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ABSTRACT. In this paper we provide a new approach in the study of a variational-hemivariational inequal-
ity in Hilbert space, based on the theory of maximal monotone operators and the Banach fixed point theorem.
First, we introduce the inequality problem we are interested in, list the assumptions on the data and show
that it is governed by a multivalued maximal monotone operator. Then, we prove that solving the variational-
hemivariational inequality is equivalent to finding a fixed point for the resolvent of this operator. Based on
this equivalence result, we use the Banach contraction principle to prove the unique solvability of the problem.
Moreover, we construct the corresponding Picard, Krasnoselski and Mann iterations and deduce their conver-
gence to the unique solution of the variational-hemivariational inequality.

1. INTRODUCTION

Variational-hemivariational inequalities represent a relevant class of inequalities which
have both a convex and nonconvex structure. Their study is motivated by the analysis of
various boundary value problems which arise in Physics, Mechanics and Engineering
Sciences. It is carried out by using arguments of both convex and nonsmooth analysis,
including the properties of convex subdifferential and the Clarke directional derivative
for locally Lipschitz functions. Introduced in the pioneering work of Panagiotopoulos
[14], the theory of variational-hemivariational inequalities grew up rapidly, as shown in
[12, 13, 15] and the references therein. Recent existence, uniqueness and convergence re-
sults can be found in [6, 11, 17, 20]. The numerical analysis of variational-hemivariational
inequalities was carried out by using various methods. For instance, optimization meth-
ods have been developed in [9, 10], the finite element method has been considered in
[7, 8, 18] and the virtual element method has been used in [4, 16].

Motivated by the research works on the solvability of variational-hemivariational in-
equalities, in this paper we introduce a new approach which allows us to prove existence,
uniqueness and convergence results for a class of variational-hemivariational inequalities
in Hilbert spaces. An inequality of this class is denoted by VHVI and is formulated as
follows:

VHVI : Find u ∈ K such that

(1.1) (Au, v − u)H + φ(v)− φ(u) + J0(u; v − u) ≥ (f, v − u)H ∀ v ∈ K.

Here and below H represents a real Hilbert space endowed with the inner product
(·, ·)H and the associated norm ∥ · ∥H , K is a nonempty subset of H , A : H → H is a
nonlinear operator, φ : H → R and J : H → R are given functions and, finally, f ∈ H .
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The function J is assumed to be locally Lipschitz and notation J0(u; v) represents the
Clarke directional derivative of J at the point u, in the direction v.

Existence and uniqueness results in the study of variational-hemivariational inequality
problems of the form (1.1) have been obtained in many papers, under different conditions
on the data. For instance, inequality (1.1) was considered in [11] under the assumptions
that A is a pseudomonotone and strongly monotone operator, φ is a convex lower semi-
continuous function and the Clarke subdifferential of the function J satisfies a growth
condition. The unique solvability of the problem was proved by using a surjectivity re-
sult for pseudomonotone multivalued operators. Recently, problem (1.1) was considered
in [6], under the assumptions that A is strongly monotone and Lipschitz continuous and
φ is a convex continuous function. The unique solvability of the problem was obtained
by using a minimization principle which avoids any pseudomonotonicity argument.

Our results in this paper complete the results in [6, 11]. Indeed, here we present a new
approach in the study of the variational-hemivariational inequality (1.1), based on argu-
ments of multivalued maximal monotone operators in Hilbert spaces and fixed point.
Our results are obtained under assumptions which are slightly different to those used in
[6, 11]. Moreover, the method we introduce here opens the way to the approach of the
solution by using the Picard, Krasnoselski and Mann iterations. Therefore, one of the
novelties of our approach is that it allows us to recursively construct an approximation
of the solution to VHVI. Extending this approach to variational-hemivariational inequali-
ties in the framework of reflexive Banach spaces represents a challenging problem which
deserves to be studied in the future.

The rest of the paper is organized as follows. In Section 2 we recall some basic defini-
tions and preliminary material which will be used in the rest of the paper. In Section 3 we
state and prove our main existence and uniqueness result, Theorem 3.1. Finally, in Section
4 we prove a convergence result to the solution of the VHVI.

2. PRELIMINARIES

The preliminary results we present in this section can be found in many books and
surveys, including [2, 3, 19]. For this reason we present them without proofs. Everywhere
below we use the symbols “→” and “⇀” to denote the strong and the weak convergence
in the space H , respectively. We use the notation Hw for the real Hilbert space H equipped
with the weak topology. The limits, lower limits and upper limits are considered as n →
∞, even if we do not mention it explicitly. Moreover, we use intM for the interior of the
set M ⊂ H , in the strong topology of H . Finally, we denote by I the identity map of H ,
by 0H the zero element of H and by 2H the set of parts of H . We start with the following
definitions.

Definition 2.1. The operator A : H → H is said to be:
(1) demicontinuous if un → u in H implies Aun ⇀ Au in H ;
(2) strongly monotone if there exists constant mA > 0 such that

(Au−Av, u− v)H ≥ mA∥u− v∥2H ∀ u, v ∈ H;

(3) a contraction if there exists constant 0 ≤ k < 1 such that

∥Au−Av∥H ≤ k∥u− v∥H ∀ u, v ∈ H.

Definition 2.2. The Clarke directional derivative of the locally Lipschitz function J : H →
R at the point u ∈ H in the direction v ∈ H is defined by

J0(u; v) = lim sup
w→u,λ↓0

J(w + λv)− J(w)

λ
.
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The Clarke subdifferential of J at u, denoted by ∂J(u), is the subset of the space H defined
by

∂J(u) = { ξ ∈ H | J0(u; v) ≥ (ξ, v)H ∀ v ∈ H }.

For the Clarke subdifferential and directional derivative we recall the following prop-
erties.

Proposition 2.1. Let J : H → R be a locally Lipschitz function. Then:
(1) for all u ∈ H , the set ∂J(u) is a nonempty convex and weakly compact subset of H ;
(2) the graph of the Clarke subdifferential ∂J : H → 2H is closed in the H ×Hw topology;
(3) for all u, v ∈ H , one has

J0(u; v) = max{ (ξ, v)H | ξ ∈ ∂J(u) }.

We now move to some basic definitions and results on convex analysis.

Definition 2.3. The subdifferential of a proper convex function φ : H → R ∪ {+∞} is
defined by

∂cφ(u) = { η ∈ H | φ(v)− φ(u) ≥ (η, v − u)H ∀ v ∈ H }.

Definition 2.4. Given a nonempty subset K of H , the indicator function of set K is defined
by

IK(u) =

{
0 if u ∈ K,
+∞ if u /∈ K.

It is well known that if the subset K of H is nonempty closed and convex, then the
indicator function IK is proper convex and lower semicontinuous. We also recall the
following result proved in [5].

Proposition 2.2. Let C be a nonempty closed convex subset of H , C∗ ⊂ H a nonempty closed
convex bounded subset of H , φ : H → R∪{+∞} a proper convex lower semicontinuous function
and u ∈ C. Assume that for each v ∈ C there exists u∗(v) ∈ C∗ such that

(u∗(v), v − u)H ≥ φ(u)− φ(v).

Then, there exists u∗ ∈ C∗ such that

(u∗, v − u)H ≥ φ(u)− φ(v) ∀ v ∈ C.

We now proceed with some results concerning multivalued operators defined on the
space H . To this end we recall that, given a multivalued operator T : H → 2H , its domain
D(T ), range R(T ) and graph Gr(T ) are the sets defined by

D(T ) = { v ∈ H |Tv ̸= ∅ },

R(T ) = { f ∈ H | ∃ v ∈ D(T ) s.t. f ∈ Tv },

Gr(T ) = { (v, v∗) ∈ D(T )×H | v∗ ∈ Tv }.

Definition 2.5. The operator T : H → 2H is said to be:
(1) relaxed monotone if there exists constant αT > 0 such that

(u∗
1 − u∗

2, u1 − u2)H ≥ −αT ∥u1 − u2∥2H ∀ (u1, u
∗
1), (u2, u

∗
2) ∈ Gr(T );

(2) monotone if

(u∗
1 − u∗

2, u1 − u2)H ≥ 0 ∀ (u1, u
∗
1), (u2, u

∗
2) ∈ Gr(T );

(3) maximal monotone if it is monotone and the following implication holds:

(u∗ − v∗, u− v)H ≥ 0 ∀u ∈ D(T ), u∗ ∈ Tu =⇒ v ∈ D(T ) and v∗ ∈ Tv.
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Proposition 2.3. Let T : D(T ) → 2H be a maximal monotone operator and let λ > 0. Then
R(I + λT ) = H . Moreover, for any f ∈ H there exists a unique element u ∈ D(T ) such that
u+ λTu ∋ f .

Proposition 2.3 allows us to consider the resolvent operator Tλ : H → D(T ) defined by

(2.2) Tλf = u ⇐⇒ u ∈ D(T ) and f ∈ u+ λTu

for all f ∈ H . Note that the resolvent operator exists for each λ > 0 and is a single valued
operator. A proof can be found in [3], together with the following results which represent
sufficient conditions for an operator to be maximal monotone.

Proposition 2.4. Assume that φ : H → R ∪ {+∞} is a proper convex lower semicontinuous
function. Then the subdifferential operator ∂cφ : H → 2H is maximal monotone.

Proposition 2.5. Assume that T : H → 2H is a monotone operator such that for every v ∈ H , Tv
is nonempty convex and weakly closed set. Moreover, assume that for all u, v ∈ H , the mapping
λ 7→ T (λu+(1−λ)v) has a graph which is closed in [0, 1]×Hw. Then the operator T is maximal
monotone.

Proposition 2.6. Let T1, T2 : H → 2H be two maximal monotone operators such that intD(T1)∩
D(T2) ̸= ∅. Then the sum T1 + T2 : H → 2H is a maximal monotone operator.

3. MAIN RESULT

In this section we state and prove our main result in the study of the variational-
hemivariational inequality (1.1). To this end we consider the following assumptions on
the data.

K is a nonempty closed convex subset of H.(3.3)

A : H → H is demicontinuous and strongly monotone with mA > 0.(3.4)

φ : H → R is convex lower semicontinuous.(3.5) 
J : H → R is such that
(a) J is locally Lipschitz continuous;
(b) J0(u1;u2 − u1) + J0(u2;u1 − u2) ≤ αJ ∥u1 − u2∥2H

∀ u1, u2 ∈ H with αJ > 0.

(3.6)

f ∈ H.(3.7)

mA > αJ .(3.8)

Remark 3.1. We note that a convex function φ : H → R satisfies condition (3.5) if and
only if it is continuous. Moreover, (3.6)(b) is equivalent to the relaxed monotonicity con-
dition of ∂J with constant αJ . A proof of this equivalence can be found in [15, p.124].

Under these assumptions we have the following existence and uniqueness result.

Theorem 3.1. Assume (3.3)–(3.8). Then the variational-hemivariational inequality VHVI has a
unique solution on K.

The proof of Theorem 3.1 requires some preliminary results that we present in what
follows.

Lemma 3.1. Assume (3.3)–(3.8). Then the operator S : H → 2H defined by

(3.9) Su = Au+ ∂J(u) + ∂c(φ+ IK)(u)− f ∀u ∈ H

is maximal monotone.



A Fixed Point Approach of Variational-Hemivariational Inequalities 577

Proof. The proof of this lemma is carried out in several steps.

i) First, we claim that operator A + ∂J : H → 2H is monotone. The proof of this claim
follows directly from the strong monotonicity of operator A with constant mA, the relaxed
monotonicity with αJ of the operator ∂J , guaranteed by Remark 3.1 and the smallness
condition mA > αJ .

ii) Next, we claim that for all v ∈ H the set Av + ∂J(v) is a nonempty convex and
weakly closed subset in H . Indeed, this statement follows from Proposition 2.1 (1).

iii) We now prove that the mapping λ 7→ (A + ∂J)(λu + (1 − λ)v) has a closed graph
in [0, 1] × Hw. To this end let u, v ∈ H and assume that λn → λ in [0, 1], xn ⇀ x in H as
n → ∞ and

xn ∈ (A+ ∂J)(λnu+ (1− λn)v),

for each n ∈ N. Then, it follows that

xn −A(λnu+ (1− λn)v) ∈ ∂J(λnu+ (1− λn)v).

Since λn → λ, xn ⇀ x and the operator A is demicontinuous, we deduce that

xn −A(λnu+ (1− λn)v) ⇀ x−A(λu+ (1− λ)v).

Moreover, the closedness of the graph of ∂J(·) in H ×Hw implies that

x−A(λu+ (1− λ)v) ∈ ∂J(λu+ (1− λ)v),

i.e., x ∈ (A + ∂J)(λu + (1 − λ)v). We conclude from here that the mapping λ 7→ (A +
∂J)(λu+ (1− λ)v) has a closed graph in [0, 1]×Hw.

iv) We now use the steps i)-iii) above and Proposition 2.5 to obtain that the operator
A+ ∂J : H → 2H is maximal monotone.

v) To proceed, we claim that operator A + ∂J + ∂c(φ + IK) : H → 2H is maximal
monotone. Indeed, using (3.3), (3.5) and Proposition 2.4 we deduce that the operator
∂c(φ+IK) is maximal monotone. Moreover, Proposition 2.1(1) shows that D(A+∂J) = H
and, on the other hand, it is obvious to see that D(∂c(φ + IK)) = K. This implies that
intD(A+ ∂J) ∩D(∂c(φ+ IK)) = K ̸= ∅. We are now in a position to use Proposition 2.6
in order to deduce that the operator A+∂J +∂c(φ+ IK) : H → 2H is maximal monotone.

vi) As a consequence of step v) we deduce that the operator S defined by (3.9) is also
maximal monotone, which concludes the proof. □

Lemma 3.1 and Proposition 2.3 allow us to consider resolvent operator Sλ : H → K
defined by

(3.10) Sλu = (I + λS)−1u ∀ u ∈ H,

for each λ > 0. In the next step we state the equivalence between inequality VHVI and
the problem of finding a fixed point of the operator Sλ : H → K defined by (3.10).

Lemma 3.2. Assume (3.3)–(3.8) and let u ∈ H , λ > 0. Then the following statements are
equivalent:

(1) u is a solution of inequality VHVI;
(2) u is a fixed point of the resolvent operator Sλ, i.e., u = Sλu.

Proof. Assume that u is a solution to VHVI. Then u ∈ K and we deduce from Proposition
2.1 (3) that for each v ∈ K there exists ξ(v) ∈ ∂J(u) such that

(Au+ ξ(v)− f, v − u)H + φ(v)− φ(u) ≥ 0 ∀ v ∈ K.
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Moreover, Proposition 2.1 (1), shows that the set C∗ = {Au + ξ − f : ξ ∈ ∂J(u) } is
a nonempty closed convex bounded subset of H . Therefore, using Proposition 2.2 with
C = K we find that there exists ξ∗ ∈ ∂J(u), which does not depend on v, such that

(Au+ ξ∗ − f, v − u)H + φ(v)− φ(u) ≥ 0 ∀ v ∈ K.

So,
φ(v)− φ(u) + IK(v)− IK(u) ≥ (−Au− ξ∗ + f, v − u)H ∀ v ∈ H.

Therefore, by the definition of subdifferential of convex function and inclusion ξ∗ ∈ ∂J(u)
we have

(3.11) f ∈ Au+ ∂J(u) + ∂c(φ+ IK)(u).

This implies that 0H ∈ λSu or, equivalently, u ∈ u + λSu. We now use the equivalence
(2.2) to see that Sλu = u which shows that u is a fixed point of operator Sλ.

Conversely, let u be a fixed point of operator Sλ, i.e., u = Sλu. It follows from the
definitions (3.9) and (3.10) that (3.11) holds. Then, there exist η ∈ ∂c(φ + IK)(u) and
ξ ∈ ∂J(u) such that f = Au + ξ + η. Therefore, we deduce from the definitions of the
Clarke directional derivative and the subdifferential of convex function that u is a solution
to inequality VHVI, which concludes the proof. □

We now proceed with the following result.

Lemma 3.3. Assume (3.3)–(3.8). Then, for each λ > 0 the operator Sλ : H → K is a contraction
on H .

Proof. Let λ > 0 and let σ, u ∈ H . We claim that u = Sλσ if and only if u ∈ K and

(3.12) (Au, v − u)H + φ(v)− φ(u) + J0(u; v − u) ≥ (f +
σ − u

λ
, v − u)H ∀ v ∈ K.

Indeed, we use (2.2) and (3.9) to see that the following equivalences hold:

u = Sλσ ⇐⇒ u ∈ K and σ ∈ (I + λS)u

⇐⇒ u ∈ K and f +
σ − u

λ
∈ Au+ ∂J(u) + ∂c(φ+ IK)(u)

⇐⇒ u ∈ K and

(Au, v − u)H + φ(v)− φ(u) + J0(u; v − u) ≥ (f +
σ − u

λ
, v − u)H ,

for all v ∈ K. Note that the last equivalence above follows from arguments similar to
those used in Lemma 3.2, replacing f with f + σ−u

λ .
Assume now that σ1, σ2 ∈ H and denote u1 = Sλσ1 and u2 = Sλσ2. Then, using the

equivalence (3.12) we have

u1 ∈ K, (Au1, v − u1)H + φ(v)− φ(u1) + J0(u1; v − u1) ≥ (f +
σ1 − u1

λ
, v − u1)H ,(3.13)

u2 ∈ K, (Au2, v − u2)H + φ(v)− φ(u2) + J0(u2; v − u2) ≥ (f +
σ2 − u2

λ
, v − u2)H ,(3.14)

for each v ∈ K. We now take v = u2 in (3.13), v = u1 in (3.14) and add the resulting
inequalities to find that

1

λ
∥u1 − u2∥2H + (Au1 −Au2, u1 − u2)H

≤ J0(u1;u2 − u1) + J0(u2;u1 − u2) +
1

λ
(σ1 − σ2, u1 − u2)H .
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We now use the strong monotonicity of operator A, assumption (3.6)(b) and Cauchy-
Schwarz’s inequality to deduce that

(
1

λ
+mA − αJ)∥u1 − u2∥2H ≤ 1

λ
∥σ1 − σ2∥H∥u1 − u2∥H .

Therefore, the smallness assumption (3.8) yields

∥u1 − u2∥H ≤ k∥σ1 − σ2∥H
with k = 1

1+λ(mA−αJ )
∈ (0, 1), which concludes the proof. □

We now are in a position to provide the proof of our main existence and uniqueness
result, Theorem 3.1.

Proof. Let λ > 0. We use Lemma 3.3 and the Banach fixed point theorem to see that the
operator Sλ has a unique fixed point u ∈ K. Hence, Lemma 3.2 guarantees that u is the
unique solution of the variational-hemivariational inequality V HV I , which concludes the
proof. □

4. CONVERGENCE RESULTS

The results in the previous section show that Problem VHVI has a fixed point structure
since its unique solvability is based on Lemma 3.3 and the Banach fixed point theorem. In
this section we exploit this structure in order to provide the following convergence result.

Theorem 4.2. Assume (3.3)–(3.8), λ > 0, α0 ∈ (0, 1], {an} ⊂ [α0, 1], u0 ∈ K and consider the
sequence {un} defined by

(4.15) un+1 = (1− an)un + anSλun ∀n ∈ N.
Then

(4.16) un → u in H as n → ∞,

where u is the unique solution of Problem VHVI obtained in Theorem 3.1.

Proof. Following [1, p.16], (4.15) represent the Mann iterations associated to the operator
Sλ. Therefore, since Lemma 3.3 guarantees that Sλ is a contraction, the convergence result
(4.16) follows from standard arguments. Nevertheless, for the convenience of the reader,
we present below its proof.

Let n ∈ N and recall that there exists k ∈ (0, 1) which does not depend on n such that

(4.17) ∥Sλv − Sλw∥H ≤ k∥v − w∥H ∀ v, w ∈ H.

We use (4.17) and (4.15) to see that

∥Sλun − un∥H ≤ ∥Sλun − Sλun−1∥H + ∥Sλun−1 − un∥H
≤ k∥un−1 − un∥H + (1− an−1)∥Sλun−1 − un−1∥H
≤

(
1 + (k − 1)an−1

)
∥Sλun−1 − un−1∥H ,

which implies that

∥Sλun − un∥H ≤
(
1 + (k − 1)an−1

)
· · ·

(
1 + (k − 1)a0

)
∥Sλu0 − u0∥H .

Using now the inequalities 0 < 1 + (k − 1)am ≤ 1 + (k − 1)α0 with m = 0, 1, . . . , n− 1 we
find that

∥Sλun − un∥H ≤
(
1 + (k − 1)α0

)n∥Sλu0 − u0∥H .

Note that 1 + (k − 1)α0 < 1 and, therefore, this inequality shows that

(4.18) ∥Sλun − un∥H → 0 as n → ∞.
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Next, using equality u = Sλu and (4.17), again, we find that

∥un − u∥H ≤ ∥un − Sλun∥H + ∥Sλun − u∥H ≤ ∥un − Sλun∥H + k∥un − u∥H ,

which implies that

(4.19) ∥un − u∥H ≤ 1

1− k
∥un − Sλun∥H .

We now combine (4.18) and (4.19) to deduce the convergence (4.16). □

Note that for an = a ∈ (0, 1] the Mann iterations (4.15) reduce to Krasnoselski iterations

(4.20) un+1 = (1− a)un + aSλun ∀n ∈ N

and for a = 1 the Krasnoselski iterations (4.20) reduce to Picard iterations

(4.21) un+1 = Sλun ∀n ∈ N.

Theorem 4.2 shows that the sequences defined by (4.20) and (4.21) converge to the solution
of the variational-hemivariational inequality VHVI. Finally, from the equivalence (3.12) it
follows that the Picard iteration can be defined, recursively, as follows: u0 ∈ K and, for
all n ∈ N, un+1 is the solution of the variational-hemivariational inequality

un+1 ∈ K, (Aun+1, v − un+1)H +
1

λ
(un+1, v − un+1)H + φ(v)− φ(un+1)

+J0(un+1; v − un+1) ≥ (f +
un

λ
, v − un+1)H ∀ v ∈ K.

This iterative scheme could be used in the numerical approximation of the inequality
problem VHVI.
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