space W, so that the
conormal derivative ∂u

∂νA
exists in a trace sense. Using a Green type formula (see Casas-

Fernández [8, p. 71]) one can define the eigenvalues of problem (1.1) as follows.

Definition 1.1. λ ∈ R is an eigenvalue of problem (1.1) if there exists uλ ∈ W \ {0} such
that ∫

Ω

(
| ∇uλ |p−2 + | ∇uλ |q−2 + | ∇uλ |r−2

)
∇uλ · ∇w dx

= λ
(∫

Ω

a | uλ |r−2 uλw dx+

∫
∂Ω

b | uλ |r−2 uλw dσ
)
∀ w ∈ W.

(1.3)

Conversely, if λ is an eigenvalue then any eigenfunction u ∈ W \ {0} corresponding to
it satisfies problem (1.1) in the distribution sense.

We first note that no number λ < 0 can be an eigenvalue of problem(1.1). Indeed,
choosing w = uλ in (1.3) we can see that the eigenvalues of problem (1.1) cannot be nega-
tive. It is also obvious that λ0 = 0 is an eigenvalue of this problem and the corresponding
eigenfunctions are the nonzero constant functions. So any other eigenvalue belongs to
(0,∞).

If u is an eigenfunction corresponding to a positive eigenvalue λ then, by choosing
w ≡ 1 in (1.3), we find that

(1.4)
∫
Ω

a | uλ |r−2 uλ dx+

∫
∂Ω

b | uλ |r−2 uλ dσ = 0.

This shows that all eigenfunctions corresponding to positive eigenvalues necessarily be-
long to the set

(1.5) C :=
{
u ∈ W ;

∫
Ω

a | u |r−2 u dx+

∫
∂Ω

b | u |r−2 u dσ = 0
}
.

This set is a symmetric cone and using the Lebesgue Dominated Convergence Theorem
(see also [7, Theorem 4.9]) we can see that C is also a weakly closed subset of W which
contains non-zero elements (see [3, Section 2]).
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Now, let us introduce the notations

Kα(u) :=

∫
Ω

| ∇u |α dx, α ∈ {p, q, r},

kr(u) :=

∫
Ω

a | u |r dx+

∫
∂Ω

b | u |r dσ ∀ u ∈ W.

(1.6)

Remark 1.1. Obviously, any eigenfunction uλ corresponding to an eigenvalue λ > 0 can-
not be a constant function (see (1.3) with v = uλ and (1.2)). In addition, as kr(uλ) > 0, all
eigenfunctions corresponding to positive eigenvalues necessarily belong to the set

C \ Z, Z := {v ∈ W ; kr(v) = 0}.

In order to state our main results, let us define

(1.7) λr := inf
v∈C\Z

Kr(v)

kr(v)
,

λ∗ := inf
v∈C\Z

(
Γ
Kp(v)

1−γKq(v)
γ

kr(v)
+

Kr(v)

kr(v)

)
,

λ∗ := inf
v∈C\Z

(
Γ

r

p1−γqγ
Kp(v)

1−γKq(v)
γ

kr(v)
+

Kr(v)

kr(v)

)
,

γ :=
p− r

p− q
, Γ :=

p− q

(r − q)1−γ(p− r)γ
.

(1.8)

We can now state our main results

Theorem 1.1. Assume that (hpqr) and (hab) above are fulfilled. If r ̸∈ (q, p), then λr > 0 and
the set of eigenvalues of problem (1.1) is precisely {0} ∪ (λr,∞), where λr is the constant defined
by (1.7).

Theorem 1.2. Assume that (hpqr) and (hab) above are fulfilled, r ∈ (q, p), and in addition
r < q(N − 1)/(N − q) if q < N . Then 0 < λ∗ < λ∗, every λ ∈ {0} ∪ [λ∗,∞) is an eigenvalue
of problem (1.1), and for any λ ∈ (−∞, λ∗) \ {0} problem (1.1) has only the trivial solution.

Moreover, the constants λ∗, λ
∗ can be expressed as follows

(1.9) λ∗ = inf
v∈C\Z

Kp(v) +Kq(v) +Kr(v)

kr(v)
, λ∗ = inf

v∈C\Z

1
pKp(v) +

1
qKq(v) +

1
rKr(v)

1
rkr(v)

.

Remark 1.2. Regarding the restriction r < q(N − 1)/(N − q) if q < N in Theorem 1.2, we
point out that this is directly related to the well-known compact embedding W 1,q(Ω) ↪→
Lr(Ω) which holds when 1 < r < q∗, where

q∗ =

{
qN
N−q if 1 < q < N,

∞ if q ≥ N,

and the trace compact embedding W 1,q(Ω) ↪→ Lr(∂Ω) if 1 < r < q̃ (see [1], [7, Section
9.3]), where

q̃ =

{
q(N−1)
N−q if q < N,

∞ if q ≥ N.

We also note that if 1 < q < p < N, then q∗ < p∗ and q̃ < p̃, q̃ < q∗.
If b ≡ 0 (i.e., the boundary condition is of Neumann type), Theorem 1.2 still holds if in

the case q < N the condition r < q(N − 1)/(N − q) is replaced by the weaker condition
r < qN/(N−q) since in this case we need only the compact embedding W 1,q(Ω) ↪→ Lr(Ω).
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2. PRELIMINARY RESULTS

For α, β ∈ (1,∞) and β < α̃ if α < N, let Cα,β be the following symmetric cone

(2.10) Cα,β := {u ∈ W 1,α(Ω);

∫
Ω

a | u |β−2 u dx+

∫
∂Ω

b | u |β−2 u dσ = 0},

which is weakly closed in W 1,α(Ω).
The following lemmas will be useful in the proof of our main results.

Lemma 2.1. Assume that (hab) is fulfilled,

(2.11) α, β ∈ (1,∞) and β < α̃ if α < N.

Then the norm ∥ u ∥α,β :=∥ ∇u ∥Lα(Ω) +
(
kβ(u)

) 1
β ∀ u ∈ W 1,α(Ω) is equivalent with the usual

norm of the Sobolev space W 1,α(Ω).

Proof. This fact follows from [10, Proposition 3.9.55]. Indeed,
(
kβ(u)

) 1
β is a seminorm

which satisfies the two requirements of that proposition, namely
(j) ∃dα,β > 0 such that kβ(u)

1
β ≤ dα,β ∥ u ∥W 1,α(Ω) ∀u ∈ W 1,α(Ω) and

(jj) if u = constant, then kβ(u) = 0 implies u ≡ 0. □

Lemma 2.2. Assume that (hab) and (2.11) are fulfilled. Then, there exist a positive constant L,
which depends on α, β,N and Ω, such that

(2.12) kβ(u)
1
β ≤ LKα(u)

1
α ∀ u ∈ Cα,β .

Proof. Assume the contrary: ∀ n ≥ 1 there exists un ∈ Cα,β such that kβ(un) = 1 and

(2.13) Kα(un)
1
α ≤ 1

n
.

By Lemma 2.1 and (2.13),
(
un

)
n

is a bounded sequence in W 1,α(Ω). Hence, after passing
to a subsequence if necessary, we can assume that there exists u0 ∈ W 1,α(Ω) such that
un ⇀ u0 in W 1,α(Ω). Since W 1,α(Ω) is compactly embedded in both Lβ(Ω) and Lβ(∂Ω),
we have un → u0 in Lβ(Ω), un → u0 in Lβ(∂Ω). As kβ(un) = 1 ∀ n ≥ 1 and

(
un

)
n
⊂ Cα,β ,

we have kβ(u0) = 1 and u0 ∈ Cα,β . Now, it follows from (2.13) that Kα(un) → 0 as n → ∞
in Lβ(Ω), hence ∇u0 ≡ 0, so u0 is a constant function. Since u0 ∈ Cα,β we have u0 ≡ 0
which implies kβ(u0) = 0, which contradicts kβ(u0) = 1. Therefore, (2.12) holds true. □

For α ∈ (1,∞) consider the following nonlinear eigenvalue problem

(2.14)

{
−∆αu = λa(x) | u |α−2 u in Ω,

| ∇u |α−2 ∂u
∂ν = λb(x) | u |α−2 u on ∂Ω.

We recall the following result (see [2, Section 2]).

Lemma 2.3. Assume that (hab) is fulfilled. Then, λ̂α := inf
v∈Cα,α\Z

Kr(v)
kr(v)

is the lowest positive

eigenvalue of problem (2.14).

3. PROOF OF THE MAIN RESULTS

Let us first state the following simple result.

Lemma 3.4. Assume that (hab), (hpqr) are fulfilled. Then λ = 0 is an eigenvalue of problem
(1.1), and there is no negative eigenvalue of problem (1.1).
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Proof. We have seen in Section 1 that λ = 0 is an eigenvalue of problem (1.1) with the
nonzero constant functions as the corresponding eigenfunctions. As has already been
pointed out, any other possible eigenvalue of this problem necessarily belong to (0,∞).
Indeed, let λ ∈ R \ {0} be an eigenvalue of problem (1.1) and let uλ ∈ W \ {0} be a
corresponding eigenfunction. Choosing w = uλ in (1.3), we obtain

Kp(uλ) +Kq(uλ) +Kr(uλ) = λkr(uλ).

Since kr(uλ) > 0 (by Remark 1.1), it is obvious from the above equality that there is no
negative eigenvalue of problem (1.1). □

Now, for λ > 0 define the energy functional for problem (1.1), Jλ : W → R,

(3.15) Jλ(u) =
1

p
Kp(u) +

1

q
Kq(u) +

1

r
Kr(u)−

λ

r
kr(u) ∀ u ∈ W.

This is a C1 functional whose derivative is given by

⟨J ′
λ(u), w⟩ =

∑
α∈{p,q,r}

1

α
⟨K ′

α(u), w⟩ −
λ

r
⟨k′r(u), w⟩,

where

⟨K ′
α(u), w⟩ = α

∫
Ω

| ∇u |α−2 ∇u · ∇w dx, α ∈ {p, q, r},

⟨k′r(u), w⟩ = r

∫
Ω

a | u |r−2 uw dx+ r

∫
∂Ω

b | u |r−2 uw dσ ∀u,w ∈ W.

Obviously, λ is an eigenvalue of problem (1.1) if and only if there exists a critical point
uλ ∈ W \ {0} of Jλ, i. e. J ′

λ(uλ) = 0.
The following lemma shows that if r < p the functional defined in (3.15), restricted to

the subset C ⊂ W, is coercive for every λ > 0.

Lemma 3.5. Assume that (hab), (hpqr) are fulfilled, and r < p. For every λ > 0, we have
lim

∥u∥W→∞,u∈C
Jλ(u) = ∞.

Proof. By Lemma 2.2 there exists a positive constant L such that (2.12) holds for α = p, β =
r. Therefore,

(3.16) kr(u) ≤ LrKp(u)
r
p ∀ u ∈ Cp,r = C.

On the other hand, from (3.15) and (3.16) we easily deduce that

(3.17) Jλ(u) ≥
1

p
Kp(u)−

λ

r
LrKp(u)

r
p ∀ u ∈ C.

Taking into account Lemma 2.1 (for α = p > β = r) and (3.16), we can see that ∥u∥W →
∞, u ∈ C if and only if Kp(u) → ∞. As r < p, we derive from (3.17) that Jλ(u) → ∞ if
∥u∥W → ∞, u ∈ C, as claimed. □

3.1. Proof of Theorem 1.1. The conclusion of Theorem 1.1 will follow from several lem-
mas which are all based on the assumptions specified in the statement of Theorem 1.1.
These assumptions will no longer be explicitly mentioned in the statements of the next
lemmas.

Lemma 3.6. The constant λr defined by (1.7) is positive and is equal with the Rayleigh-type
quotient associated to the eigenvalue problem (1.1)

(3.18) λr := inf
w∈C\Z

1
pKp(uλ) +

1
qKq(uλ) +

1
rKr(uλ)

1
rkr(uλ)

) .
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Moreover, for any λ ∈ (0, λr], problem (1.1) has only the trivial solution.

Proof. First we check that λr > 0. Indeed, we have C = Cr,r if p < r, and C = Cp,r if p > r,
which implies that C \ Z ⊆ Cr,r \ {0}. Taking into account definition (1.7) and Lemma 2.3
for α = r we find that λr ≥ λ̂r > 0.

Next, let us prove (3.18). From (1.7), the inequality λr ≤ λ̃r is obvious. On the other
hand, for each v ∈ C \ Z , t > 0, we have tv ∈ C \ Z and

λ̃1 = inf
w∈C\Z

1
pKp(w) +

1
qKq(w) +

1
rKr(w)

1
rkr(w)

≤
rtp−r

p Kp(v) +
rtq−r

q Kq(v) +Kr(v)

kr(v)
.

Now letting t → ∞ if r > p, and t → 0+ if r < q, then passing to infimum for v ∈ C \Z we
get the desired inequality. Hence λr can be expressed in two different ways (see (1.7) and
(3.18)).

To complete the proof we need to show that no eigenvalue belongs to (0, λr]. Indeed,
if there were an eigenvalue λ ∈ (0, λr] with a corresponding eigenfunction uλ ∈ W \ {0},
then from (1.3) we would have Kp(uλ) +Kq(uλ) +Kr(uλ) = λkr(uλ). On the other hand,
as uλ ∈ C \ Z , we derive from (1.7) that

λ ≤ λr ≤ Kr(uλ)

kr(uλ)
=

λkr(uλ)−Kp(uλ)−Kq(uλ)

kr(uλ)
= λ− Kp(uλ) +Kq(uλ)

kr(uλ)
< λ.

which is obviously a contradiction. □

In what follows we shall prove that every λ > λr is an eigenvalue of problem (1.1). We
distinguish two cases which are complementary to each other.

Case 1: r ∈ (1, q).
In this case W = W 1,p(Ω) and C = Cp,r in the next lemma.

Lemma 3.7. Every number λ ∈ (λr,∞) is an eigenvalue of problem (1.1).

Proof. Let λ > λr be an arbitrary but fixed number. We know from Lemma 3.5 that Jλ is
coercive on C. Moreover, C is a weakly closed subset of the reflexive Banach space W, and
functional Jλ is weakly lower semicontinuous on C with respect to the norm of W. Thus,
we can apply a standard result in the calculus of variations (see, e.g., Struwe [13, Theorem
1.2]) in order to obtain the existence of a global minimum point of Jλ over C, say u∗ ∈ C
(which depends of λ), i.e., Jλ(u∗) = minC Jλ.

Now, from (3.18), as λ > λr, we obtain that there exists u0λ ∈ C \Z such that Jλ(u0λ) <
0. We have Jλ(u∗) ≤ Jλ(u0λ) < 0, which implies that u∗ ̸≡ 0.

Next, we are going to show that the minimizer u∗ for Jλ restricted to C \ Z is a critical
point of Jλ considered on the whole space W, i.e., J ′

λ(u∗) = 0, thus, u∗ is an eigenfunction
of problem (1.1) corresponding to λ.

In order to show this, we make use of an argument similar to that used in [2, Lemma
3]. Let v ∈ Lip(Ω) be arbitrary but fixed. For all n ∈ N we define the C1 convex function
φn : R → R,

φn(s) := kr

(
u∗ +

1

n
v + s

)
∀ s ∈ R.

Note that φn is coercive, since we have

φn(s) ≥
| s |r

2r−1

(∫
Ω

a dx+

∫
∂Ω

b dσ
)
− kr

(
u∗ +

1

n
v
)
.
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Consequently, for all n ∈ N, φn admits a minimizer sn, such that φ′
n(sn) = 0, i.e. un ∈ C,

where

(3.19) un := u∗ +
1

n
v + sn ∀ n ∈ N.

In addition, the sequence
(
nsn

)
n

is bounded. Otherwise, up to a subsequence, nsn → ∞
or nsn → −∞ as n → ∞. Since v ∈ Lip(Ω) there exists N1 large enough such that we have
either

v(·) + nsn > 0 in Ω, or v(·) + nsn < 0 in Ω ∀ n ≥ N1.

Since the function τ 7→| u∗ + τ |r−2 (u∗ + τ) is strictly increasing on R, we get

0 =

∫
Ω

a | un |r−2 un dx+

∫
∂Ω

b | un |r−2 un dσ

>

∫
Ω

a | u∗ |r−2 u∗ dx+

∫
∂Ω

b | u∗ |r−2 u∗ dσ = 0 ∀n ≥ N1,

(3.20)

if v(·) + nsn > 0 in Ω, or the reverse inequality in the later case, when v(·) + nsn < 0 in Ω.
In both cases we get a contradiction.

We point out that the inequality in (3.20) is strict. Indeed, (1.2) implies that either
|{x ∈ Ω; a(x) > 0}|N > 0 or a = 0 a.e. in Ω and |{x ∈ ∂Ω; b(x) > 0}|N−1 > 0, hence
we cannot have equality above. Here | · |N , | · |N−1 denote the Lebesgue measures of the
corresponding sets.

Therefore,
(
nsn

)
n

must be bounded. This implies that there exists S ∈ R such that, on
a subsequence, nsn → S as n → ∞. So we have

(3.21) n
(
un − u∗

)
→ v + S and un → u∗ in W as n → ∞.

Since u∗ ∈ C \ Z, there exists N2 ∈ N such that
(
un

)
n
⊂ C \ Z ∀ n ≥ N2. By using the

minimality of u∗ we obtain that

(3.22) 0 ≤ lim
n→∞

n
(
Jλ(un)− Jλ(u∗)

)
∀ n ≥ N2.

On the other hand,

(3.23) n
(
Jλ(un)− Jλ(u∗)

)
= ⟨J ′

λ(u∗), n(un − u∗)⟩+ o(n;u∗, v),

where o(n;u∗, v) is a notation for the term which tends to zero in the definition of the
Fréchet deriative of Jλ at u∗, that is o(n;u∗, v) → 0 as n → ∞. It follows from (3.21)-(3.23)
in combination with u∗ ∈ C that

0 ≤ lim
n→∞

n
(
Jλ(un)− Jλ(u∗)

)
= lim

n→∞
⟨J ′

λ(u∗), n(un − u∗)⟩+ o(n;u∗, v)

= ⟨J ′
λ(u∗), v + S⟩ = ⟨J ′

λ(u∗), v⟩.

A similar reasoning with −v instead of v and the density of Lipschitz functions in W
yield J ′

λ(u∗) = 0, which concludes the proof. □

Case 2: r ∈ (p,∞).
In this case W = W 1,r(Ω) and C = Cr,r. Let λ > λr be an argitrary but fixed number.

Under the present assumption, r ∈ (p,∞), the functional Jλ is not necessarily coercive on
C.

Choosing w ≡ uλ in (1.3), we see that any eigenfunction uλ corresponding to λ satisfies
⟨J ′

λ(uλ), uλ⟩ = 0. We are going to show that Jλ has a nonzero critical point (which will be
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an eigenfunction corresponding to λ), therefore it is natural to investigate the restriction
of Jλ to the Nehari type manifold (see [14]) defined by

Nλ = {v ∈ C \ {0}; ⟨J ′
λ(v), v⟩ = 0}

= {v ∈ C \ {0};Kp(v) +Kq(v) +Kr(v) = λkr(v)}.

Note that, by virtue of Remark 1.1, Nλ ⊂ C\Z. We shall prove that Jλ attains its minimum
mλ := inf

w∈Nλ

Jλ(w) > 0 at some point u∗ ∈ Nλ (which depends on λ) and J ′
λ(u∗) = 0.

First, we show that Nλ is non empty. Indeed, since λ > λr, we deduce from (1.7) that
there exists u0 ∈ C \ Z such that Kr(u0) < λkr(u0). The condition tu0 ∈ Nλ, t > 0, reads

h(t;u0) := tp−rKr(u0) + tq−rKq(u0) +Kr(u0)− λkr(u0) = 0.

Obviously, the map defined by t 7→ hλ(t; ·) is continuous on (0,∞), satisfies

hλ(t;u0) → Kr(u0)− λkr(u0) < 0 as t → ∞, hλ(t;u0) → ∞ as t → 0+,

so there exists t0 ∈ (0,∞) such that hλ(t0;u0) = 0. Hence, for this t0 we have t0u0 ∈ Nλ.

Lemma 3.8. There exists a point u∗ ∈ Nλ where Jλ attains its minimal value, mλ := inf
w∈Nλ

Jλ(w) >

0.

Proof. Note that on Nλ functional Jλ has the form

(3.24) Jλ(u) =
r − p

pr
Kp(u) +

r − q

qr
Kq(u) > 0,

therefore mλ ≥ 0.
First, let us check that every minimizing sequence

(
un

)
n
⊂ Nλ for Jλ is bounded in W.

Since un ∈ Nλ for all n, taking into account (3.24), we obtain

(3.25) Jλ(un) =
r − p

pr
Kp(un) +

r − q

qr
Kq(un) → mλ, as n → ∞.

Also, we have

(3.26) 0 < λkr(un)−Kr(un) = Kp(un) +Kq(un).

Assume by contradiction that
(
un

)
n

is unbounded in W. Then, after passing to a subse-
quence if necessary, we have ∥un∥r,p → ∞ (see Lemma 2.1). Now, from (3.25) we obtain
that the sequences

(
Kp(un)

)
n

and
(
Kq(un)

)
n

are bounded and, taking into account (3.26),
δn := kr(un)

1
r → ∞ as n → ∞.

Set vn = un/δn, n ∈ N. From (3.26) we have Kr(vn) ≤ λ for all n, therefore
(
vn
)
n

is bounded in W. Thus there exists a v0 ∈ W such that vn ⇀ v0 in W (also in W 1,p(Ω)
and W 1,q(Ω), by continuous inclusions) and vn → v0 in boyh Lr(Ω) and Lr(∂Ω). As C is
weakly closed in W and

(
vn
)
n
⊂ C we obtain that v0 ∈ C. Now, dividing (3.26) by kr(un),

we get
λ−Kr(vn) = kr(un)

r
pKp(vn) + kr(un)

r
pKp(vn) ∀ n.

As kr(un) → ∞, r > p, and the left hand side term is bounded, we obtain that Kp(vn) → 0,
and so ∫

Ω

| ∇v0 |p dx ≤ lim inf
n→∞

∫
Ω

| ∇vn |p dx = 0.

Therefore v0 is a constant function. In fact, v0 ≡ 0 since v0 ∈ C. On the other hand,
1 = kr(vn) → kr(v0) = 0 as n → ∞, which is a contradiction

Next, we show that mλ > 0. Suppose the contrary, that mλ = 0 and let
(
un

)
n
⊂ Nλ be

a minimizing sequence for Jλ, i.e. Jλ(un) → 0 as n → ∞. We have already proved that
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un

)
n

is bounded in W , thus un ⇀ u0 (on a subsequence if necessary) for some u0 ∈ W

(also in W 1,p(Ω) and W 1,q(Ω)), and un → u0 in Lr(Ω) and also in Lr(∂Ω).
From (3.25) we obtain that Kp(un) → 0 as n → ∞, thus u0 is a constant function. Since

u0 ∈ C, we get u0 ≡ 0, hence kr(un) → 0. As
(
un

)
n
⊂ Nλ we have δn := kr(un)

1
r ̸= 0 so

we can define as before, vn = un/δn for all n. We can conclude that
(
vn
)
n

is bounded in W

and there exists v0 ∈ C such that, on a subsequence, vn ⇀ v0 in W and vn → v0 in Lr(Ω)
as well as in Lr(∂Ω), hence kr(v0) = 1. Dividing (3.26) by δqn and taking into account that
q < p < r, δr(un) → 0, we find

δr−q
n

(
Kr(vn)− λ

)
− δp−q

n Kp(vn) = Kq(vn) → 0 .

Next, since vn ⇀ v0 in W (also in W 1,q(Ω) and W 1,p(Ω)), we infer that∫
Ω

| ∇v0 |qdx ≤ lim inf
n→∞

∫
Ω

| ∇vn |q dx = 0.

Therefore v0 is a constant function and in fact v0 ≡ 0 since v0 ∈ C. This contradicts
kr(v0) = 1.

To complete the proof, we need to show that Jλ(u∗) = mλ for some u∗ ∈ Nλ. Let(
un

)
n
⊂ Nλ be a minimizing sequence, i.e. Jλ(un) → mλ as n → ∞. In particular, as we

have proved that the sequence
(
un

)
n

is bounded in W ,
(
un

)
n

converges weakly in W to
some u∗ ∈ W and strongly in both Lr(Ω) and Lr(∂Ω). We have

(3.27) Jλ(u∗) ≤ lim inf
n→∞

Jλ(un) = mλ.

Since
(
un

)
n
⊂ Nλ we have

(3.28) Kp(un) +Kq(un) +Kr(un) = λkr(un) ∀ n ∈ N.
It is easily seen that u∗ is not the null function. Indeed, assuming that u∗ ≡ 0, we infer by
(3.28) that

(
un

)
n

converges strongly to 0 in W , hence also in W 1,p(Ω) and W 1,q(Ω). Then
(3.25) will give mλ = 0 which is a contradiction. Thus, u∗ ∈ C \ {0}.

Letting n → ∞ in (3.28) yields

(3.29) Kp(u∗) +Kq(u∗) +Kr(u∗) ≤ λkr(u∗).

If (3.29) holds with equality then u∗ ∈ Nλ and we are done (cf. (3.27)). If we assume that
strict inequality holds in (3.29), we have t0u∗ ∈ Nλ for some t0 ∈ (0, 1). Indeed, if we
define j : (0,∞) → R,

j(t) := tr
(
tp−rKp(u∗) + tq−rKq(u∗) +Kr(u∗)− λkr(u∗)

)
we have j(1) < 0 (from the strict inequality (3.29)) and t−rj(t) → ∞ as t → 0+. Therefore,
there exists t0 ∈ (0, 1) such that j(t0) = 0, which implies t0u∗ ∈ Nλ.

Next, using (3.24), we get

(3.30) Jλ(t0u∗) =
tp0(r − p)

pr
Kp(u∗) +

tq0(r − q)

qr
Kq(u∗).

Therefore

0 <mλ ≤ Jλ(t0u∗) =
tp0(r − p)

pr
Kp(u∗) +

tq0(r − q)

qr
Kq(u∗)

<
r − p

pr
Kp(u∗) +

r − q

qr
Kq(u∗)

≤ r − p

pr
lim inf
n→∞

Kp(un) +
r − q

qr
lim inf
n→∞

Kq(un) ≤ lim inf
n→∞

Jλ(un) = mλ,

which is impossible. □
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The next result states that the minimizer u∗, given by Lemma 3.8, is a critical point of
Jλ considered on the whole space W.

Lemma 3.9. The minimizer u∗ ∈ Nλ from Lemma 3.8 is an eigenfunction of problem (1.1) with
corresponding eigenvalue λ.

Proof. It suffices to prove that J ′
λ(u∗) = 0. Let v ∈ Lip(Ω) be an arbitrary but fixed function

and let u∗ ∈ Nλ be the minimizer of Jλ over Nλ. Now, using arguments similar to thouse
in Lemma 3.7, we are able to obtain a sequence

(
un

)
n
⊂ C \ Z,

(3.31) un := u∗ +
1

n
v + sn ∀ n ≥ 1.

The sequence
(
nsn

)
n

is also bounded, so it converges, on a subsequence, to some S ∈ R.
Therefore, we have

(3.32) n
(
un − u∗

)
→ v + S, un → u∗ in W as n → ∞.

Since u∗ ∈ Nλ, we have Kp(u∗) +Kq(u∗) +Kr(u∗) = λkr(u∗), thus Kr(u∗)− λkr(u∗) < 0.
Also, kr(un) → kr(u∗) > 0, thus (on a subsequence if necessary) we can assume that

(3.33) Kr(un)− λkr(un) < 0, kr(un) > 0 ∀ n ≥ 1.

Using the sequence
(
un

)
n

, we shall construct a sequence
(
tn
)
n

⊂ R \ {0} such that(
tnun

)
n
⊂ Nλ, i.e.,

(3.34) tp−r
n Kp(un) + tq−r

n Kq(un) +Kr(un) = λkr(un).

Define

hn : (0,∞) → R, hn(t) := tp−rKp(un) + tq−rKq(un) +Kr(un)− λkr(un).

Obviously, hn(t) → ∞ as t → 0+ and hn(t) → Kr(un)− λkr(un) < 0 (see (3.33)). So there
exists tn > 0 such that hn(tn) = 0 ∀ n ≥ 1, hence (3.34) holds, as claimed.

In what follows we shall prove that the sequence
(
n(tn − 1)

)
n

is bounded. To this
purpose, we rewrite (3.34) in the equivalent form

n
(
tp−r
n − 1

)
Kp(un) + n

(
tq−r
n − 1

)
Kq(un)

= n
(
λkr(un)−Kp(un)−Kq(un)−Kr(un)

)
.

(3.35)

We shall prove first that the sequence
(
n(λkr(un)−Kp(un)−Kq(un)−Kr(un))

)
n

is con-
vergent. To this purpose, let us define the C1 functional

(3.36) Kλ : W → R, Kλ(u) = λkr(u)−Kp(u)−Kq(u)−Kr(u) ∀ u ∈ W.

For all u,w ∈ W

⟨K′
λ(u), w⟩ = −⟨K ′

p(u), w⟩ − ⟨K ′
q(u), w⟩ − ⟨K ′

r(u), w⟩+ λ⟨k′r(u), w⟩.(3.37)

Since u∗ ∈ Nλ, we infer that Kλ(u∗) = 0 and taking into account (3.36) we get

(3.38) n
(
λkr(un)−Kp(un)−Kq(un)−Kr(un)

)
= n

(
Kλ(un)−Kλ(u∗)

)
.

We have

(3.39) n
(
Kλ(un)−Kλ(u∗)

)
→ ⟨K′

λ(u∗), v + S⟩ as n → ∞.

From (3.38) and (3.39) we deduce that the sequence
(
n(λkr(un) − Kp(un) − Kq(un) −

Kr(un)
)
n

has a finite limit.
Returning to (3.35), we observe that

(
Kp(un)

)
n
,
(
Kq(un)

)
n
,
(
Kr(un)

)
n

are bounded se-
quences with positive limits. If we assume the contrary, that the sequence

(
n(tp−r

n − 1)
)
n
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has an unbounded subsequence converging, e.g., to +∞, then the corresponding subse-
quence of

(
n(tq−r

n − 1)
)
n

will have positive terms (since q − r < 0 and p − r < 0), so
the sequence defined by the left hand side of (3.35) will be unbounded, thus contradict-
ing the fact that the right hand side defines a convergent sequence. A similar argument
works in the case of a subsequence converging to −∞. Therefore,

(
n(tp−r

n − 1)
)
n

is a
bounded sequence. Hence, there is M > 0 such that for all n ≥ 1, n | tp−r

n − 1 |≤ M,
which implies 1 −M/n ≤ tp−r

n ≤ 1 +M/n ∀ n ≥ 1. Since, there exists N1 ∈ N such that
1−M/n > 0 ∀ n ≥ N1, we have

(3.40) n
((

1 +M/n
) 1

p−r − 1
)
≤ n(tn − 1) ≤ n

((
1−M/n

) 1
p−r − 1

)
∀ n ≥ N1.

Taking into account the relations

lim
x→0

(1 +Mx)1/(p−r) − 1

x
= M/(p− r), lim

x→0

(1−Mx)1/(p−r) − 1

x
= −M/(p− r),

we infer from (3.40) that the sequence
(
n(tn − 1)

)
n

is bounded, thus, by possibly passing
to a subsequence, there exists T ∈ R, such that n(tn − 1) → T as n → ∞. We define

(3.41) zn := tn

(
u∗ +

1

n
v + sn

)
= tnun ∀ n ≥ N1,

with
(
zn
)
n
⊂ Nλ. In addition, as

(
n(tn − 1)

)
n

is a bounded sequence, we can see that

(3.42) tn → 1 in R, zn → u∗ in W as n → ∞.

By using the minimality of u∗ and the fact that
(
zn
)
n
⊂ Nλ we obtain that

(3.43) 0 ≤ lim
n→∞

n
(
Jλ(zn)− Jλ(u∗)

)
.

Since functional Jλ ∈ C1(W ;R), we can write

(3.44) n
(
Jλ(zn)− Jλ(u∗)

)
=
(
⟨J ′

λ(u∗), n(zn − u∗)⟩+ o(n;u∗, v),

with o(n;u∗, v) → 0 as n → ∞. Taking into account (3.41) and (3.42), we can see that

(3.45) n(zn − u∗) = n
(
tn − 1

)
u∗ + v + nsn → Tu∗ + v + S as n → ∞ in W.

It follows from (3.43) and (3.45) that

(3.46) 0 ≤ ⟨J ′
λ(u∗), v + S + Tu∗⟩.

Since u∗ ∈ Nλ, we obtain that ⟨J ′
λ(u∗), u∗⟩ = 0, ⟨J ′

λ(u∗), S⟩ = 0, hence (3.46) implies 0 ≤
⟨J ′

λ(u∗), v⟩. A similar reasoning with −v instead of v shows that the converse inequality
holds, hence 0 = ⟨J ′

λ(u∗), v⟩. Finally, using the density of Lipschitz functions in W we
obtain that J ′

λ(u∗) = 0, which concludes the proof. □

Finally, the conclusion of Theorem 1.1 follows from Lemmas 3.4, 3.6, 3.7 and 3.9.

3.2. Proof of Theorem 2. The conclusions of Theorem 1.2 will follow from Lemma 3.4
and the next several lemmas which rely on the assumptions specified in the statement of
Theorem 1.2. These assumptions will not be explicitly mentioned again in the statements
of the next lemmas.
In the pesent case W = W 1,p(Ω) and C = Cp,r. Note that, under the present assumptions,
including r ∈ (q, p), functional Jλ, is coercive on C (see Lemma 3.5). The main difficulty
is to show that the global minimizer of Jλ over C is not zero.

First, let us check that 0 < λ∗ < λ∗.

Lemma 3.10. The constants λ∗, λ
∗ defined by (1.8)1,2 are positive and λ∗ < λ∗.
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Proof. From (1.8)1, taking into account that r < p and Lemma 2.3, we infer that

(3.47) λ∗ ≥ inf
v∈C\Z

Kr(v)

kr(v)
≥ inf

v∈Cr,r\Z

Kr(v)

kr(v)
= λ̂r > 0.

It remains to prove that λ∗ < λ∗. In order to show this inequality, taking into account
(1.8)1,2, it is enough to check that r/

(
p1−γqγ

)
> 1 ⇔ rp−q > pr−qqp−r, which can be

rewritten as (
1 +

p− q

q

) q
p−q

<
(
1 +

r − q

q

) q
r−q

.

So the desired inequality follows, since the function x → (1 + x)
1
x is decreasing on (0,∞)

and p− q > r − q. □

The next result shows that the equalities (1.9) from Theorem 1.2 hold true.

Lemma 3.11. The constants λ∗ and λ∗ defined in (1.8)1,2 can be equivalently expressed by (1.9).

Proof. First we show the equalities

λ∗ = inf
v∈C\Z

inf
t>0

(
Kp(tv) +Kq(tv) +Kr(tv)

kr(tv)

)
,

λ∗ = inf
v∈C\Z

inf
t>0

(
r
pKp(tv) +

r
qKq(tv) +Kr(tv)

kr(tv)

)
.

(3.48)

Define for all v ∈ C \ Z,

(3.49) R∗(v) :=
Kp(v) +Kq(v) +Kr(v)

kr(v)
, R∗(v) :=

r
pKp(v) +

r
qKq(v) +Kr(v)

kr(v)
,

gv(t) := R∗(tv) =
tp−rKp(v) + tq−rKq(v) +Kr(v)

kr(v)
,

hv(t) := R∗(tv) =

r
p t

p−rKp(v) +
r
q t

q−rKq(v) +Kr(v)

kr(v)
∀ t > 0.

(3.50)

It is easy to check that the function gv achieves its minimal value λ(v) > 0 on (0,∞) for
t = t(v) > 0, where

(3.51) λ(v) = Γ
Kp(v)

1−γKq(v)
γ

kr(v)
+

Kr(v)

kr(v)
, t(v) =

( (r − q)Kq(v)

(p− r)Kp(v)

) 1
p−q

.

But then,

λ(v) = R∗
(
t(v)v

)
= inf

t>0

Kp(tv) +Kq(tv) +Kr(tv)

kr(tv)

and, taking the infimum over all v ∈ C \ Z , we obtain the first equality in (3.48).
Define

µ∗ := inf
v∈C\Z

R∗(v), µ
∗ := inf

v∈C\Z
R∗(v).

According to the definition of µ∗ and (3.48)1, we have µ∗ ≥ λ∗. Let us prove the converse
inequality. Pick an arbitrary v ∈ C \ Z. As t(v)v ∈ C \ Z , we derive that λ(v) ≥ µ∗,
and taking the infimum over all v ∈ C \ Z, we infer that µ∗ ≤ λ∗, therefore the desired
equality holds true. By a similar reasoning, as the hv achieves its minimal value λ̂(v) =

r/
(
p1−γ)qγ

)
λ(v) > 0 on (0,∞) for t = t̂(v) = (p/q)1/(p−q)t(v) > 0, we first get the second

equality in (3.48) and then λ∗ = µ∗. □

Lemma 3.12. There exists u∗ ∈ C \Z such that λ∗ = R∗(u∗). In addition, u∗ is an eigenfunction
of problem (1.1) corresponding to the eigenvalue λ∗ and Jλ∗(u∗) = 0.
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Proof. First, we check that λ∗ = R∗(u∗) for some u∗ ∈ C \ Z. Let
(
un

)
n

⊂ C \ Z be a
minimizing sequence for λ∗, that is

(3.52)
r
pKp(un) +

r
qKq(un) +Kr(un)

kr(un)
→ λ∗ as n → ∞.

In particular, from (3.52) we obtain that the sequence

(3.53)
(Kp(un)

kr(un)

)
n

is bounded.

Since r < p < p̃, we get from Lemma 3.10, that there exists a positive constant L such that
kr(un) ≤ LrKp(un)

r/p for all n ≥ 1, which implies

Kp(un)

LrKp(un)r/p
≤ Kp(un)

kr(un)
∀ n ≥ 1.

This inequality combined with (3.53) and the assumption r < p shows that the sequence(
Kp(un)

)
n

is bounded. So, taking into account Lemma 3.10 with α = β = p, we infer
that the sequence

(
un

)
n

is bounded in W. Hence, there exists u∗ ∈ W such that, on a
subsequence, un ⇀ u∗ in W, kr(un) → kr(u∗) as n → ∞. Obviously, u∗ ∈ C.
Next, we check that kr(u∗) ̸= 0 which will imply that u∗ ̸= 0. Let us assume, by way of
contradiction, that kr(un) → kr(u∗) = 0. Define the sequence vn := un/kr(un)

1/r ∀ n ≥ 1.
From (3.52) we obtain that

(3.54)
(Kq(un)

kr(un)

)
n

is bounded.

Taking into account the relation Kq(un)/kr(un) = k
q−r
r

r (un)Kq(vn) and the assumption
kr(un) → 0, we deduce from (3.54) that Kq(vn) → 0 as n → ∞.

Since r < q̃ and
(
vn
)
n
⊂ C, according to Lemma 2.2, there exists a positive constant L1

such that (
kr(vn)

) 1
r ≤ L1

(
Kq(vn)

) 1
q ∀ n.

By passing to the limit as n → ∞ and taking into account that kr(vn) = 1 we obtain a
contradiction, therefore we conclude that u∗ ̸= 0.

Now, let us show that λ∗ = R∗(u∗). Indeed, since the numerator of the fraction from
the definition of R∗ is a weakly lower semicontinuous function, we have

R∗(u∗) ≤
lim inf
n→∞

(
r
pKp(un) +

r
qKq(un) +Kr(un)

)
lim
n→∞

kr(un)
≤ lim inf

n→∞
R∗(un) = λ∗,

which implies that λ∗ = R∗(u∗) and also Jλ∗(u∗) = 0. Hence, Jλ∗(u∗) = minC\Z Jλ∗ = 0.
Finally, by an argument similar to that used in the proof of Lemma 3.7, one can show

that J ′
λ∗(u∗) = 0 so in particular λ∗ is an eigenvalue of problem (1.1).

□

Lemma 3.13. Every number λ ∈ (λ∗,∞) is an eigenvalue of problem (1.1). In addition, for every
λ > λ∗ there exists an eigenfunction uλ corresponding to the eigenvalue λ such that Jλ(uλ) < 0.

Proof. Choose an arbitrary λ > λ∗. Taking into account Lemma 3.5 and using arguments
similar to those from the proof of Lemma 3.7, we obtain the existence of a global minimizer
uλ ∈ C for Jλ restricted to C, i.e., Jλ(uλ) = minC Jλ.

Now, let us prove that uλ ̸≡ 0.
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Since λ > λ∗ and kr(u
∗) ̸= 0 (see Remark 1.1), we infer, based on Lemma 3.12, that

0 =Jλ∗(u∗) =
1

p
Kp(u

∗) +
1

q
Kq(u) +

1

q
Kr(u)−

λ∗

r
kr(u

∗)

>
1

p
Kp(u

∗) +
1

q
Kq(u

∗) +
1

q
Kr(u)−

λ

r
kr(u

∗) = Jλ(u
∗).

As u∗ ∈ C, using the fact that Jλ(uλ) = minC Jλ ≤ Jλ(u
∗) < 0, we deduce that uλ ̸≡ 0.

Then, as in the proof of Lemma 3.7, we deduce that the global minimizer uλ for Jλ

restricted to C is a critical point of Jλ considered on the whole space W , i.e. J ′
λ(uλ) = 0.

In other words, uλ is an eigenfunction of problem (1.1) corresponding to λ. □

Next, let us prove that there is no eigenvalue of problem (1.1) in the interval (0, λ∗).

Lemma 3.14. Problem (1.1) has no nontrivial solution for λ ∈ (0, λ∗).

Proof. The result is a simple consequence of Lemma 3.11. Assume, by way of contradic-
tion, that there exists a λ ∈ (0, λ∗) and uλ ∈ C \ Z which satisfy the relation (1.3) from
Definition 1.1. Choosing here w = uλ yields

(3.55) λ =
Kp(uλ) +Kq(uλ) +Kr(uλ)

kr(uλ)
,

which, by virtue of the equivalent definition of λ∗ in (1.8)1, implies that λ ≥ λ∗. This
contradicts the choice of λ. □

Summarizing, the conclusions of Theorem 1.2 follow from Lemmas 3.4 and 3.10-3.14.

4. THE GENERAL CASE

Both Theorem 1.1 and Theorem 1.2 above remain valid for the general problem

(4.56)

{
Bu := −ρp∆pu− ρq∆qu− ρr∆ru = λa(x) | u |r−2 u in Ω,
∂u
∂νB

= λb(x) | u |r−2 u on ∂Ω,

where ρp, ρq, ρr are given positive constants, and

∂u

∂νB
:=
( ∑

α∈{p,q,r}

ρα | ∇u |α−2
)∂u
∂ν

.

Definition 1.1 is modified by replacing the left hand side of (1.3) with∑
α∈{p,q,r}

ρα

∫
Ω

| ∇uλ |α−2 ∇uλ · ∇w dx.

Define

(4.57) λr := inf
v∈C\Z

ρr
Kr(v)

kr(v)
,

λ∗ := inf
v∈C\Z

(
Γ
Kp(v)

1−γKq(v)
γ

kr(v)
+ ρr

Kr(v)

kr(v)

)
,

λ
∗
:= inf

v∈C\Z

(
Γ

r

p1−γqγ
Kp(v)

1−γKq(v)
γ

kr(v)
+ ρr

Kr(v)

kr(v)

)
,

γ :=
p− r

p− q
, Γ :=

ρ1−γ
p ργq (p− q)

(r − q)1−γ(p− r)γ
.

(4.58)

Theorems 1.1 and 1.2 can be reformulated as follows.
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Theorem 4.3. Assume that ρp, ρq, ρr are positive constants, and (hpqr), (hab) are fulfilled. If
r ̸∈ (q, p), then λr > 0 and the set of eigenvalues of problem (4.56) is precisely {0} ∪ (λr,∞),
where λr is the constant defined by (4.57).

Theorem 4.4. Assume that ρp, ρq, ρr are positive constants, (hpqr) and (hab) are fulfilled, r ∈
(p, q), and in addition r < q(N−1)/(N−q) if q < N . Then 0 < λ∗ < λ

∗
, every λ ∈ {0}∪[λ∗

,∞)

is an eigenvalue of problem (4.56) and for any λ ∈ (−∞, λ∗) \ {0}, problem (4.56) has only the
trivial solution.

Moreover, the constants λ∗, λ
∗

can be expressed as follows

(4.59) λ∗ = inf
v∈C\Z

∑
α∈{p,q,r}

ραKα(v)

kr(v)
, λ

∗
= inf

v∈C\Z

∑
α∈{p,q,r}

ρα

α Kα(v)

1
rkr(v)

.

REFERENCES

[1] Adams, R. A.; Fournier, J. J. Sobolev Spaces. second ed., Pure Appl. Math., 140, Academic Press, New
York–London, 2003.
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