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ABSTRACT. Orbital fuzzy iterated function systems are obtained as a combination of the concepts of iterated
fuzzy set system and orbital iterated function system. It turns out that, for such a system, the corresponding
fuzzy operator is weakly Picard, its fixed points being called fuzzy fractals. In this paper we present a structure
result concerning fuzzy fractals associated to an orbital fuzzy iterated function system by proving that such an
object is perfectly determined by the action of the initial term of the Picard iteration sequence on the closure of
the orbits of certain elements.

1. INTRODUCTION

Fuzzy sets have their origin in Zadeh’s remark that ”more often than not, the classes
of objects encountered in the real physical world do not have precisely defined criteria of
membership” (see [16]). They have been introduced, in 1965, with the purpose of recon-
ciling mathematical modelling and human knowledge in engineering sciences. To be pre-
cise, Zadeh was focused on their potential applications ”in human thinking, particularly
in the domain of pattern recognition, communication of information, and abstraction”.

Theory of iterated function systems, which was initiated, in 1981, by J. Hutchinson (see
[8]) and enriched by M. Barnsley and S. Demko (see [2] and [3]), has at its core the con-
struction of deterministic fractals and measures. It has applications in image processing,
stochastic growth model, random dynamical systems, bioinformatics, economics, finance,
engineering sciences, human anatomy, physics etc.

The fuzzification Zadeh’s idea was naturally adjusted to the Hutchinson-Barnsley the-
ory of iterated function systems. More precisely, in 1991, C. Cabrelli, B. Forte, U. Molter
and E. Vrscay (see [4] and [5]) introduced the concept of iterated fuzzy set system which
consists of a finite family (fi)i∈I of contractions on a compact metric space (X, d) together
with a family of ”grey level” maps (ϕi)i∈I , where ϕi : [0, 1] → [0, 1]. One can associate to
such a system an operator on the class of normalized uppersemicontinuous fuzzy sets of
X which turns out to be a contraction with respect to a metric d∞ involving the Hausdorff-
Pompeiu distances between level sets. Its unique fixed point is called the invariant fuzzy
set. The relevance of this theory to image processing is mentioned in [5]. The continu-
ity properties of the invariant fuzzy set with respect to changes in the contractions fi and
grey level maps ϕi are studied in [7]. Other papers dealing with iterated fuzzy set systems
are [1] and [13]. Let us also mention that R. Uthayakumar and D. Easwaramoorthy (see
[15]) studied the Hutchinson-Barnsley theory in the framework of the fuzzy hyperspace
with respect to the Hausdorrf-Pompeiu fuzzy metric.
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Another natural generalization of Hutchinson’s concept of iterated function system,
termed as orbital iterated function system, was recently considered in [9], [10] and [14].
Here, the idea is to consider iterated function systems consisting of continuous functions
satisfying Banach’s orbital condition. The novelty of this approach is that the associated
fractal operator is weakly Picard. It comes to the light that this is a genuine generalization
since there exist such systems for which the fractal operator is weakly Picard, but not
Picard (see Remark 4.1 from [9]). For extra properties of this kind of system see [10] and
[14].

A natural continuation of research lines previously mentioned is to examine the so
called orbital fuzzy iterated function systems (see [12]) which are obtained as a combina-
tion of iterated fuzzy set systems and orbital iterated function systems. It was proved (see
Theorem 3.1 from [12]) that the corresponding fuzzy operator is weakly Picard. Its fixed
points are called fuzzy fractals. More precisely, let us suppose that SZ is such a system,
where SZ = ((X, d), (fi)i∈I , (ρi)i∈I), Z : F∗

S → F∗
S (where F∗

S is a certain class of fuzzy
sets - see Section 2 for details) is the fuzzy Hutchinson-Barnsley operator associated to
SZ and let us arbitrarily choose an element u from F∗

S . Then the sequence (Z [n](u))n∈N is
convergent and its limit, denoted by uu, is a fuzzy fractal.

The goal of the present paper is to provide, for each u ∈ F∗
S , a description of the fuzzy

fractal uu in terms of certain fuzzy fractals ux obtained as the limit of the Picard iteration
sequence which starts with a fuzzy set ux associated to u and x ∈ X such that u(x) > 0.
More precisely, Theorem 2.1, which is our main result, states that uu = max

x such that u(x)>0
ux =

max
x such that u(x)=1

ux.

A. Basic notations and terminology

By N we mean the set {1, 2, ...}.
For a family of functions (fi)i∈I , where fi : X → R, we shall use the following notation:

sup
i∈I

fi
not
= ∨

i∈I
fi.

For a function f : X → X and n ∈ N, the composition of f by itself n times is denoted
by f [n].

A function f : X → X , where (X, d) is a metric space, is called weakly Picard operator
if the sequence (f [n](x))n∈N is convergent for every x ∈ X and the limit (which may
depend on x) is a fixed point of f . A weakly Picard operator having a unique fixed point
is called Picard operator.

For a subset A of a metric space (X, d), by diam(A) we mean the diameter of A i.e.
sup

x,y∈A
d(x, y).

For a metric space (X, d), we shall use the following notations:

{A ⊆ X | A ̸= ∅ and A is bounded} not
= Pb(X),

{A ⊆ X | A ̸= ∅ and A is closed} not
= Pcl(X),

Pb(X) ∩ Pcl(X)
not
= Pb,cl(X),

{A ⊆ X | A ̸= ∅ and A is compact} not
= Pcp(X).

For a metric space (X, d), by h we designate the Hausdorff-Pompeiu metric on X , i.e.
the function h : Pb,cl(X)× Pb,cl(X) → [0,∞), described by

h(K1,K2) = max
{
sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)
}

,
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for every K1,K2 ∈ Pb,cl(X).

Remark 1.1. (Pcp(X), h) is a complete metric space, provided that (X, d) is complete. If
(An)n∈N ⊆ Pcp(X) is Cauchy, then lim

n→∞
An = {x ∈ X | there exists a strictly increasing

sequence (nk)k∈N ⊆ N and xnk
∈ Ank

for every k ∈ N such that lim
k→∞

xnk
= x}.

B. Fuzzy sets

For a set X , we shall use the following notation:

{u : X → [0, 1]} not
= FX .

The elements of FX are called fuzzy subsets of X .
A non-zero function ρ : [0, 1] → [0, 1] is called a grey level map.
To every grey level map ρ and u ∈ FX one could associate the element of FX , denoted

by ρ(u), given by ρ ◦ u.
u ∈ FX is called normal if there exists x ∈ X such that u(x) = 1.
For u ∈ FX and α ∈ (0, 1], we shall use the following notations:

{x ∈ X | u(x) ≥ α} not
= [u]α,

{x ∈ X | u(x) > 0} not
= [u]∗.

Given a metric space (X, d), u ∈ FX is called compactly supported if suppu := [u]∗
not
=

[u]0 ∈ Pcp(X).
For a metric space (X, d), we shall use the following notations:

{u ∈ FX | u is normal and compactly supported} not
= F∗∗

X ,

{u ∈ F∗∗
X | u is upper semicontinuous} not

= F∗
X .

For a metric space (X, d) and x ∈ X , we consider δx ∈ F∗
X given by

δx(t) =

{
1, if t = x
0, if t ̸= x

,

for every t ∈ X .

Remark 1.2.
suppδx = {x},

for every x ∈ X .

To every f : X → Y and u ∈ FX one could associate an element of FY , denoted by
f(u), which is described in the following way:

f(u)(y) =

{
sup

x∈f−1({y})
u(x), if f−1({y}) ̸= ∅

0, if f−1({y}) = ∅
,

for every y ∈ Y .

For a metric space (X, d), the function d∞ : F∗∗
X ×F∗∗

X → [0,∞], given by

d∞(u, v)
def
= sup

α∈[0,1]

h([u]α, [v]α)
Lemma 2.5 from [12]

= sup
α∈(0,1]

h([u]α, [v]α),

for every u, v ∈ F∗∗
X , is semidistance on F∗∗

X . Its restriction to F∗
X × F∗

X is a metric on F∗
X

(see [6]), which, for the sake of simplicity, will be also denoted by d∞. Moreover (F∗
X , d∞)

is a complete metric space provided that the metric space (X, d) is complete.
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C. Iterated function systems

An iterated function system (IFS for short) consists of:
i) a complete metric space (X, d);
ii) a finite family of contractions fi : X → X , with i ∈ I .
We denote by S = ((X, d), (fi)i∈I) such an IFS.
One can associate to such a system S = ((X, d), (fi)i∈I) the function FS : Pcp(X) →

Pcp(X), given by
FS(K) = ∪

i∈I
fi(K),

for all K ∈ Pcp(X), which is called the fractal operator associated to S.
It turns out (see [8]) that FS is a Banach contraction on the complete metric space

(Pcp(X), h), so it is a Picard operator with respect to h and its fixed point (which is denoted
by AS ) is called the attractor of S.

D. Iterated fuzzy function systems

An iterated fuzzy function system consists of:
i) an iterated function system S = ((X, d), (fi)i∈I);
ii) an admissible system of grey level maps (ρi)i∈I i.e. ρi(0) = 0, ρi is nondecreasing

and right continuous for every i ∈ I and there exists j ∈ I such that ρj(1) = 1.
We denote by SZ = ((X, d), (fi)i∈I , (ρi)i∈I) such a system.
One can associate to such a system SZ = ((X, d), (fi)i∈I , (ρi)i∈I) the function Z : F∗

X →
F∗

X , given by
Z(u) = ∨

i∈I
ρi(fi(u)),

for all u ∈ F∗
X , which is called the fuzzy Hutchinson-Barnsley operator associated to SZ .

Note that Z is well defined (see Proposition 2.12 from [13]).
It turns out (see Theorem 2.14 from [13]) that Z is a Banach contraction on the complete

metric space (F∗
X , d∞) (so it is a Picard operator) whose unique fixed point is called the

fuzzy fractal generated by SZ (note that its support is a subset of AS - see Theorem 2.4.2
from [4] or Theorem 2.21 from [13]).

E. Orbital iterated function systems

An orbital iterated function system consists of:
i) a complete metric space (X, d);
ii) a finite family of continuous functions fi : X → X , i ∈ I , having the property that

there exists C ∈ [0, 1) such that d(fi(y), fi(z)) ≤ Cd(y, z) for every i ∈ I , x ∈ X and
y, z ∈ O(x), where, for B ∈ Pcp(X), by the orbit of B, denoted by O(B), we mean the set
B ∪ ∪

n∈N, ω1,..,ωn∈I
(fω1

◦ fω2
◦ ... ◦ fωn

)(B) and we adopt the notation O({x}) not
= O(x) for

every x ∈ X .
We denote by S = ((X, d), (fi)i∈I) such a system.
As for the case of IFSs, one can associate to an orbital iterated function system S its frac-

tal operator. It turns out (see [10]) that the fractal operator associated to an orbital function
system is a weakly Picard operator with respect to the Hausdorff-Pompeiu metric, every
of its fixed points being called an attractor of the system.

If S = ((X, d), (fi)i∈I) is an orbital iterated function system, K ∈ Pcp(X) and x ∈ X ,
we shall use the following notations:

lim
n→∞

F
[n]
S (K)

not
= AK

and
A{x}

not
= Ax.
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F. Orbital fuzzy iterated function systems

An orbital fuzzy iterated function system consists of:
i) an orbital iterated function system ((X, d), (fi)i∈I);
ii) an admissible system of grey level maps (ρi)i∈I i.e. ρi(0) = 0, ρi is nondecreasing

and right continuous for every i ∈ I and there exists j ∈ I such that ρj(1) = 1.
We denote by SZ = ((X, d), (fi)i∈I , (ρi)i∈I) such a system.
One can associate to such a system SZ = ((X, d), (fi)i∈I , (ρi)i∈I) the function Z : F∗∗

X →
F∗∗

X , given by
Z(u) = ∨

i∈I
ρi(fi(u)),

for all u ∈ F∗∗
X , which is called the fuzzy Hutchinson-Barnsley operator associated to SZ .

Note that, in view of Proposition 2.12 from [13], Z is well defined.
We shall use the following notations:

{u ∈ F∗∗
X | for each x ∈ [u]∗ there exist

wx, yx ∈ X such that x, yx ∈ O(wx) and u(yx) = 1} not
= F∗∗

S

and
{u ∈ F∗∗

S | u is upper semicontinuous} not
= F∗

S .

Note that
δx ∈ F∗

S ,

for every x ∈ X .
For u ∈ F∗

S and x ∈ [u]∗ (hence there exist wx, yx ∈ X such that x, yx ∈ O(wx) and
u(yx) = 1), we shall use the following notations:

lim
n→∞

Z [n](u)
not
= uu

Lemma 3.1 from [12] & Remark 1.3
∈ F∗

S ,

lim
n→∞

Z [n](ux)
not
= ux

Lemma 3.1 from [12] & Remark 1.3
∈ F∗

S

and
wu

not
= ∨

x∈[u]∗
ux,

where ux ∈ F∗
S is described by

ux(y) =

{
u(y), if y ∈ O(wx)

0, otherwise
,

for every y ∈ X . Note that the existence of the above limits is based on Remark 1.5 and
that, according to Proposition 2.1, ux is well defined.

Remark 1.3. (see Proposition 2.11 and Lemma 3.3 from [12]). In the above framework, we
have

Z(F∗
X) ⊆ F∗

X , Z(F∗∗
S ) ⊆ F∗∗

S and Z(F∗
S) ⊆ F∗

S .

Remark 1.4. (see Claim 3.5 from the proof of Theorem 3.1 from [12]). In the above frame-
work, Z : F∗

S → F∗
S , given by Z(u) = Z(u) for every u ∈ F∗

S , is continuous.

Remark 1.5. (see Theorem 3.1 from [12]). In the above framework, Z is weakly Picard.
Its fixed points are called fuzzy fractals generated by the orbital fuzzy iterated function
system SZ .
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Remark 1.6. (see Lemma 3.4 from [12]). In the above framework, for each family (uj)j∈J

of elements from F∗∗
X , where J is infinite, we have

∨
j∈J

Z(uj) = max
j∈J

Z(uj),

provided that:
i) there exists K ∈ Pcp(X) such that suppuj ⊆ K for all j ∈ J ;
ii) ∨

j∈J
uj = max

j∈J
uj ;

iii) ∨
j∈J

uj ∈ F∗
X .

Remark 1.7. (see Lemma 3.5 from [12]). In the above framework, for every families
(uj)j∈J and (vj)j∈J of elements from F∗∗

X , where J is infinite, we have

d∞( ∨
j∈J

uj , ∨
j∈J

vj) ≤ sup
j∈J

d∞(uj , vj),

provided that:
i) there exists K ∈ Pcp(X) such that suppuj ⊆ K and suppvj ⊆ K for all j ∈ J ;
ii) ∨

j∈J
uj = max

j∈J
uj and ∨

j∈J
vj = max

j∈J
vj .

Remark 1.8. In the above framework,

suppux ⊆ Ax,

for every u ∈ F∗
S and x ∈ [u]∗.

Indeed, it results from the following relations:

suppux
Remark 1.4

= suppZ(ux)
Lemma 3.7 from [12]

⊆ FS(suppux).

It also can be derived from Theorem 2.4.2 from [4].

Remark 1.9. (see Lemma 4.5 from [11]). In the above framework, for every x1, x2 ∈ X ,
we have

Ax1
= Ax2

provided that O(x1) ∩ O(x1) ̸= ∅.

Remark 1.10. (see Remark 2.1 from [12]). In the above framework,

O(x) = O(x) ∪Ax,

for every x ∈ X .

Remark 1.11. In the above framework,

wu ∈ F∗∗
X ,

for every u ∈ F∗
S .

Indeed, on the one hand, as ux ∈ F∗
X is normal for every x ∈ [u]∗, we deduce that

wu is normal. On the other hand, since suppux

Remark 1.8
⊆ Ax

Proposition 5 from [14]
⊆ Asuppu ∈

Pcp(X) for every x ∈ [u]∗, we conclude that suppwu =supp ∨
x∈[u]∗

ux ⊆ Asuppu ∈ Pcp(X),

so suppwu ∈ Pcp(X).

Remark 1.12. In the above framework,

suppux ⊆ suppu,

for every u ∈ F∗
S and x ∈ [u]∗.
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Remark 1.13. (see Claim 3.2 from the proof of Theorem 3.1 from [12]). In the above frame-
work, we have:

a)
Z [n](u) = ∨

x∈[u]∗
Z [n](ux),

for every n ∈ N and every u ∈ F∗
S .

b)

d∞(Z [n](u),uu) ≤
Cn

1− C
diam(FS(suppu) ∪ suppu),

for all n ∈ N and u ∈ F∗
S .

2. MAIN RESULTS

Proposition 2.1. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system,
u ∈ F∗

S and x ∈ [u]∗ (hence there exist wx, yx ∈ X such that x, yx ∈ O(wx) and u(yx) = 1).
Then

lim
n→∞

Z [n](δs) = ux,

for every s ∈ O(wx). In particular

lim
n→∞

Z [n](δx) = ux.

Proof. Because ((O(wx), d), (
∼
fi)i∈I , (ρi)i∈I), where

∼
fi : O(wx) → O(wx) is given by

∼
fi(y) =

fi(y) for every y ∈ O(wx), has a unique fuzzy fractal (as it is an iterated fuzzy function
system) and δ

s|X∖O(wx)
= ux

|X∖O(wx)
= Z [n](δ

s|X∖O(wx)
) = Z [n](ux

|X∖O(wx)
) = 0 for every

s ∈ O(wx) and every n ∈ N, we deduce that

lim
n→∞

Z [n](δs) = lim
n→∞

Z [n](ux) = ux,

for every s ∈ O(wx). □

Proposition 2.2. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then
uy = ux,

for every x ∈ [u]∗ and every y ∈ [ux]
∗.

Proof. Let us consider x ∈ [u]∗ and y ∈ [ux]
∗. As u ∈ F∗

S , there exist wx, yx ∈ X such that

(2.1) x, yx ∈ O(wx)

and u(yx) = 1.
In addition

(2.2) y ∈ suppux

Remark 1.8
⊆ Ax

(2.1) & Remark 1.9
= Awx

Remark 1.10
⊆ O(wx).

Therefore
ux

(2.2) & Proposition 2.1
= lim

n→∞
Z [n](δy)

Proposition 2.1
= uy .

□

Proposition 2.3. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then the function U : [u]∗ → F∗
X , given by

U(x) = ux,

for every x ∈ [u]∗, is continuous.
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Proof. We are going to prove that U is sequentially continuous.
We consider (xn)n∈N ⊆ [u]∗ and x ∈ [u]∗ such that lim

n→∞
xn = x and we will prove that

lim
n→∞

U(xn) = U(x), i.e. lim
n→∞

uxn
= ux.

We have

(2.3) suppδx
Remark 1.2

= {x} ⊆ K and suppδxn

Remark 1.2
= {xn} ⊆ K,

for every n ∈ N, where

{xn | n ∈ N} ∪ {x} not
= K ∈ Pcp(X).

Since
lim

n→∞
d∞(δxn , δx) = lim

n→∞
sup

α∈(0,1]

h([δxn ]
α, [δx]

α) =

= lim
n→∞

h({xn}, {x}) = lim
n→∞

d(xn, x) = 0,

via Remark 1.4, we infer that

(2.4) lim
n→∞

d∞(Z [m](δxn
), Z [m](δx)) = 0,

for every m ∈ N.
The equality

lim
n→∞

Z [n](δs)
Proposition 2.1

= us,

which is valid for every s ∈ [u]∗, leads to the conclusion that

(2.5) d∞(us, Z
[n](δs))

Remark 1.2 & Remark 1.13, b)
≤ Cn

1− C
diam(FS({s}) ∪ {s}),

for every s ∈ [u]∗ and every n ∈ N.
Note that

d∞(uxn
,ux) ≤

≤ d∞(uxn
, Z [m](δxn

)) + d∞(Z [m](δxn
), Z [m](δx)) + d∞(Z [m](δx),ux)

(2.5)

≤

(2.6) ≤ 2
Cm

1− C
diam(FS(K) ∪K) + d∞(Z [m](δxn), Z

[m](δx)),

for every m,n ∈ N.
Let us consider a fixed ε > 0, but arbitrarily chosen.
As lim

m→∞
2 Cm

1−C diam(FS(K)∪K) = 0, there exists m0 ∈ N such that 2Cm0

1−C diam(FS(K)∪
K) < ε

2 and, via (2.6), we obtain

(2.7) d∞(uxn ,ux) ≤
ε

2
+ d∞(Z [m0](δxn), Z

[m0](δx)),

for every n ∈ N.

Since lim
n→∞

d∞(Z [m0](δxn
), Z [m0](δx))

(2.4)
= 0, there exists nε ∈ N such that

(2.8) d∞(Z [m0](δxn), Z
[m0](δx)) <

ε

2
,

for every n ∈ N, n ≥ nε.
Using (2.7) and (2.8), we get

d∞(uxn
,ux) < ε,

for every n ∈ N, n ≥ nε, which proves that lim
n→∞

uxn
= ux. □
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Proposition 2.4. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then
[ ∨
x∈[u]∗

ux]
α = ∪

x∈[u]∗
[ux]

α,

for every α ∈ (0, 1] and u ∈ F∗
S .

Proof. Let us consider a fixed α ∈ (0, 1], but arbitrarily chosen.
First we prove the inclusion

(2.9) [ ∨
x∈[u]∗

ux]
α ⊆ ∪

x∈[u]∗
[ux]

α.

For y ∈ [ ∨
x∈[u]∗

ux]
α we have

(2.10) sup
x∈[u]∗

ux(y) ≥ α

and consequently there exists x ∈ [u]∗ such that ux(y) > 0, i.e. y ∈ [ux]
∗. Moreover

Proposition 2.2 ensures us that ux(y) = uy(y) for every x ∈ [u]∗ such that ux(y) > 0 and
thus, via (2.10), we conclude that ux(y) ≥ α (so y ∈ [ux]

α) for every x ∈ [u]∗ such that
ux(y) > 0. Consequently y ∈ ∪

x∈[u]∗
[ux]

α and the justification of (2.9) is finished.

Now we prove the inclusion

(2.11) ∪
x∈[u]∗

[ux]
α ⊆ [ ∨

x∈[u]∗
ux]

α.

For y ∈ ∪
x∈[u]∗

[ux]
α there exists xy ∈ [u]∗ such that y ∈ [uxy

]α, i.e. uxy
(y) ≥ α. Hence

sup
x∈[u]∗

ux(y) ≥ uxy
(y) ≥ α, i.e. y ∈ [ ∨

x∈[u]∗
ux]

α, and the justification of (2.11) is finalized.

In view of (2.9) and (2.11) the proof is completed. □

As a by-product of the above Proposition’s proof we have the following:

Remark 2.14. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function sys-
tem. Then

∨
x∈[u]∗

ux = max
x∈[u]∗

ux,

for every u ∈ F∗
S .

Proposition 2.5. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then
{ux | x ∈ [u]∗} = {ux | x ∈ [u]1}.

In particular
wu = ∨

x∈[u]∗
ux = ∨

x∈[u]1
ux.

Proof. Note that
{ux | x ∈ [u]∗} ⊆ {ux | x ∈ [u]1}.

Indeed, for x ∈ [u]∗ there exist wx, yx ∈ X such that x, yx ∈ O(wx) and u(yx) = 1. Then,
based on Proposition 2.1, we have

ux = lim
n→∞

Z [n](δyx
) = uyx

,

so, as u(yx) = 1, i.e. yx ∈ [u]1, we infer that ux = uyx
∈ {ux | x ∈ [u]1}.

As the inclusion
{ux | x ∈ [u]1} ⊆ {ux | x ∈ [u]∗}

is obvious, the proof is completed. □
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Proposition 2.6. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then wu is upper semicontinuous, so wu ∈ F∗
X .

Proof. We have to show that

(2.12) lim
n→∞

wu(xn) ≤ wu(x
∗),

for every (xn)n∈N ⊆ X and x∗ ∈ X such that lim
n→∞

xn = x∗.

It suffices to consider the case when lim
n→∞

wu(xn)
not
= L > 0 since otherwise (2.12) is

obvious.
Let us consider a subsequence of (xn)n∈N such that lim

k→∞
wu(xnk

) = L.

For the sake of simplicity, we denote (xnk
)k∈N by (zn)n∈N.

So lim
n→∞

zn = x∗ and lim
n→∞

wu(zn) = L > 0 and therefore we can suppose that

(2.13) wu(zn) ≥
L

2
,

for every n ∈ N.
Since

zn
(2.13)
∈ [wu]

L
2 = [ ∨

x∈[u]∗
ux]

L
2

Proposition 2.4
=

= ∪
x∈[u]∗

[ux]
L
2

Proposition 2.5
= ∪

x∈[u]1
[ux]

L
2 ,

for every n ∈ N, we can consider a sequence (yn)n∈N ⊆ [u]1 ⊆suppu such that

(2.14) zn ∈ [uyn
]
L
2 ,

for every n ∈ N.
As suppu ∈ Pcp(X), there exists a subsequence (ynk

)k∈N of (yn)n∈N and y ∈ X such
that lim

k→∞
ynk

= y.

The upper semicontinuity of u implies

(2.15) u(y) ≥ lim
k→∞

u(ynk
)
ynk

∈[u]1

= 1 > 0.

Claim
wu(znk

) = uynk
(znk

),
for every k ∈ N.

Justification of the Claim. Let us consider a fixed k ∈ N, but arbitrarily chosen. We have

wu(znk
) = ∨

x∈[u]∗
ux(znk

)
ynk

∈[u]1

≥ uynk
(znk

)
(2.14)

≥ L
2 > 0. Let us suppose, ad absurdum,

that wu(znk
) > uynk

(znk
) and let us consider β ∈ R such that

(2.16) wu(znk
) = ∨

x∈[u]∗
ux(znk

) > β > uynk
(znk

).

Then there exists s ∈ [u]∗ such that

(2.17) us(znk
) > β > 0,

so, znk
∈ [us]

∗ and, taking into account Proposition 2.2, we infer that

(2.18) us = uznk
.

Since ynk
∈ [u]1 and uynk

(znk
)
(2.14)

≥ L
2 > 0, Proposition 2.2 assures us that

(2.19) uznk
= uynk

.
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The contradiction β
(2.17)
< us(znk

)
(2.18) & (2.19)

= uynk
(znk

)
(2.16)
< β ends the justification of

the Claim.
Now let us consider a fixed ε ∈ (0, L

2 ), but arbitrarily chosen.

As lim
k→∞

wu(znk
) = L, there exists kε ∈ N such that wu(znk

)
Claim
= uynk

(znk
) ≥ L− ε, i.e.

(2.20) znk
∈ [uynk

]L−ε,

for every k ∈ N, k ≥ kε.
Since lim

k→∞
ynk

= y, via Proposition 2.3, we deduce that lim
k→∞

d∞(uynk
,uy) = 0 and

therefore

(2.21) lim
k→∞

h([uynk
]L−ε, [uy]

L−ε) = 0.

As lim
k→∞

znk
= x∗, based on (2.20), (2.21) and Remark 1.1, we infer that x∗ ∈ [uy]

L−ε,

i.e.

(2.22) uy(x
∗) ≥ L− ε > 0.

A similar argument with the one used in the justification of the Claim assures us that

(2.23) uy(x
∗) = wu(x

∗).

Indeed, we have wu(x
∗) = ∨

x∈[u]∗
ux(x

∗)
(2.15)

≥ uy(x
∗). Let us suppose, ad absurdum,

that wu(x
∗) > uy(x

∗) and let us consider β ∈ R such that wu(x
∗) = ∨

s∈[u]∗
us(x

∗) > β >

uy(x
∗). Then there exists s ∈ [u]∗ such that us(x

∗) > β > 0. We have us
Proposition 2.2

=

ux∗
Proposition 2.2

= uy and therefore we get the contradiction β < us(x
∗) = uy(x

∗) < β.
Thus, via (2.22) and (2.23) we infer that

(2.24) wu(x
∗) ≥ L− ε.

Relation (2.24) implies the validity of (2.12). □

Proposition 2.7. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then
d∞(uu, wu) = 0.

Proof. First let us note that, based on Lemma 3.4 from [12], Remark 2.14 and Proposition
2.6, a repeated use of Remark 1.6 ensures us that

(2.25) ∨
x∈[u]∗

Z [n](ux) = max
x∈[u]∗

Z [n](ux)

for every n ∈ N.
We have

d∞(uu, wu)
Remark 1.13, a)

≤ d∞(uu, Z
[n](u)) + d∞( ∨

x∈[u]∗
Z [n](ux), ∨

x∈[u]∗
ux) ≤

(2.25), Remark 1.7 & Remark 2.14
≤ d∞(uu, Z

[n](u)) + sup
x∈[u]∗

d∞(Z [n](ux),ux) ≤

Remark 1.13, b)
≤ d∞(uu, Z

[n](u)) +
Cn

1− C
sup

x∈[u]∗
diam(FS(suppux) ∪ suppux) ≤

(2.26)
Remark 1.12

≤ d∞(uu, Z
[n](u)) +

Cn

1− C
diam(FS(suppu) ∪ suppu),
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for every n ∈ N.
As

lim
n→∞

d∞(uu, Z
[n](u)) = lim

n→∞

Cn

1− C
diam(FS(suppu) ∪ suppu) = 0,

the conclusion follows by passing to limit, as n goes to ∞, in (2.26). □

Now we state what can be viewed as the main theorem of this paper.

Theorem 2.1. Let SZ = ((X, d), (fi)i∈I , (ρi)i∈I) be an orbital fuzzy iterated function system
and u ∈ F∗

S . Then

uu = ∨
x∈[u]∗

ux = ∨
x∈[u]1

ux = max
x∈[u]∗

ux = max
x∈[u]1

ux.

Proof. Since uu ∈ F∗
X , wu

Proposition 2.6
∈ F∗

X , d∞(uu, wu)
Proposition 2.7

= 0 and d∞ is a metric on
F∗

X we conclude that uu = wu, i.e., taking into account Proposition 2.5, we have

uu = ∨
x∈[u]∗

ux = ∨
x∈[u]1

ux.

Moreover, by virtue of Remark 2.14 and Proposition 2.5, we have

uu = ∨
x∈[u]∗

ux = ∨
x∈[u]1

ux = max
x∈[u]∗

ux = max
x∈[u]1

ux.

□
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SPLAIUL INDEPENDENŢEI STREET 313, 060042 BUCHAREST, ROMANIA

Email address: maria irina.savu@upb.ro


