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ABSTRACT. We determine the nonlinear Fokker-Planck equation in one dimension, based on a weighted
Tsallis entropy and we derive its associated Lie symmetries. The corresponding Lyapunov functions and Breg-
man divergences are also found, together with a formula linking the drift function, the diffusion function and a
diffusion constant. We solve the MaxEnt problem associated to the weighted Tsallis entropy.

1. INTRODUCTION

The nonlinear Fokker-Planck equation (NFPE) is one of the fundamental equations in
Statistical Mechanics. It governs phenomena which may be modeled by the time evo-
lution of the probability density function of the velocity of a particle, moving under the
influence of both deterministic forces and random forces.

As it happened with other remarkable notions from Physics, it was adapted for many
other scientific domains, through an epistemiologic transfer pattern evolving from ”Mech-
anism” to ”Physicalism” (see [18] for a philosophical detour).

In this paper, we make a creative review of the Lie symmetries associated to the NFPE
and apply it to a general statistical model, based on the weighted Tsallis entropy. We
act inside the ”geometrization paradigm”, looking for hidden differential geometric in-
formation from invariants associated to the NFPE. In order to describe our recipe, it is
convenient first to look at the ingredients.

1.1. Historical comments. In the second half of the 19-th Century, a newborn branch of
Physics, the Statistical Mechanics, brought into attention new phenomena which were
not susceptible to be addressed with the classical Newtonian notions and techniques. In
particular, the growing need of modeling the evolution of stochastic systems led to the
(linear) Fokker-Planck equation (LFPE), which appeared at the beginning of the 20-th Cen-
tury in the papers of Fokker, Planck and Smoluchowski. Two decades later, Kolmogorov
re-discovered the LFPE, hence its other name: the ”Kolmogorov forward equation”. For
more details, see the monographs [7, 33, 44, 55].

The first references to (some particular cases of) the nonlinear Fokker-Planck equation
(NFPE) (a.k.a. the McKean-Vlasov equation and Vlasov-Fokker-Planck equation) are usu-
ally attributed to Vlasov, in 1938 ([60]) and McKean, around 1966 - 1969 ([37], [38] apud
[20]). The first root is contested, in the favor of Jeans, which eventually discovered it in
1915 ([30] apud [26]). Concerning the second root, one might consider also, in our opinion,
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some earlier papers of Fuller and McKean, in the ’50s ([16, 17, 36]). For the general frame-
work concerning the NFPE, the first source and the ultimate resource is the monograph of
T.D. Frank [20]. A list of recent research papers includes e.g. [3,12,14,21,34,39,45,54,64].

Lie symmetries were defined by S. Lie and F. Klein, in the second half of the 19-th
Century, as the first attempt to geometrize the differential equations and the partial dif-
ferential equations. Even if the main goal of the classification failed (at the beginning), the
newborn theory developed into a fundamental cornerstone of the 20-th Century Mathe-
matics and Physics. The book of Olver [43] and the surveys [42, 63] offer the panorama of
this vast field. We need here only to recall the contributions to the study of the Lie sym-
metries associated to the linear FPE and the NFPE, related to our paper: [1, 9–11, 56, 62].

Entropy is too general a subject to be treated superficially here, even if only histori-
cally. We recall only the papers related to the NFPE associated to the Tsallis, Kaniadakis,
Sharma-Taneja-Mittal entropies [56, 62] with references therein and the surveys [27, 59].

The information measures consider only the probability mass function or probability
density function. In 1968, Belis and Guiasu highlighted the importance of integrating
the quantitative, objective and probabilistic concept of information with the qualitative,
subjective and non-stochastic concept of utility. They introduced ([4, 22]) the concept of
weighted entropy to construct a shift-dependent information measure with properties
similar to Shannon entropy. Subsequently, the weighted entropy was characterized ax-
iomatically ([22, 23]). Some recent contributions about the weighted entropies include
[2, 8, 24, 27, 31, 35, 47, 48, 57, 58], to quote but a few.

The maximum entropy (MaxEnt) problem is an important optimization challenge, ask-
ing for a specific distribution of probability pME , which maximizes a given entropy func-
tional and is subject to some given constraints. Since its first statement in 1957, by E.T.
Jaynes, the subject developed into a mainstream topic, as described in the monographs
[25, 32]. For each new family of entropy functional, the MaxEnt problem was given (by a
quite standard method) a specific solution (see, for example, [15, 19, 41, 46–52, 62]).

1.2. The content of the paper. In Section §2, we remind the equivalent forms of the NFPE,
closely following [43, 56, 61] for notations and conventions. The Lie symmetries of the
NFPE are defined as prolongations vector fields on a three-dimensional domain and they
span a Lie algebra. When non-trivial, this Lie algebra contains geometric information
about the symmetries of the solutions of the NFPE.

In Section §3, we review the general procedure of weighting a given entropy functional
and we give some examples (Tsallis, Kaniadakis). The Bregman divergence associated to
two PDFs is considered, and we show how the weighting procedure may apply to it, also.
For a time-dependent PDF, a fixed potential energy function and a fixed entropy, we re-
mind the classical associated notions of: energy average function, of Lyapunov functional
and of the current density.

The Section §4 contains the main results of the paper. We determine the variation of
the Lyapunov function associated to a w-weighted Tsallis entropy. Using the associated
current density, we obtain the NFPE for the w-weighted Tsallis entropy. We establish for-
mulas linking the drift function d and the diffusion function D to the so-called ”drift” D,
in order to avoid possible confusions of terms. The time dependency of the Lyapunov
functional is studied. Finally, we prove a result stating that the associated Bregman diver-
gence may be interpreted as a ”distance”, measured through Lyapunov differences.

Applications are given in Section §5, concerning the Lie symmetries of the NFPE as-
sociated to the w-weighted Tsallis entropy. Using the formulas proven in Section §4, we
obtain Theorem 5.4, which is slightly more general: in fact, we derive the Lie symmetries



Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Tsallis entropy 599

for a NFPE with ”arbitrary” coefficient functions. For some specific particular cases, we
point out the Lie (sub)algebras determining these symmetries. Our analysis focus on the
finite dimensional case and is not intended to be exhaustive.

In Section §6 we make a short digression into the Optimization Theory of PDFs, and
we solve the MaxEnt problem associated to the w-weighted Tsallis entropy.

1.3. Conventions. All the integrals are supposed to be correctly defined. Partial deriva-
tives are supposed to commute with the integral. All the analytic and the geometric ob-
jects are supposed to be differentiable, even if, in some cases, a weaker assumption would
suffice (for example continuity or integrability).

2. NONLINEAR FOKKER-PLANCK EQUATIONS IN ONE DIMENSION

In what follows, we adopt the general framework from [20], including most of the
notions and notations.

Consider a time-dependent probability density function (PDF) p = p(x, t) defined on
R2; a drift d = d(x, t, p) and a diffusion coefficient D = D(x, t, p) defined on U ×R, where
U is an open subset of R2. We have

∫∞
−∞ p(x, t)dx = 1, p(x, t) ≥ 0 and we suppose D to be

everywhere non-negative. The associated general NFPE in one (spatial) dimension is

(2.1)
∂

∂t
p(x, t) = − ∂

∂x
[d(x, t, p)p(x, t)] +

∂2

∂x2
[D(x, t, p)p(x, t)]

or, equivalently, with the obvious notations,

(2.2) pt = (−d− pdp + 2Dx + 2pDxp)px +

+(D+ pDp)pxx + (2Dp + pDpp)(px)
2 + (Dxx − dx)p.

Its condensed form is
∆p(x, t) = 0,

where we denoted the nonlinear Fokker-Planck operator

∆ =
∂

∂t
+ (d+ dpI − 2Dx − 2DxpI)

∂

∂x
−

−(D+DpI)
∂2

∂x2
− (2Dp +DppI)(

∂

∂x
)2 + (dx −Dxx)I .

Here I is the identity operator, i.e. I(p) = p.
The third equivalent form of the NFPE (named the continuity equation) is

(2.3)
∂

∂t
p+

∂

∂x
J = 0,

where the current function J = J(x, t, p) is defined by

J(x, t, p) := d(x, t, p)p(x, t)− ∂

∂x
[D(x, t, p)p(x, t)].

This formula may be rewritten, in an equivalent simplified form, as

(2.4) J = (d−Dx)p− (Dpp+D)px.

In particular, if d = d(x, t) and D = D(x, t), we obtain the linear Fokker-Planck operator

∆ =
∂

∂t
+ (d− 2Dx)

∂

∂x
−D

∂2

∂x2
+ (dx −Dxx)I,
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the associated linear Fokker-Planck equation

pt = (−d+ 2Dx)px +Dpxx + (Dxx − dx)p

and the continuity equation (2.3) for the ”linear” current

J(x, t) := d(x, t)p(x, t)− ∂

∂x

(
D(x, t)p(x, t)

)
.

For the linear FPE, there exists a dual interpretation, via the Ito’s lemma, namely the
(associated) stochastic differential equation

dx = d(x, t)dt+
√
2D(x, t) dWt,

where Wt is a Wiener process. In the sequel, we shall not deepen this duality.

Consider a linear differential operator ([43])

L = ξ(x, t, p)∂x + η(x, t, p)∂t + ϕ(x, t, p)∂p,

where η, ξ and ϕ are differentiable functions on U × R. We say L is a Lie symmetry
operator for nonlinear Fokker-Planck operator ∆ if there exists a differentiable function
R = R(x, t, p) on U × R, such that

(2.5) [L,∆] = R(x, t, p)∆.

Denote S the set of all the Lie symmetry operators for ∆. It is known that a Lie symmetry
operator of ∆ maps solutions of (2.1) into solutions of (2.1) and that S is a (possible infinite
dimensional) Lie algebra, governing the symmetries of the solutions of the NFPE.

In the particular case of the LFPE, the Lie symmetries were computed in [1, 9, 10]. In
[56, 61], the Lie symmetries were computed for a NFPE which arose from the Sharma-
Taneja-Mittal entropy. In the sections §4, §5 and §6 of the present paper, we shall determine
the Lie symmetries of some special NFPE, namely those with current functions derived
from the Lyapunov operators associated to the weighted Tsallis entropy.

The next section contains a short digression on the needed entropy notions and results.

3. ENTROPIES AND THEIR ASSOCIATED LYAPUNOV VALUES AND CURRENTS

Consider an arbitrary PDF ρ (without a priori time-dependency) and φ = φ(x) a differ-
entiable function. The associated (normalized) entropy is the number

(3.6) H[ρ] = −
∫
R
ρ(x)φ(ρ(x))dx.

Let w = w(x) be a positive differentiable ”weighting” function. Then the corresponding
w-weighted entropy is

(3.7) Hw[ρ] = −
∫
R
w(x)ρ(x)φ(ρ(x))dx.

In general, several additional constraints are imposed on both φ and w; in what follows,
we neglect them, in order not to break the main line of discourse.

Remark 3.1. (i) For a detailed and more general setting concerning entropy, see our paper
[27].

(ii) The notation H[ρ] is redundant, but we use it in order to emphasize the functional
dependence on ρ of the entropy. Similar notations will be used for other functionals too.

(iii) The function φ(x) := log(x) gives the Boltzmann–Gibbs–Shannon (BGS) entropy.
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(iv) For any fixed q ∈ R\{1},

(3.8) φ{q}(x) :=
x1−q − 1

1− q

provides a Tsallis entropy; when q → 1 we recover the BGS entropy. Therefore, by conven-
tion, we may consider q ∈ R. The function φ{q} is called sometimes the Tsallis q-logarithm
and is denoted also by logT{q}. Its inverse is the Tsallis q-exponential

expT{q}(x) := [1 + (1− q)x]
1

1−q

+ .

(v) For any fixed k ∈ [−1, 1]\{0},

(3.9) φ{k}(x) :=
xk − x−k

2k

provides a Kaniadakis entropy (a.k.a. k-deformed entropy); when k → 0 we recover the
BGS entropy. Therefore, by convention, we may consider k ∈ [−1, 1]. The function φ{k} is
called sometimes the Kaniadakis k-logarithm and is denoted also by logK{k}. Its inverse is
the Kaniadakis k-exponential

expK{k}(x) := [kx+
√
1 + k2x2]

1
k .

In the next two sections, we shall exemplify the weighting procedure, by applying it
only to the previous Tsallis entropy.

Remark 3.2. Consider now two PDFs ρ1 and ρ2 , and a convex differentiable function
f : R → R.

(i) The associated Bregman divergence is defined by

(3.10) Df (ρ1 ∥ ρ2) :=

∫
R
{f(ρ1(x))− f(ρ2(x))− (ρ1(x)− ρ2(x))f

′(ρ2(x))}dx.

Divergences act as distances in the space of PDFs, measuring how far a PDF differs from
another.

(ii) Similarly, we can define the w- weighted Bregman divergence Dw
f (ρ1 ∥ ρ2).

(iii) Formula (3.10) suggests that Df (ρ1 ∥ ρ2) may be considered a z-weighted (BGS)
entropy by itself, written

Hz[ρ1] = −
∫
R
z(x)ρ1(x)log(ρ1(x))dx,

where

z(x) := − f(ρ1(x))− f(ρ2(x))− (ρ1(x)− ρ2(x))f
′(ρ2(x))

ρ1(x) · log(ρ1(x))
.

Usually, the weighting function is independent on the PDF it is associated with. However,
there exists situations in which one can use the weighting function with this more general
property.

Similarly, one can use any other entropy functional, instead the (BGS) one.
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Consider now a time-dependent PDF p = p(x, t), as in Section §2, and a function V =
V (x), modeling the potential energy of the system. Formula (3.6) provides us with a
function H[p] = H[p](t). We denote the time-dependent energy average function

(3.11) U [p](t) :=

∫
R
V (x)p(x, t)dx.

Let D be a positive real constant (which contains information about the diffusion of the
system). We define the function

(3.12) LH [p] := U [p]−D ·H[p].

If LH [p] is non-positive, it will be called the Lyapunov function associated to the entropy
function H[p] and to D. The correspondence p → LH [p] is called the Lyapunov functional.
We define the current density associated to LH [p] the function J = J(x, t), given by

(3.13) J(x, t) := −p(x, t)
∂

∂x

(δLH [p]

δp

)
(x, t).

Similar formulas occur for weighted entropies also.
In the Sections 4 and 5, our object of study will be the NFPE associated to J , via the

continuity equation (2.3).

We finished the preliminary part of the paper. We have at our disposal all the necessary
notions and notations, in order to apply them in the particular case of the weighted Tsallis
entropy.

4. GENERALIZED STATISTICAL MECHANICS BASED ON WEIGHTED TSALLIS ENTROPY

Consider: p = p(x, t) a time-dependent PDF; w = w(x, t) a time-dependent weighting
function; V = V (x) the potential energy function; D a positive constant; q a fixed real
number, q ̸= 1 and HwT

q [p] the associated w-weighted Tsallis entropy function, based on
(3.8). Denote by LwT

q [p] the Lyapunov function, calculated by formulas (3.11) and (3.12).
Denote JwT

q the associated current density, given by formula (3.13).

4.1. The NFPE based on weighted Tsallis entropy.

Theorem 4.1. With the previous notations, the following relation holds

δLwT
q [p]

δp
(x, t) = V (x) +D

1

1− q
w(x, t)[(2− q)(p(x, t))1−q − 1].

Proof. By definition,

δLwT
q [p]

δp
(x, t) =

δ

δp

(∫
R
V (x)p(x, t)dx+D

∫
R
w(x, t)p(x, t)

(p(x, t))1−q − 1

1− q
dx

)
=

= V (x) +Dw(x, t)

(
(p(x, t))1−q − 1

1− q
+ (p(x, t))1−q

)
.

We rewrite, in simplified form, as

δLwT
q [p]

δp
= V +Dw(

p1−q − 1

1− q
+ p1−q) =
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= V +Dw
(2− q)p1−q − 1

1− q
=

= V +D · 1

1− q
w · [(2− q)p1−q − 1].

□

Theorem 4.2. With the previous notations, the following relation holds

∂

∂x

(
δLwT

q [p]

δp

)
= −h+D(2− q)wp−q ∂p

∂x
+

D

1− q
[(2− q)p1−q − 1]

∂w

∂x
,

where h(x) := − ∂
∂xV (x) is a drift force.

Proof. We have

∂

∂x

(
δLwT

q [p]

δp

)
=

∂

∂x
V +D

1

1− q
[(2− q)p1−q − 1]

∂w

∂x
+

+Dw(2− q)p−q ∂p

∂q
= −h+D(2− q)wp−q ∂p

∂x
+

D

1− q
[(2− q)p1−q − 1]

∂w

∂x
.

□

Remark 4.3. (i) We calculate JwT
q = JwT

q (x, t), as

(4.14) JwT
q = ph−D(2− q)wp1−q ∂p

∂x
− D

1− q
[(2− q)p2−q − p]

∂w

∂x
.

The continuity equation (2.3) leads to the NFPE for the general w-weighted Tsallis entropy
HwT

q

(4.15)
∂

∂t
p =

∂

∂x

{
−ph+D(2− q)wp1−q ∂p

∂x
+

D

1− q
[(2− q)p2−q − p]

∂w

∂x

}
.

We write it in the equivalent simplified form

(4.16) pt +A · px +B · (px)2 + E · pxx +G = 0,

where A = A(x, t, p), B = B(x, t, p), E = E(x, t, p), G = G(x, t, p) are given by:

(4.17) A = h−D(2− q)wxp
1−q − D

1− q

(
(2− q)2 · p1−q − 1

)
wx,

B = −D(2− q)(1− q) · p−q · w,

E = −D(2− q) · p1−q · w,

G = hx · p− D

1− q

(
(2− q) · p2−q − p

)
· wxx.
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In particular, for the classical Tsallis entropy and for h(x) = −x, we have w = 1 and the
previous coefficient functions become

(4.18) A = h , B = −D(2− q)(1− q) · p−q , E = −D(2− q) · p1−q , G = −p.

Thus, we recovered the formula (25) in [56], for the NFPE based on the classical Tsallis
entropy.

We consider now the (BGS) entropy, by particularizing h(x) = −x, w = 1 and q = 1.
We obtain

(4.19) A(x) = −x , B = 0 , E = −D , G(p) = −p .

Thus, we recovered the formula (24) in [56], for the linear FPE based on the classical (BGS)
entropy.

(ii) From (4.14) and (2.4) we get an implicit equation involving d, D and D. We can
explicitly obtain d depending on D and D, as

(4.20) d = Dx + h− D

1− q

[
(2− q)p1−q − 1

]
wx+

+Dpxp
−1 +Dppx − (2− q)D · w · p−qpx.

Analogously, we can explicitly obtain D depending on D and d.

In order to explicitly obtain D depending on D and d, we must solve a linear PDE of
first order.

In some papers, the constant D is called the diffusion coefficient. From (4.20), we see
that D is, in fact, only a part of the diffusion function D.

In our paper, the NFPE was introduced and studied from two complementary direc-
tions. The first one was via d and D, in Section §2; this NFPE is more general, as it is
associated to an arbitrary entropy. The second one was via D, in this section; this NFPE is
more particular, as it is based on the weighted Tsallis entropy only. Formula (4.20) clarifies
the relationship between these two approaches.

(iii) Consider now a particular case and suppose the following sufficient condition for
(4.20) holds, expressed by the system of equationsd−Dx = h− D

1− q

[
(2− q)p1−q − 1

]
wx

p ·Dp +D = (2− q)D · w · p1−q

.

We integrate the second equation and we obtain

(4.21) D(x, t, p) = D · w(x, t) · p1−q +
c(x, t)

p(x, t)
,

where c is an arbitrary function, which ensures the positivity of D.

We calculate Dx and we replace in the first equation of the system. We get

d = Dx + h− D

1− q

[
(2− q)p1−q − 1

]
wx,

that is

(4.22) d = h+D · wx · p1−q +
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+
(
(1− q)D · w · p−q − c · p−2

)
· px +

+ cx · p−1 − D

1− q

(
(2− q)p1−q − 1

)
wx .

(iv) Suppose the weighted function w is static, i.e. w = w(x). Then, the stationary state
pst = pst(x) can be obtained by imposing the condition of the current-free J(x, t) = 0, so
there exists a real constant C such that

V (x) +
1

1− q
Dw(x)[(2− q)(pst(x))1−q − 1] = C.

We get the equivalent two formulas

V (x) +Dw(x)[(2− q)
(pst(x))1−q − 1

1− q
+ 1] = C

and
V (x) +Dw(x)[(2− q) logT{q}(p

st(x)) + 1] = C.

By multiplying with pst(x) and by integrating over x, we get∫
R
V (x)pst(x)dx+D(2− q)

∫
R
w(x)pst(x) logT{q}(p

st(x))dx+D

∫
R
w(x)pst(x)dx = C,

that is
U [pst]−D(2− q)HwT

q [pst] +DEpst [w] = C,

where we denoted
Epst [w] :=

∫
R
w(x)pst(x)dx.

We get the equivalent formula

(4.23) HwT
q [pst] =

1

D(2− q)

{
−C + U [pst] +DEpst(w)

}
.

4.2. Time-dependency of the Lyapunov function. We study the time dependency of the
Lyapunov functional LwT

q during the time evolution of p(x, t), according to the NFPE.
Differentiating in (3.12) w.r.t. t, using (2.3) and (4.14), we get

dLwT
q [p]

dt
(t) =

∫
R

∂p

∂t
(x, t) · δ

δp

{
U [p]−DHwT

q [p]
}
(x, t)dx =

=

∫
R
−∂J

∂x
(x, t) · δ

δp

{
U [p]−DHwT

{q} [p]
}
(x, t)dx =

=

∫
R

∂

∂x

{
− p(x, t)h(x) +D(2− q)w(x, t)(p(x, t))1−q ∂p

∂x
(x, t)+

+
D

1− q
[(2− q)(p(x, t))2−q − p(x, t)]

∂w

∂x
(x, t)

}
·

·
{
V (x) +

Dw(x, t)

1− q
[(2− q)(p(x, t))1−q − 1]

}
dx.
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We integrate by parts and we obtain

dLwT
q [p]

dt
(t) = −

∫
R

{
− p(x, t)h(x) +D(2− q)w(x, t)(p(x, t))1−q ∂p

∂x
(x, t)+

+
D

1− q
[(2− q)(p(x, t))2−q − p(x, t)]

∂w

∂x
(x, t)

}
·

· ∂
∂x

{
V (x) +

D

1− q
w(x, t)[(2− q)(p(x, t))1−q − 1]

}
dx =

= −
∫
R
p(x, t)

{
− h(x) +D(2− q)w(x, t)(p(x, t))−q ∂p

∂x
(x, t)+

+
D

1− q
[(2− q)(p(x, t))1−q − 1]

∂w

∂x
(x, t)

}
·

·
{∂V
∂x

(x) +
D

1− q
[(2− q)(p(x, t))1−q − 1]

∂w

∂x
(x, t)+

+Dw(x, t)(2− q)(p(x, t))−q ∂p

∂x
(x, t)

}
dx =

= −
∫
R
p(x, t)

{
− h(x) +Dw(x, t)(2− q)(p(x, t))−q ∂p

∂x
(x, t)+

+
D

1− q
[(2− q)(p(x, t))1−q − 1]

∂w

∂x
(x, t)

}2

dx.

Therefore,
dLwT

q (t)

dt
≤ 0 .

4.3. Relation with Bregman divergence. Let p = p(x, t) be a time-dependent PDF and let
q be a real constant, q ̸= 1. Let w = w(x) be a time-independent weighting function. We
consider the convex differentiable function f : R → R, f(z) := z logT{q}(z).

Consider pME = pME(x) the Tsallis maximum entropy PDF and define

r(x) := pME(x) = expT{q}

[
− γ + βV (x)

w(x)(2− q)
− 1

2− q

]
.

We have f ′(z) = (2− q) logT{q}(z) + 1 and we obtain, successively,

f ′(pME(x)) = (2− q)

[
− γ + βV (x)

w(x)(2− q)
− 1

2− q

]
+ 1 = −γ + βV (x)

w(x)
.

The w-weighted Bregman divergence writes

Dw
q (p ∥ pME)(t) =

∫
R
w(x)

[
p(x, t) logT{q}(p(x, t))− pME(x) logT{q}(p

ME(x))−

−
(
p(x, t)− pME(x)

)(
−γ + βV (x)

w(x)

)]
dx.

We get successively

Dw
q (p ∥ pME)(t) =

∫
R
w(x)p(x, t) logT{q}(p(x, t))dx−

∫
R
w(x)pME(x) logT{q}(p

ME(x))dx+

+

∫
R

(
γ + βV (x)

)(
p(x, t)− pME(x)

)
dx,

Dw
q (p ∥ pME) = β · U [p]−HwT

q [p]− β · U [pME ] +HwT
q [pME ].



Lie symmetries of the nonlinear Fokker-Planck equation based on weighted Tsallis entropy 607

We proved the

Theorem 4.3. With the previous notations and conventions, suppose, in addition, that β > 0.
Then we have

Dw
q (p ∥ pME) = β ·

(
L̃wT
q [p]− L̃wT

q [pME ]
)
,

where the Lyapunov functional L̃wT
q is constructed via (3.12), with D := 1

β .

Remark 4.4. (i) We already remarked that the divergence acts as a distance on the space
of the PDFs. The previous theorem enlightens more: it express this distance in terms of
differences of two values of some Lyapunov functional.

(ii) Special cases: a) For w = 1 we obtain the Tsallis entropy based approach. b) The
case q −→ 1 corresponds to the weighted Shannon entropy approach. c) For w = 1 and
q −→ 1 we get the classical Shannon entropy case.

5. THE LIE SYMMETRIES OF THE NFPE BASED ON THE WEIGHTED TSALLIS ENTROPY

We determine the Lie symmetries of the NFPE (4.16), associated to the w-weighted Tsal-
lis entropy, using the algorithm described in [43]. For the moment, we consider arbitrary
functions A, B, E and G, depending on the variables x, t and p. Only after determining
the final system of equations we shall replace these functions with their particular values
from (4.17).

We look for vector fields of the form

(5.24) X = η(x, t, p)∂t + ξ(x, t, p)∂x + ϕ(x, t, p)∂p ,

where η, ξ and ϕ are differentiable functions on U ×R, as in (2.5). We consider the second
prolongation of p, as

p(2) = (p; px, pt; pxx, pxt, ptt) ,

and we write the NFPE (4.16) as F (x, t, p(2)) = 0, where

(5.25) F (x, t, p(2)) = pt(x, t) +A(x, t, p)px(x, t) +B(x, t, p)(px)
2(x, t)+

+E(x, t, p)pxx(x, t) +G(x, t, p).

We shall neglect the variables and we simplify the formulas:

F = pt +A · px +B · (px)2 + E · pxx +G.

We remark that F has maximal rank everywhere.
We consider the second prolongation of the vector field X , as

pr(2)X = η · ∂t + ξ · ∂x + ϕ · ∂p +Φx ∂

∂px

+Φt ∂

∂pt

+

+Φxx ∂

∂pxx

+Φxt ∂

∂pxt

+Φtt ∂

∂ptt

,

where
Φx = ϕx + (ϕp − ξx)px − ηxpt − ξpp

2
x − ηppxpt,

Φt = ϕt + (ϕp − ηt)pt − ξtpx − ηpp
2
t − ξppxpt,
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Φxx = ϕxx + (2ϕxp − ξxx)px − ηxxpt + (ϕpp − 2ξxp)p
2
x−

−2ηxppxpt − ξppp
3
x − ηppp

2
xpt + (ϕp − 2ξx)pxx−

−2ηxpxt − 3ξppxpxx − ηpptpxx − 2ηppxpxt,

Φxt = ϕxt + (ϕpt − ξxt)px − ξptp
2
x + (ϕpx − ηxt)pt − ηpx(pt)

2−

−ξtpxx + (ϕpp − ξpx − ηpt)pxpt + (ϕp − ξx − ηt)pxt − ηxptt − ξpptpxx−

−2ηpptpxt − 2ξppxpxt − ηppxptt − ξpp(px)
2pt − ηpppx(pt)

2,

Φtt = ϕtt + (2ϕpt − ηtt)pt − ξttpx + (ϕpp − 2ηpt)p
2
t−

−2ξptpxpt − ηppp
3
t − ξppp

2
tpx + (ϕp − 2ηt)ptt−

−2ξtpxt − 3ηpptptt − ξppxptt − 2ξpptpxt .

The unknown functions η, ξ, ϕ are solutions of the equation

pr(2)X
(
F (x, t, p(2))

)
= 0.

With the previous notations, this equation writes

(5.26) ξ ·
[
Axpx +Bx(px)

2 + Expxx +Gx

]
+

+η ·
[
Atpx +Bt(px)

2 + Etpxx +Gt

]
+

+ϕ ·
[
Appx +Bp(px)

2 + Eppxx +Gp

]
+

+Φx ·
(
A+ 2Bpx

)
+Φt + EΦxx = 0.

In the formulas giving Φx, Φt and Φxx, we replace

pt = −A · px −B · (px)2 − E · pxx −G.

Back in (5.26), we obtain

ξ ·
{
Axpx +Bx(px)

2 + Expxx +Gx

}
+

η ·
{
Atpx +Bt(px)

2 + Etpxx +Gt

}
+

ϕ ·
{
Appx +Bp(px)

2 + Eppxx +Gp

}
+

Aϕx +A(ϕp − ξx)px +A2ηxpx +ABηx(px)
2 +AEηxpxx +AGηx−
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−Aξp(px)
2 +A2ηp(px)

2 +ABηp(px)
3 +AEηppxpxx +AGηppx+

+2Bϕxpx + 2B(ϕp − ξx)(px)
2 + 2ABηx(px)

2 + 2B2ηx(px)
3 + 2BEηxpxpxx+

+2BGηxpx − 2Bξp(px)
3 + 2ABηp(px)

3 + 2B2ηp(px)
4 + 2BEηp(px)

2pxx + 2BGηp(px)
2+

+ϕt − (ϕp − ηt)Apx − (ϕp − ηt)B(px)
2 − (ϕp − ηt)Epxx − (ϕp − ηt)G− ξtpx−

−ηp ·
{
A2(px)

2 +B2(px)
4 + 2AB(px)

3 + E2(pxx)
2 +G2+

+2EGpxx + 2AEpxpxx + 2AGpx + 2BE(px)
2pxx + 2BG(px)

2
}
+

+Aξp(px)
2 +Bξp(px)

3 + Eξppxpxx +Gξppx+

+E ·
{
ϕxx + (2ϕxp − ξxx)px +Aηxxpx +Bηxx(px)

2 + Eηxxpxx +Gηxx+

+(ϕpp − 2ξxp)(px)
2 + 2Aηxp(px)

2 + 2Bηxp(px)
3 + 2Eηxppxpxx + 2Gηxppx − ξpp(px)

3+

+Aηpp(px)
3 +Bηpp(px)

4 + Eηpp(px)
2pxx +Gηpp(px)

2 + (ϕp − 2ξx)pxx − 2ηxpxt−

−3ξppxpxx +Aηppxpxx +Bηp(px)
2pxx + Eηp(pxx)

2 +Gηppxx − 2ηppxpxt

}
= 0 .

We consider that the left side is a formal polynomial in 1, px, (px)2, pxx, (px)3, pxpxx,
(px)

4, (px)2pxx, (pxx)2, pxt, pxpxt (in this order), which is identically null. The respective
coefficients vanish and we obtain the following system of PDEs

(5.27) ξ ·Gx+η ·Gt+ϕ·Gp+A·ϕx+AG·ηx+ϕt−G2 ·ηp+E ·ϕxx+EGηxx−G·(ϕp−ηt) = 0 ,

ξ ·Ax + η ·At + ϕ ·Ap +A · (ηt − ξx) +A2 · ηx + 2B · ϕx + 2BG · ηx −AG · ηp+

+E · (2ϕxp − ξxx) +AE · ηxx + 2EG · ηxp +G · ξp − ξt = 0,

ξ ·Bx + η ·Bt + ϕ ·Bp + 3AB · ηx +B · (ϕp + ηt − 2ξx)+

+BE · ηxx + E · (ϕpp − 2ξxp) + 2AE · ηxp + EG · ηpp = 0,

ξ · Ex + η · Et + ϕ · Ep +AE · ηx − EG · ηp + E2 · ηxx + E · (ηt − 2ξx) = 0,

AB · ηp + 2B2 · ηx −B · ξp + 2BE · ηxp − E · ξpp +AE · ηpp = 0,

2BE · ηx + 2E2 · ηxp − 2E · ξp = 0,
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B2 · ηp +BE · ηpp = 0,

E2 · ηpp +BE · ηp = 0,

E2 · ηp − E2 · ηp = 0,

E · ηx = 0,

E · ηp = 0.

Suppose E is nowhere vanishing. From the last two equations, we obtain η = η(t),
and the previous three equations become tautologic. From the 6-th equation we deduce
ξ = ξ(x, t). Now, the 5-th equation becomes tautologic. The system (5.27) restrains to the
first four equations only, which may be rewritten as:

(5.28) ξ ·Gx + η ·Gt + ϕ ·Gp +A · ϕx + ϕt + E · ϕxx −G · (ϕp − ηt) = 0 ,

ξ ·Ax + η ·At + ϕ ·Ap +A · (ηt − ξx) + 2B · ϕx + E · (2ϕxp − ξxx)− ξt = 0,

ξ ·Bx + η ·Bt + ϕ ·Bp +B · (ϕp + ηt − 2ξx) + E · ϕpp = 0,

ξ · Ex + η · Et + ϕ · Ep + E · (ηt − 2ξx) = 0.

Theorem 5.4. (i) With the previous notations, consider the NFPE (4.16), with arbitrary coefficient
functions A, B, E, G. Then the Lie symmetries form the trivial Lie algebra, spanned by the null
vector field.

(ii) If the functions A, B, E, G are time-independent, then the Lie symmetries form a Lie algebra
spanned by the vector field

(5.29) X1 = ∂t.

(iii) If the functions B, E, G are x-independent and Ax = −1, then the Lie symmetries form a
Lie algebra spanned by the vector field

(5.30) X2 = e−t∂x.

(iv) If the functions A, B, E, G are time-independent, the functions B, E, G are x-independent,
and Ax = −1, then the Lie symmetries form a Lie algebra spanned by the vector fields

(5.31) X1 = ∂t , X2 = e−t∂x.

(v) If A = −x, B = c1p
2α−1, E = c2p

2α, G = c3p, with α, c1, c2, c3 arbitrary real constants,
then the Lie symmetries form a Lie algebra spanned by the vector fields

(5.32) X1 = ∂t , X2 = e−t∂x , X3 = αx∂x + p∂p.
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Remark 5.5. (i) It is important to stress that the Lie symmetries in formulas (5.29)- (5.32)
do not depend on the w-weighted Tsallis entropy features. For example, the Lie symme-
tries in (5.31) were discovered for the NFPE based on the Sharma-Taneja-Mittal entropy
(cf. [56]), which is more general that the Tsallis entropy.

(ii) The Lie algebras spanned by (5.29) and by (5.30), respectively, are isomorphic with
the (one-dimensional) Lie algebra g1. (We use the notations from Mubarakzyanov’s clas-
sifications of low-dimensional Lie algebras [40].) This corresponds to the (local) Lie group
of translations of the real line.

We remark that
[X1,X2] = −X2,

hence the Lie algebra spanned by (5.31) is the (non-commutative 2-dimensional) algebra
g2,1. It corresponds to the (local) Lie group of affine transformations of the real line.

We calculate that

[X1,X2] = −X2 , [X1,X3] = 0 , [X2,X3] = αX2,

hence the Lie algebra spanned by (5.32) is a non-commutative 3-dimensional algebra. This
is (isomorphic with) the decomposable Bianchi III Lie algebra g2,1 ⊕ g1.

(iii) With the previous notations, consider the NFPE associated to the w-weighted Tsal-
lis entropy. Then the Lie symmetries form a Lie algebra spanned by the vector fields

X = ξ∂x + η∂t + ϕ∂p,

with η = η(t), ξ = ξ(x, t) and η, ξ, ϕ satisfy the PDEs system (5.28) and A, B, E, G are
given in formula (4.17). In general, this Lie algebra is trivial.

(iv) In particular, for the classical Tsallis entropy (with q ̸= 1), we have w = 1 and
we recover the Lie symmetries derived in [56], Subsection 4.1. b), namely the Lie algebra
spanned by the vector fields:

X1 = ∂t , X2 = e−t∂x , X3 =
1− q

2
x∂x + p∂p , X4 = e(q−3)t

(
x∂x − ∂t − p∂p

)
.

We remark that their non-vanishing Lie brackets are only

[X1,X2] = −X2 , [X2,X3] =
1− q

2
X2 , [X1,X4] = (q − 3)X4.

We conclude that the Lie algebra spanned by these four vector fields is: the decomposable
(3-dimensional) Lie algebra g2,1 ⊕ g1, if q = 3; the decomposable (4-dimensional) Lie
algebra g3,3 ⊕ g1, if q ̸= 3.

There exist the following 2-dimensional Lie sub-algebras: commutative sp{X1,X3},
sp{X2,X4} and sp{X3,X4}; non-commutative sp{X1,X2}, sp{X1,X4} and sp{X2,X3}.

For q ̸= 3, there exist the following 3-dimensional Lie sub-algebras:

- sp{X1,X2,X3}, sp{X1,X3,X4} and sp{X2,X3,X4}, which are isomorphic with the de-
composable Bianchi III Lie algebra g2,1 ⊕ g1;

- sp{X1,X2,X4}, which is isomorphic with: the Bianchi V Lie algebra g3,3, for q = 2; the
Bianchi VI Lie algebra g3,4, for q ̸= 2 (remember that q ̸= 3) (in particular, for q = 4 we get
the Poincaré Lie algebra).

(v) If, moreover, q → 1, we recover the Lie symmetries for the linear FPE derived in [56],
Subsection 4.1. a) and in [9, 10], namely the Lie algebra spanned by the vector fields:
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X1 = ∂t , X2 = e−t∂x , X3 = et
(
∂x − 1

D
xp∂p

)
, X4 = e−2t

(
x∂x − ∂t − p∂p

)
,

X5 = e2t
(
x∂x + ∂t −

1

D
x2p∂p

)
, X6 = p∂p , X7 = p̃ · ∂p,

where p̃ is an arbitrary solution of the linear FPE.

We restrict the study to the Lie algebra spanned by the first six vector fields, in order to
avoid the infinite-dimensional sub-algebras. The non-vanishing Lie brackets are only:

[X1,X2] = −X2, [X1,X3] = X3, [X1,X4] = −2X4, [X1,X5] = 2X5,

[X2,X3] = − 1

D
X6 , [X2,X5] = 2X3 , [X3,X4] = 2X2 , [X4,X5] = −4X1 − 2X6 .

There exist the following Lie sub-algebras:

(2D) commutative sp{X1,X6}, sp{X2,X4}, sp{X2,X6}, sp{X3,X5}, sp{X3,X6}, sp{X4,X6},
sp{X5,X6}; non-commutative sp{X1,X2}, sp{X1,X3}, sp{X1,X4}, sp{X1,X5}.

(3D) commutative sp{X2,X4,X6}, sp{X3,X5,X6}; non-commutative sp{X1,X2,X4},
sp{X1,X2,X6}, sp{X1,X3,X5}, sp{X1,X3,X6}, sp{X1,X4,X6}, sp{X1,X5,X6},sp{X2,X3,X6}.

(4D) sp{X1,X2,X3,X6}, sp{X1,X2,X4,X6}, sp{X1,X3,X5,X6}.
(5D) sp{X1,X2,X3,X5,X6}.
(vi) Finding the complete solution of the general NFPE (4.16) seems an impossible task.

Even when we restrict it to the case of w-weighted Tsallis entropy and we consider, in
addition, formulas (4.17), the task does not become easier. Moreover, if we ”remove” the
weight (i.e. making w := 1), as for the classical Tsallis entropy, or even further, if we
consider a linear FPE, the solution is not handy. The Lie symmetries offer a qualitative
information about the NFPEs, through their group-invariant solutions (GISs). These are
easier to tackle with, even if the information they reveal might be indirect and incomplete.

For the linear FPE, some GISs were studied in [5, 6]. For some NFPEs, some corre-
sponding GISs were analyzed in [56]. These works consider only non-weighted entropies
and one-dimensional GISs. As the following Corollary will show, some of their results
remain true (under the same hypothesis) for weights depending on only one of the two
variables.

We do not intend to deepen here this approach. We only point out two directions of
further study. The first one is to remain in the weighted entropy context and to consider
the relevance of one-dimensional GISs, following the line of research from [5, 6, 56].

The second one is to start a ”higher dimensional” investigation, in the non-weighted
entropy case (for the beginning). The previous sub-algebras ensure the existence of new
2D, 3D, 4D and 5D GISs; maybe some of them will prove useful in physical applications.

Corollary 5.1. With the previous notations, consider the NFPE associated to the w-weighted
Tsallis entropy.

(i) If w = w(x), then the corresponding Lie symmetries are of the form (5.29).

(ii) If w = w(t), then the corresponding Lie symmetries are of the form (5.30).

(iii) Suppose w = w(x, t) is arbitrary. Then the corresponding Lie symmetries are trivial.
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6. A SHORT DIGRESSION INTO THE OPTIMIZATION THEORY OF PDFS

Let V = V (x) be the potential energy function; q ∈ (−∞, 1)
⋃

(1, 2) and U0 > 0 be fixed
real numbers. We consider the following (MaxEnt) optimization problem:

(6.33) max HT
q [p],

where p = p(x) is a PDF satisfying∫
R
V (x)p(x)dx = U0,

and HT
q [p] is the associated Tsallis entropy function, based on (3.8). It is known ([62] and

references therein) that the solution of the optimization problem (6.33) is

pME(x) = (2− q)
1

q−1 · expT{q}
[
− (γ + βV (x))

]
,

where β and γ represent the Lagrange multipliers associated to the optimization problem.

We calculate

pME(x) =
{ 1

2− q

[
1 + (1− q)(−(γ + βV (x)))

]} 1
1−q

=

=
{
1 + (1− q)

[−(γ + βV (x))

2− q
− 1

2− q

]} 1
1−q

= expT{q}

[−(γ + βV (x))

2− q
− 1

2− q

]
.

We obtained an equivalent form for the MaxEnt problem (6.33), namely

pME(x) = expT{q}

[−(γ + βV (x))

2− q
− 1

2− q

]
,

which is used, sometimes, in the literature, due to its more condensed form.

Consider now, in addition, a weighting function w = w(x) and the following ”weighted”
optimization problem:

(6.34) max HwT
q [p],

where p = p(x) is a PDF satisfying∫
R
V (x)p(x)dx = U0

and HwT
q [p] is the associated w-weighted Tsallis entropy function, based on (3.8).

Theorem 6.5. The solution of the optimization problem (6.34) is

(6.35) pME
w (x) = (2− q)

1
q−1 · expT{q}

[
− γ + βV (x)

w(x)

]
,

where β and γ represent the Lagrange multipliers associated to the optimization problem.

Proof. We adapt the standard procedure, see [13] §12.1. □
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Remark 6.6. (i) A similar calculation leads to the equivalent form of (6.35)

(6.36) pME
w (x) = expT{q}

[−(γ + βV (x))

(2− q)w(x)
− 1

2− q

]
.

(ii) We point out the ”barrier” q = 2, which forbids (for greater values of the parameter
q) the existence of PDFs with maximum entropy. Maybe it is only a ”shadow” of a deeper
property of the Tsallis entropies family. We mention here the review paper [59], with
an interesting panorama on various q-dependent theoretical, experimental, observational
and computational aspects.

(iii) The constants β and γ are determined by the constraints of the optimization prob-
lem.

(iv) Formally, the weighting procedure does not provide significant changes for the
solution of the optimization problem. However, we must take into account that expT{q}
is not a true exponential function, so its weighting factor cannot be easily separated from
the part involving β, γ and V .

(v) With the previous notations, denote Hw the w-weighted Tsallis entropy HwT
q [pME

w ],
by

Uw :=

∫
R
V (x) · pME

w (x)dx,

the mean force with respect to pME
w , by

Ew :=

∫
R
w(x) · pME

w (x)dx,

the mean value of w with respect to pME
w and by

Fw := −γ + Ew

β
,

the w-weighted q-generalized free energy. A short calculation gives the w-weighted q-
generalizations of the thermodynamic relations:

Fw = Uw +
q − 2

β
Hw,

d

dβ
(βFw) = Uw.

(All these entities depend on q, which we skipped in the previous formulas for the sake
of simplicity. For physical interpretations, see [61, 62].)

7. CONCLUDING REMARKS

The main result of our paper is the determination of the NFPE associated to a w-
weighted Tsallis entropy (formula (4.15) and, equivalently, (4.16) + (4.17)). Then we ana-
lyze the Lie symmetries of this equation (in the Corollary 5.1) and we compare them with
those arising from the classical Tsallis entropy. In some particular cases, we determine
some sub-algebras spanned by the respective vector fields, by identifying their isomor-
phism classes in the Bianchi classification (Remark 5.5. (iv),(v)).

As a by-product and as an extension, we prove the non-negativity of the associated
Lyapunov function and a theorem expressing the Bregman divergence as a distance be-
tween constant level sets of the Lyapunov function (Theorem 4.3).
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In the last section, we derive the solution for the MaxEnt problem associated to the
w-weighted Tsallis entropy (Theorem 6.5) and a w-weighted q-generalization of the ther-
modynamic relations (Remark 6.6 (v)).

In a forthcoming paper, we shall make a similar study for the NFPE based on the
weighted Kaniadakis entropy [53]. The new affine and conformal control tools from
[28,29] may be useful for applications of the Lie symmetries of the NFPE in the context of
statistical manifolds.
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