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Operators with Brownian unitary dilations

LAURIAN SUCIU

ABSTRACT. Certain bounded linear operators T on a complex Hilbert space H which have 2-isometric lift-
ings S on another space K ⊃ H are being investigated. We refer also to a more special type of liftings, as well as
to those which additionally meet the condition S∗SH ⊂ H. Furthermore we describe other types of dilations for
T , which are close to 2-isometries. Among these we refer to expansive (concave) operators and also to Brownian
unitary dilations. Different matrix representations for such operators are obtained, where matrix entries involve
contractive operators.

1. INTRODUCTION AND PRELIMINARIES

In this paper we denote by B(H,H′) the Banach space of all bounded linear operators
acting between two complex Hilbert spaces H and H′ and B(H) = B(H,H) is considered
a C∗-algebra with the identity operator I = IH. For T ∈ B(H,H′), R(T ) ⊂ H′ and
N (T ) ⊂ H stand for the range and the kernel of T , while T ∗ ∈ B(H′,H) means the adjoint
operator of T . If M is a subspace of H we write M for the closure of M in H. When M
is closed we denote by PM ∈ B(H) the orthogonal projection with R(PM) = M, and by
PH,M ∈ B(H,M) the projection of H onto M. The (closed) subspace M is invariant (resp.
reducing) for T ∈ B(H) if TPM = PMTPM (resp. TPM = PMT ). When M is invariant
for T , the operator TM = T |M ∈ B(M) is the restriction of T to M, while T is an extension
for TM. In this case K ⊖M is an invariant subspace for T ∗.

Let K,K′ be Hilbert spaces which contain H respectively H′ as closed subspaces. An
operator S ∈ B(K,K′) is a lifting for T ∈ B(H,H′) if PK′,H′S = TPK,H. When this
occurs one has S(K ⊖ H) ⊂ K′ ⊖ H′. Equivalently, S is a lifting for T if and only if
S∗JH′,K′ = JH,KT

∗ where JH,K = P ∗
K,H is the embedding mapping of H into K, and

similarly JH′,K′ = P ∗
K′,H′ . It is obvious that if we take K′ = K and H′ = H, the re-

lation S∗JH,K = JH,KT
∗ exactly means that S∗ is an extension for T ∗, and in this case

S(K ⊖ H) ⊂ K ⊖ H. More generally, we say that S ∈ B(K) is a dilation of T ∈ B(H) if
Tn = PK,HSnJH,K for every integer n ≥ 0. When this happens we also say that T is a
compression of S.

An operator A ∈ B(H) is said to be positive (in notation A ≥ 0) if ⟨Ah, h⟩ ≥ 0 for any
h ∈ H, where ⟨·, ·⟩ denotes the scalar product in any Hilbert space. When A ≥ 0 we write
A1/2 for its square root. According to the terminology of [19] we say that an operator
T ∈ B(H) is an A-contraction for a positive operator A ∈ B(H) if T ∗AT ≤ A and A ̸= 0.
In this case TN (A) ⊂ N (A) and T ∗R(A) ⊂ R(A). Also we say that T is an A-isometry if
T ∗AT = A. Clearly, T is a contraction if T ∗T ≤ I and T is an isometry if T ∗T = I . Also,
T is unitary if T and T ∗ are isometries, and T is expansive if T ∗T ≥ I , or in other words
∆T := T ∗T − I ≥ 0.
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An operator T ∈ B(H) is concave if it is a ∆T -contraction and T is a 2-isometry if it is
a ∆T -isometry. In both cases T is expansive and N (∆T ) is invariant for T , while V =
T |N (∆T ) is an isometry.

A 2-isometry T on H is called Brownian unitary if U = T ∗|R(∆T )
is unitary, and E =

δ−1PN (∆T )T |R(∆T )
is an isometry with R(E) = N (V ∗), V as above, while δ = ∥∆1/2

T ∥.
Obviously, the class of 2-isometries contains the isometries, while the unitary operators

are considered to be Brownian unitaries with δ = 0. These latter operators are essential
in the dilation theory of contractions initiated by Bela Sz.-Nagy and Ciprian Foiaş and
developed by many authors (see [11, 22]). On the other hand, different classes of operators
close to 2-isometries and more general to A-contractions have been studied intensively
lately. We are referring here only to some articles like [1, 2, 3, 4, 5, 9, 10, 12, 13, 16, 17, 18,
19].

In this paper we continue the study of operators T with 2-isometric liftings, which was
started and developed in [6, 7, 8, 14, 15, 20, 21]. So, in Section 2 we refer to general 2-
isometric liftings and show that they can be obtained by some expansive (even concave)
liftings. Also, we see that 2-isometric liftings for T can be also induced by dilations of T
which have triangulations with contraction entries, which suggests a relationship with the
isometric liftings of contractions. We characterize the operators T with such a more par-
ticular triangulation, by 2-isometric liftings S with S∗SH ⊂ H and having the covariance
operator ∆S a scalar multiple of an orthogonal projection.

In Section 3 we study an extension T̃ of an operator T that has a Brownian unitary
dilation B. We show that T̃ ∗ is an A-contraction, where A is related to N (∆B) and we
describe the triangulation of T̃ under the decomposition R(A)⊕N (A) in the terms of B.
As an application we characterize the operators T with 2-isometric liftings S satisfying
S∗SH ⊂ H by using a Brownian unitary extension B of S. Also, we prove that these
operators have an extension with a more particular matrix structure, namely having as
entries contractions and even coisometries. The cases when R(A) is closed and some
compressions of T are similar to contractions are also considered.

2. OPERATORS WITH LIFTINGS CLOSE TO 2-ISOMETRIES

We will further investigate the operators with 2-isometric liftings, by means of some
intermediate liftings, extensions or dilations which lead to 2-isometries. In this regard we
show first of all that the 2-isometric liftings can be obtained by intermediate expansive or
A-contractive liftings.

Theorem 2.1. For T ∈ B(H) non-contractive the following statements are equivalent:
(i) T has a 2-isometric lifting;

(ii) T has a lifting T̂ ∈ B(Ĥ) such that T̂ is an A-contraction for a positive operator A on Ĥ
with A ≥ ∆T̂ ;

(iii) T has an expansive lifting T̃ ∈ B(H̃) which under a decomposition H̃ = H0 ⊕H1 has a
triangulation of the form

(2.1) T̃ =

(
V X
0 Z

)
,

where V is an isometry on H0 and Z is an A1-contraction on H1 with A1 ≥ X∗X+∆Z ;
(iv) T has a concave lifting.

Proof. The implication (i)⇒(iv) is trivial. Assume that T has a concave lifting T̃ on a
Hilbert space H̃ ⊃ H. Then ∆T̃ = T̃ ∗T̃ − I ≥ 0 i.e. T̃ is expansive, and T̃ ∗∆T̃ T̃ ≤ ∆T̃
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i.e. T̃ is a ∆T̃ -contraction. So N (∆T̃ ) is an invariant subspace for T̃ , hence T̃ has a matrix
representation (2.1) under the decomposition H̃ = N (∆T̃ ) ⊕ R(∆T̃ ) with V = T̃ |N (∆T̃ )

an isometry. Also, since ∆T̃ ≥ 0 we have V ∗X = 0, and using this fact we get that
∆T̃ = 0 ⊕∆0, where ∆0 = X∗X + ∆Z ≥ 0 on R(∆T̃ ). In addition, the above inequality
ensures that Z∗∆0Z ≤ ∆0 and ∆0 ̸= 0 (T being non-contractive) i.e. Z is a ∆0-contraction.
Thus the entries V,X and Z of T̃ have the required properties in (2.1), hence (iv) implies
(iii).

Now suppose that T has an expansive lifting T̃ of the form (2.1) under a decomposition
H̃ = H0 ⊕ H1. Since V is an isometry on H0 and ∆T̃ ≥ 0 one has V ∗X = 0 and Z is
an A1-contraction on H1 with A1 ≥ X∗X + ∆Z =: ∆1 ≥ 0, we obtain that T̃ is an A-
contraction where A = 0 ⊕ A1 on H0 ⊕H1. Also, the previous inequality for A1 leads to
A ≥ 0⊕∆1 = ∆T̃ , hence the lifting T̃ of T has the required property in (ii). We conclude
that (iii) implies (ii).

Finally, let’s assume that T̂ and A on Ĥ ⊃ H are as in the statement (ii). Let H′ =

ℓ2+(R(A−∆T̂ )) and Ŝ ∈ B(H′ ⊕ Ĥ) be the operator with the block matrix

Ŝ =

(
S+ (A−∆T̂ )

1/2

0 T̂

)
,

where S+ is the forward shift on H′ with N (S∗
+) = R(A−∆T̂ ). Then ∆Ŝ = 0 ⊕ A on

K = H′ ⊕ Ĥ and

Ŝ∗∆ŜŜ = 0⊕ T̂ ∗AT̂ ≤ 0⊕A = ∆Ŝ ,

hence Ŝ is a concave operator. Since Ŝ has a 2-isometric lifting S (see [7, 8]) and Ŝ is a
lifting for T , it follows that S is also a 2-isometric lifting for T . Thus (ii) implies (i). □

Remark 2.1. In the implication (ii) ⇒(i) we can get by [8, Theorem 4.1] a 2-isometric lifting
Ŝ for T̂ with Ŝ∗ŜĤ ⊂ Ĥ. Moreover, for the expansive lifting T̃ from (iii) of T we get by
[8, Theorem 3.7] a 2-isometric lifting S̃ on K̃ ⊃ H̃ with K̃ ⊖ H̃ ⊂ N (∆S̃). But H is neither
invariant for Ŝ∗Ŝ, nor for S̃∗S̃, in general, when we consider Ŝ and S̃ as liftings for T .

However, if T̂ is a concave lifting for T as in (iv) and T̃ is an extension for T as in
(2.1) with the properties from (iii), while S̃ and Ŝ are as above, then for S0 = S̃|H̃⊥⊕H
and S1 = Ŝ|Ĥ⊥⊕H we have H̃⊥ ⊂ N (∆S0), respectively S∗

1S1H ⊂ H. Obviously, S0 and
S1 are liftings for T , and S0 also satisfies the condition S∗

0S0H ⊂ H. Such 2-isometric
liftings were studied in [7, 8, 14, 15, 20, 21]. But this special case can be now presented as
a consequence of the above theorem.

Corollary 2.1. For T ∈ B(H) non-contractive the following statements are equivalent:

(i) T has a 2-isometric lifting S with S∗SH ⊂ H;
(ii) T is an A0-contraction for an operator A0 ≥ ∆T ;

(iii) T has an expansive lifting T̃ of the form (2.1) on H̃ = H0 ⊕H1, with T̃ ∗T̃H ⊂ H, V =

T̃ |H0 an isometry, Z = PH1 T̃ |H1 an A1-contraction for an operator A1 ≥ X∗X + ∆Z ,
such that Ã1H ⊂ H where Ã1 = 0⊕A1 on H0 ⊕H1 and X = PH0

T̃ |H1
;

(iv) T has a concave lifting T̂ with T̂ ∗T̂H ⊂ H.

Proof. The implications (i)⇒(iv) and (iv)⇒(iii) are obvious, if we take T̂ = S, respectively
T̃ = T̂ and A1 = ∆T̃ |H1

= X∗X +∆Z .
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Now let us assume that the assertion (iii) is true. We represent the lifting T̃ of T and
the operator Ã1 (from (iii)) with Ã1H ⊂ H on H̃ = H⊥ ⊕H, in the form

T̃ =

(
Y0 Y1

0 T

)
, Ã1 = A2 ⊕A0.

Since Z is an A1-contraction in (2.1) and Ã1 = 0 ⊕ A1 on H̃ = H0 ⊕ H1 we infer (using
(2.1)) that T̃ ∗Ã1T̃ ≤ Ã1. Expressing this relation in the terms of the above representations
for T̃ and Ã1 on H̃ = H⊥ ⊕H we get that T ∗A0T ≤ A0 and A0 ≥ 0 because Ã1 ≥ 0. But
A0 ̸= 0 as we will see below, so T is an A0-contraction.

Next we use that T̃ ∗T̃H ⊂ H (by (iii)), which means Y ∗
0 Y1 = 0 in the above matrix of

T̃ . Hence ∆T̃ = ∆Y0
⊕ (Y ∗

1 Y1 + ∆T ) on H̃ = H⊥ ⊕ H, and ∆T̃ ≤ Ã1 because ∆T̃ |H1
=

X∗X +∆Z ≤ A1 (by (iii)). We obtain that

∆T ≤ Y ∗
1 Y1 +∆T = ∆T̃ |H ≤ Ã1|H = A0,

and as T is not a contraction we have A0 ̸= 0, which completes the assertion (ii). Thus (iii)
implies (ii), while (ii) implies (i) by [8, Theorem 4.1]. □

A direct consequence of Theorem 2.1 and of the last assertion in Remark 2.1 is the
following

Corollary 2.2. Let T ∈ B(H) having an expansive lifting (or extension) T̃ on H̃ ⊃ H, such
that T̃ has a triangulation (2.1) with V an isometry and Z similar to a contraction. Then T has a
2-isometric lifting (respectively, a 2-isometric lifting S with H̃⊥ ⊂ N (∆S)).

Another characterization for the operators with 2-isometric liftings can be obtained
using more general dilations than Brownian unitary dilations. Recall that by the famous
result of Agler-Stankus from [2, Theorem 5.80] every 2-isometry has a Brownian unitary
extension which retains the covariance. So each operator with 2-isometric lifting has a
Brownian unitary dilation and the converse is also true. But an intermediate dilation
appears in this setting, which can be easily used in applications and to provide examples.

Theorem 2.2. For T ∈ B(H) non-contractive the following statements are equivalent:
(i) T has a 2-isometric lifting;

(ii) T has a dilation T̂ on Ĥ ⊃ H which under a decomposition Ĥ = H0 ⊕H1 has a triangu-
lation of the form

(2.2) T̂ =

(
C0 δC1

0 C

)
,

where δ > 0 is a scalar and C,Cj (j = 0, 1) are contractions, such that there exist a
Hilbert space E , an isometry J0 : DC0

→ E and a contraction J1 : DC1
→ E satisfying

the condition

(2.3) DC0J
∗
0J1DC1 + C∗

0C1 = 0.

Proof. Assume that T has a 2-isometric lifting S on K = H′ ⊕H and let B on K̃ = K ⊕K′

be a Brownian unitary extension of S. Then B has triangulations of the form

(2.4) B =

(
S ⋆
0 ⋆

)
=

(
W ⋆

0 T̃

)
=

(
V δE
0 U

)
respectively under the decompositions

K̃ = K ⊕K′ = H′ ⊕ (H⊕K′) = N (∆B)⊕R(∆B),
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where the lifting S of T has on K = H′ ⊕H the representation

S =

(
W ⋆
0 T

)
.

Clearly W = S|H′ is a 2-isometry, T̃ = PMB|M from (2.4) is an extension for T on M =
H⊕K′, V = B|N (∆B) and E : R(∆B) → N (∆B) are isometries with R(E) = N (V ∗), U is
unitary on R(∆B) and δ = ∥∆B∥1/2 = ∥∆S∥1/2 > 0 (T being non-contractive).

Since B is a lifting for T̃ and T̃ is an extension for T it follows that B is a dilation for T ,
which has the form (2.2) by the last triangulation in (2.4). Here the condition (2.3) is given
by V ∗E = 0 (quoted above) and E = {0}. So (i) implies (ii).

Conversely, we suppose that T has a dilation T̂ as in (2.2) on Ĥ ⊃ H, with C,Cj con-
tractions satisfying the condition (2.3) for j = 0, 1 (as in (ii)). Since C is a contraction it has
an isometric lifting. Then by [15, Theorem 2.5] (or by Theorem 2.3 below) it follows that T̂
has a 2-isometric lifting Ŝ on K̂ ⊃ Ĥ. As T̂ is a dilation for T , it has a matrix representation
of the form

T̂ =

⋆ ⋆ ⋆
0 T ⋆
0 0 ⋆


under a decomposition Ĥ = K0 ⊕H⊕K1. Since Ŝ is a lifting for T̂ it follows that Ŝ is also
a dilation for T , therefore Ŝ has relative to T a similar representation as T̂ of above, under
the decomposition K̂ = [(K̂⊖Ĥ)⊕K0]⊕H⊕K1. Hence S0 = Ŝ|K̂⊖K1

will be a 2-isometric
lifting for T , which proves that (ii) implies (i). □

Remark that the condition (2.3) is more general than C∗
0C1 = 0. In fact, this condition

shows that there exist an isometric lifting V0 ∈ B(E ⊕ H0) for C0 and a contractive lifting
C̃1 ∈ B(H1, E ⊕H0) for C1 such that V ∗

0 C̃1 = 0, for some Hilbert space E .
Notice that Theorem 2.2 is an effective generalization of [21, Theorem 2.1] where we

characterized the operators T on H that have 2-isometric liftings S with S∗SH ⊂ H, in
terms of an extension for T of the form (2.2). We retrieve this result in the Theorem 3.6
below.

In the general case, Theorem 2.2 shows that the operators T with 2-isometric liftings
are exactly the compressions of operators with triangulations (2.2), which satisfy the con-
dition (2.3). But this means that one can get some extensions for T that have liftings of the
form (2.2), as we will see in the next section. We now describe by means of 2-isometric
liftings the operators of the form (2.2).

Theorem 2.3. For T ∈ B(H) the following statements are equivalent:
(i) T has a 2-isometric lifting S with S∗SH ⊂ H and ∆S = σ2P with P an orthogonal

projection and a scalar σ > 0;
(ii) T has a triangulation (2.2) under a decomposition H = H0 ⊕ H1 with C0 = T |H0

,
C∗ = T ∗|H1

and C1 = δ−1PH0
T |H1

contractions for some scalar δ > 0, such that C0

and C1 satisfy the condition (2.3).

Proof. Let T, S, P and δ be as in (i). In what follows we may assume, without loos of
generality, that T is not a contraction. Let W = S|H′ with H′ = K⊖H. Then as ∆SH ⊂ H
(by (i)) it follows that ∆S = 0⊕(∆W |H′)⊕(∆S |H) under the decomposition K = N (∆W )⊕
R(∆W )⊕H. We remark from this representation of ∆S that

N (∆S) = N (∆W )⊕N (∆S |H), R(∆S) = ∆WH′ ⊕∆SH = R(∆W )⊕ (H ∩R(∆S)).

Since R(∆S) is closed (by (i)) we obtain that R(∆W ) is closed, too.
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Now we use the fact that S is a ∆S-isometry i.e. S∗∆SS = ∆S . This ensures that
N (∆S) is invariant for S, which implies that H0 = N (∆S |H) is invariant for T , because if
h ∈ H and ∆Sh = 0 then

Th = PHSh ∈ PHN (∆S) = N (∆S |H),

therefore TH0 ⊂ H0. Thus it follows that on H = H0 ⊕ H1 with H1 = ∆SH, T has
a triangulation of the form (2.2) with the entries C0 = T |H0 , C = PH1T |H1 and C̃1 =
PH0S|H1 . Putting D = PN (∆S)S|H1 = δC ′ for a contraction C ′ and a scalar δ ≥ ∥D∥, we
have

D = δ
[
C2 C1

]tr
: H1 → N (∆W )⊕H0,

with Cj contractions (j = 1, 2) and C̃1 = δC1.
Notice that since H0 ⊂ N (∆S) and S|N (∆S) is an isometry, we have that C0 = T |H0 =

PH0S|H0 is a contraction. On the other hand, as S is a ∆S-isometry and ∆S = σ2P with
P = PR(∆S) (by (i)) it follows that S∗PS = P . Also, one has the relation PS = PSP ,
because SN (P ) ⊂ N (P ) = N (∆S). But as S is a P -isometry, there exists an isometry
V1 on R(P ) = R(∆S) such that PS = V1P , which yields S∗|R(∆S) = PV ∗

1 . Then for the
operator C from (2.2) we have C∗ = T ∗|H1

= S∗|H1
= PV ∗

1 |H1
, therefore C = PH1

V1|H1

is a contraction. This also implies that H1 ̸= {0} (by our assumption that T is not a
contraction), and also that C̃1 ̸= 0, so δ > 0 in (2.2). To end the proof of (ii) it remains to
show the condition (2.3) for C0, C1.

For this (using the above notation) we represent the isometry V = S|N (∆S) on N (∆S) =
N (∆W )⊕H0 and the operator D : H1 → N (∆W )⊕H0 in the form

V =

(
V0 C ′

0

0 C0

)
, D = δ

(
C2

C1

)
,

where V0 = V |N (∆W ) is an isometry and C ′
0 : H0 → N (∆W ) is a contraction such that

C ′∗
0 C ′

0 + C∗
0C0 = I (V being an isometry). So there exists an isometry J0 : DC0

→ N (∆W )
satisfying the relation J0DC0

= C ′
0. On the other hand, since δ−1D = C ′ is a contraction

we have C∗
2C2 +C∗

1C1 ≤ I i.e. C∗
2C2 ≤ D2

C1
. Hence there exists a contraction J1 from DC1

into N (∆W ) such that C2 = J1DC1
. Finally, since S is expansive and V is an isometry we

need to have V ∗PN (∆S)S|R(∆S) = 0, which implies V ∗D = 0 and later that

DC0
J∗
0J1DC1

+ C∗
0C1 = C ′∗

0 C2 + C∗
0C1 = 0.

Therefore C0, C1 satisfy the condition (2.3), and we proved that (i) implies (ii).
Conversely, let us assume that T has a triangulation as in (ii) on H = H0 ⊕ H1. Let

V1 be the (minimal) isometric lifting on K1 = H1 ⊕ H2 of the contraction C = PH1
T |H1

,
where H2 = ℓ2+(DC), while DC = ∆CH1 is the defect space of C. Consider the space
H−1 = ℓ2+(E ⊕ H2) where E is the Hilbert space quoted in (ii). Denote by S+ the forward
shift on H−1 and let J : E → H−1, J2 : H2 → H−1 be the embedding mappings. We define
the isometries V0 on K0 = H−1 ⊕ H0 and V2 from K1 = H1 ⊕ H2 into K0 = H−1 ⊕ H0

having, respectively, the block matrices

(2.5) V0 =

(
S+ JJ0DC0

0 C0

)
, V2 =

(
JJ1DC1 J2

C1 0

)
,

where the contractions C0, C1 and J0, J1 are from (2.2) and (2.3).
Now we define the operator S on K = K0 ⊕K1 with the block matrix

(2.6) S =

(
V0 δV2

0 V1

)
,
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with the scalar δ > 0 from (2.2). It is easy to see (by using the condition (2.3)) that V ∗
0 V2 =

0, which leads to the fact that ∆S = 0 ⊕ δ2I on K0 ⊕ K1. Thus we have ∆S = δ2PR(∆S)

and trivially S∗∆SS = ∆S , that is S is a 2-isometry. Also, with the matrices from (2.2),
(2.5) and (2.6) we obtain for S the representations

S =

S+ C2 J2
0 T 0
0 C ′ V ′

H−1

H
H2

 =

S+ J2 C2

0 V ′ C ′

0 0 T

H−1

H2

H

 =

(
W E
0 T

)[
K ⊖H
H

]
.

Here C2 =
[
JJ0DC0 δJJ1DC1

]
: H0⊕H1 → H−1, C ′ =

[
0 J ′DC

]
: H0⊕H1 → H2 with

J ′ : DC → H2 the embedding mapping, while V ′ is the forward shift on H2. We firstly
infer that S is a lifting for T and later, since W ∗E = 0 (as S∗

+JJiDCi = 0, J∗
2JJiDCi = 0

for i = 0, 1 and V ′∗J ′DC = 0), we conclude that S∗SH ⊂ H. Thus S has the required
properties in (i), which proves that (ii) implies (i). □

Corollary 2.3. If T ∈ B(H) satisfies the equivalent conditions of Theorem 2.3 then T has a 2-
isometric lifting S with a triangulation of the form (2.6), where the entries Vj (j = 0, 1, 2) are
isometries and δ > 0 is the scalar from the triangulation (2.2) of T .

Remark that the liftings from (2.6) are more special than those mentioned in Theorem
2.3 (i). Such 2-isometries were considered in [12, 13].

Notice finally that the two properties of S from the assertion (i) before do not involve
each other, in general. The condition S∗SH ⊂ H ensures only that T has an extension of
the form (2.2) satisfying (2.3), by [21, Theorem 2.1]. So Theorem 2.3 refers to a more special
class of operators than those mentioned in Corollary 2.1. Let us also mention that other
characterizations for the operators T from Theorem 2.3 were obtained in [21, Theorem
2.2].

3. EXTENSIONS OF OPERATORS WITH BROWNIAN UNITARY DILATIONS

We continue the study of operators described in Theorem 2.1 and Theorem 2.2. Each
such operator T has a Brownian unitary dilation obtained as an extension of a 2-isometric
lifting of T . Using such dilations we describe some extensions for T , which lead to 2-
isometric liftings for T . Let’s start with the following result.

Theorem 3.4. Let T ∈ B(H) be non-contractive and having a 2-isometric lifting S on K =

H′⊕H. Let B on K̃ = K⊕K′ be a Brownian unitary extension of S, and let A = PMPN (∆B)|M
where M = H⊕K′. Then A ̸= 0 and the following statements hold:

(i) T̃ = PMB|M is an extension for T which under the decomposition M = R(A)⊕N (A)
has the triangulation

(3.7) T̃ =

(
B0 B1

0 V ∗
1

)
, B0 = PR(A)

B|R(A)
, B1 = PR(A)

B|N (A), V1 = B∗|N (A),

such that T̃ ∗ is an A-contraction, B∗
0 is an A0-contraction with A0 = A|R(A)

, and V1 is
an isometry.

(ii) R(A) = PMN (∆B) ⊃ M∩N (∆B), N (A) = M∩R(∆B) and

(3.8) R(∆W )⊕R(A) = [N (∆B)⊖N (∆W )]⊕ [R(∆B)⊖N (A)],

where W = S|H′ . In addition, R(A) is closed if and only if R(∆W ) is closed; in this case
B0 is similar to a contraction.
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Proof. Let T, S and B be as above. Then B has triangulations of the form

(3.9) B =

(
S ⋆
0 ⋆

)
=

(
W ⋆

0 T̃

)
=

(
V δE
0 U

)
,

respectively under the decompositions

K̃ = K ⊕K′ = H′ ⊕M = N (∆B)⊕R(∆B),

where the lifting S of T has on K = H′ ⊕H the triangulation

S =

(
W ⋆
0 T

)
.

Here W = S|H′ is a 2-isometry, T̃ = PMB|M is an extension for T on M = H ⊕ K′,
V = B|N (∆B) and E : R(∆B) → N (∆B) are isometries with R(E) = N (V ∗), while U is
unitary on R(∆B).

Using the last representation of B in (3.9) as well as that V ∗E = 0 we obtain

BPN (∆B)B
∗ = V V ∗ ⊕ 0 ≤ PN (∆B).

Since PN (∆B) ̸= 0 (as we see below) it follows that B∗ is a PN (∆B)-contraction. Now
representing PN (∆B) on K̃ = H′ ⊕M in the form

PN (∆B) =

(
⋆ ⋆
⋆ A

)
, A = PMPN (∆B)|M,

we get by the above inequality that

(3.10) BPN (∆B)B
∗ =

(
⋆ ⋆

⋆ T̃AT̃ ∗

)
≤

(
⋆ ⋆
⋆ A

)
.

Hence T̃AT̃ ∗ ≤ A.
Let us note that A ̸= 0 (so PN (∆B) ̸= 0). Indeed, if A = 0 we have PN (∆B)M = {0},

so H ⊂ M ⊂ R(∆B). This gives by (3.9) that T = PHB|H = PHU |H, therefore T is
a contraction, which contradicts the hypothesis. So A ̸= 0 and as A ≥ 0 from (3.10) it
follows that T̃ ∗ is an A-contraction. Then R(A) is an invariant subspace for T̃ , hence
T̃ has the triangulation (3.7) under M = R(A) ⊕ N (A), with the entries B0, B1 and V ∗

1

inferred from the second matrix of B in (3.9).
Now from the definition of A we see that N (A) = M∩R(∆B) and

U∗N (A) = B∗N (A) = T̃ ∗N (A) ⊂ N (A),

so V1 = B∗|N (A) = U∗|N (A) is an isometry. Also, using the triangulation (3.7) of T̃ as well
as the representation A = A0 ⊕ 0 with A0 = A|R(A)

̸= 0, we infer from the inequality

T̃AT̃ ∗ ≤ A that B0A0B
∗
0 ≤ A0, that is B0 is an A0-contraction. The assertion (i) is proved.

Next we notice that because W = S|H′ is a 2-isometry, N (∆W ) is invariant for W =
S|H′ = B|H′ and also for B. So B|N (∆W ) is an isometry, hence N (∆W ) ⊂ N (∆B). This
and the fact that N (A) ⊂ R(∆B) give for K̃ the decompositions

K̃ = N (∆W )⊕R(∆W )⊕R(A)⊕N (A)

= N (∆W )⊕ [N (∆B)⊖N (∆W )]⊕ [R(∆B)⊖N (A)]⊕N (A)

whence one obtains the relation (3.8).
Clearly, from the definition of A we have R(A) ⊂ PMN (∆B). Conversely, if k = PMk0

with k0 ∈ N (∆B) then for every k1 ∈ N (A) = M∩R(∆B) we have (k, k1) = (k0, k1) = 0,
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therefore k ∈ R(A). So PMN (∆B) ⊂ R(A) and with the converse inclusion of above we
get finally R(A) = PMN (∆B). Obviously, M∩N (∆B) ⊂ R(A).

For the last assertion in (ii) we infer from [10, Remark 2.12-2] that R(A) is closed (in K̃)
if and only if R(∆B) +M is closed, or equivalently N (∆B) +H′ = N (∆B) +R(∆W ) is
closed. But for the 2-isometry W = B|H′ we have

∆W = PH′∆B |H′ = δ2PH′PR(∆B)|H′

where δ = ∥∆B∥1/2. Then by the same remark in [10] we can assert that R(∆W ) is closed
(in K̃) if and only if R(∆B) + M is closed. Thus we conclude that R(A) and R(∆W )
are simultaneously closed. Clearly, in this case the operator A0 = A|R(A) is invertible in
B(R(A)), and as B∗

0 is an A0-contraction it follows that B0 is similar to a contraction. The
assertion (ii) is proved. □

Some arguments in this proof lead to the next improved version of the result mentioned
in [21, Corollary 3.3]. Among other things, we will see that the inclusion M∩N (∆B) ⊂
R(A) from Theorem 3.4 (ii) may be strict, in general.

Theorem 3.5. Let T ∈ B(H) having a 2-isometric lifting S on K ⊃ H and let B be a Brownian
unitary extension for S on K̃ ⊃ K with ∥∆B∥ = ∥∆S∥ > 0. The following assertions are
equivalent:

(i) S∗SH ⊂ H;
(ii) R(∆B|K⊖H) ⊂ R(∆B);

(iii) M∩N (∆B) = R(A), where A = PMPN (∆B)|M and M = H⊕ (K̃ ⊖ K).

If this is the case then A is an orthogonal projection and

N (∆B) = N (∆B|K⊖H)⊕R(A), R(∆B) = R(∆B|K⊖H)⊕N (A).

Proof. Preserving the notation from the previous proof we have W := B|H′ = S|H′ where
H′ = K ⊖ H. Assume that the condition (iii) is verified. Then every k ∈ N (∆B) can be
written as k = PH′k ⊕ PMk, and PMk ∈ R(A) ⊂ N (∆B). So PH′k ∈ N (∆B) which
gives ∆WPH′k = PH′∆BPH′k = 0 i.e. PH′k ∈ N (∆W ). Thus it follows that N (∆B) =

N (∆W )⊕R(A) and this implies R(∆B|H′ ) ⊂ R(∆B) i.e. the condition of (ii). We conclude
that (iii) implies (ii).

Next we assume the condition from (ii) to be satisfied. This firstly yields R(∆W ) =
H′ ∩ R(∆B), so R(∆W ) is closed. Now by (3.8) we have R(∆W ) ⊕ N (A) ⊂ R(∆B). Let
k ∈ R(∆B) such that k is orthogonal on R(∆W )⊕N (A). So by (3.8) we get k ∈ N (∆W )⊕
R(A). Since k is orthogonal on N (∆B), k is also orthogonal on N (∆W ) ⊂ N (∆B), hence
k ∈ R(A). Then Ak = PMPN (∆B)k = 0, so k = 0 because A is injective on R(A). Given
the choice of k we conclude that R(∆B) = R(∆W )⊕N (A) and N (∆B) = N (∆W )⊕R(A).

Now S∗S|H′ = PKB
∗B|H′ , H′ being invariant for S and B, and because B is Brownian

unitary we have ∆B = δ2PR(∆B), where δ2 = ∥∆B∥ = ∥∆S∥ > 0. Thus we obtain

S∗SH′ = S∗S(N (∆W )⊕R(∆W )) ⊂ N (∆W ) + PKB
∗BR(∆W )

⊂ N (∆W )⊕R(∆W ) + PK∆BR(∆W ) = H′ + δ2PKR(∆W ) = H′,

taking into account that R(∆W ) ⊂ H′ ∩ R(∆B) and K = H′ ⊕ H. Hence S∗SH ⊂ H i.e.
the condition (i). In addition, we obtain that A = I ⊕ 0 on M = [N (∆B) ⊖ N (∆W )] ⊕
[R(∆B)⊖R(∆W )], that is A is an orthogonal projection. We have shown that (ii) implies
(i), while (i) implies (ii) by the proof of [21, Theorem 2.1], because ∥∆B∥ = ∥∆S∥.
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Finally, we saw above that in hypothesis (ii) we have N (∆B) = N (∆W )⊕R(A), there-
fore R(A) ⊂ M∩N (∆B). Since the converse inclusion is also valid (see Theorem 3.4 (ii)),
we obtain the condition of (iii). Hence (ii) implies (iii). □

The special 2-isometric liftings discussed in this theorem are expressed by their Brow-
nian unitary extensions. But they can be also described in terms of triangulation (3.7),
which has a particular shape in this case. Thus we add another statement equivalent to
those of Corollary 2.1.

Theorem 3.6. An operator T ∈ B(H) has a 2-isometric lifting S on K ⊃ H with S∗SH ⊂ H
if and only if T has an extension T̃ on M ⊃ H which under a decomposition M = M0 ⊕ M1

has a triangulation of the form (2.2) with C0 = T̃ |M0
and C1 = δ−1PM0

T̃ |M1
contractions for a

scalar δ > 0 which satisfy the condition (2.3), and with C = PM1
T̃ |M1

a coisometry.

Proof. Assume that T on H and S on K = H′ ⊕H are as above such that S∗SH ⊂ H. Then
T has the extension T̃ of the form (3.7) on M = R(A) ⊕ N (A), induced by a Brownian
unitary extension B of S on a space K̃ = K ⊕ K′ = H′ ⊕ M. Since R(A) ⊂ N (∆B)
by Theorem 3.5, in the matrix (3.7) we obtain that B0 is a contraction, B1 = δC1 with a
contraction C1 and δ = ∥∆B∥1/2 > 0, while C = V ∗

1 is a coisometry.
Now by Theorem 3.5 we have N (∆B) = N (∆W )⊕R(A) and R(∆B) = R(∆W )⊕N (A)

where W = B|H′ , while R(A) and R(∆W ) are closed. So the isometries V = B|N (∆B)

and E = δ−1PN (∆B)B|R(∆B) from the canonical triangulation (3.9) of B have the block
matrices of the form

V =

(
V0 J0DB0

0 B0

)[
N (∆W )
R(A)

]
, E =

(
W0 J1DC1

0 C1

)
:

R(∆W )
⊕

N (A)

 →

N (∆W )
⊕

R(A)


with V0,W0, J0 : DB0 → N (∆W ) and J1 : DC1 → N (∆W ) isometries. Since V ∗E = 0
and using these representations for V and E it follows that DB0

J∗
0J1DC1

+ B∗
0C1 = 0,

that is the condition (2.3) for the contractions B0 and C1 from the triangulation (3.7) of the
extension T̃ for T . An implication of the proposition is proved.

Conversely, let us assume that T has an extension T̃ on M ⊃ H as above. Then T̃ has
a 2-isometric lifting S̃ on K̃ = M⊥ ⊕ M such that S̃∗S̃M ⊂ M (by Theorem 2.3). But
K0 = M⊥ ⊕ H is invariant for S̃, so S0 = S̃|K0

is a 2-isometric lifting for T . Also, since
S̃∗S̃M⊥ ⊂ M⊥ we get S∗

0S0M⊥ = S̃∗S̃M⊥ ⊂ M⊥, that is S∗
0S0H ⊂ H. The converse

assertion is proved. □

From the last part of this proof we see that ∆S̃ = δ2PR(∆S̃) with δ > 0 (by Theo-
rem 2.3), but ∆S0

has not this form, in general. However, as R(∆S̃|M⊥
) ⊂ R(∆S̃) and

∆S̃|M⊥
= ∆S0|M⊥ we have ∆S0|M⊥ = δ2P with an orthogonal projection P . This leads to

the following

Corollary 3.4. If T ∈ B(H) satisfies the equivalent assertions of Theorem 3.6 then T has a 2-
isometric lifting S on K ⊃ H such that S∗SH ⊂ H and ∆S|K⊖H = δ2P for an orthogonal
projection P and a scalar δ > 0.

Regarding the operators T̃ and A from Theorem 3.4 we give some additional properties.

Proposition 3.1. Let T ∈ B(H) having a Brownian unitary dilation B on K̃ = H′⊕H⊕K′ with
∥∆B∥ > 0, and let T̃ = PMB|M and A = PMPN (∆B)|M where M = H ⊕ K′. The following
statements hold.
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(i) If N (A) ̸= {0} then T̃ is a PN (A)-contraction. In this case, either H ⊂ R(A) and then
T̃ |R(A)

is an extension for T , or T is an A1-contraction with A1 = PHPN (A)|H and

N (A1) = H ∩R(A).
(ii) If R(A) is closed and N (A) ̸= {0} then T (respectively T |N (A1)) is similar to a contrac-

tion if A1 = 0 (respectively if N (A1) ̸= {0}).

Proof. (i). Assume that N (A) ̸= {0}. Then using the block matrix (3.7) we get T̃ ∗PN (A)T̃ ≤
PN (A), that is T̃ is a PN (A)-contraction. Let A1 = PHPN (A)|H. Clearly, A1 = 0 if and only if
PN (A)H = {0} i.e. H ⊂ R(A). In this case, as T̃ is an extension of T and R(A) is invariant
for T̃ , it follows that T̃ |R(A)

is an extension for T . If A1 ̸= 0 then using the triangulations

of T̃ and PN (A) under the decomposition M = H⊕K′ we get relations of the form(
T ∗A1T ⋆

⋆ ⋆

)
= T̃ ∗PN (A)T̃ ≤ PN (A) =

(
A1 ⋆
⋆ ⋆

)
,

whence one infers that T ∗A1T ≤ A1, that is T is an A1-contraction. In this case it is
obvious that N (A1) = H ∩R(A).

(ii). Assume that R(A) is closed and N (A) ̸= {0}. If A1 ̸= 0 then T is an A1-contraction
(by (i)), so N (A1) is invariant for T . In this case we have that N (A1) = H∩R(A), therefore
T |N (A1) = T̃ |N (A1) = B0|N (A1), where B0 = T̃ |R(A) as in (3.7). Since B0 is similar to a
contraction (by Theorem 3.4 (ii)) it follows that T |N (A1) is similar to a contraction.

In the case when A1 = 0 we have H ⊂ R(A), so T = B0|H and (as above) T will be
similar to a contraction. □

Remark 3.2. If T, T̃ and A are as in Theorem 3.4 then the A-contraction T̃ ∗ is a lifting for
T ∗ having a triangulation

(3.11) T̃ ∗ =

(
V1 B∗

1

0 B∗
0

)
under M = N (A) ⊕ R(A), where V1 is an isometry. But when N (A) ̸= {0} it is not
contained in N (∆T̃∗), where ∆T̃∗ = T̃ T̃ ∗ − I has the decomposition

∆T̃∗ =

(
0 V ∗

1 B
∗
1

B1V1 B1B
∗
1 +B0B

∗
0 − I

)
.

In fact we have B1V1k ̸= 0 for 0 ̸= k ∈ N (A). Indeed, for such k we obtain from the proof
of Theorem 3.4 the relations

B1V1k = PR(A)
BB∗k = PR(A)

∆B∗k = δEU∗k.

Here for the last equality we used the triangulation of the Brownian unitary B from (3.9)
with E an isometry and U unitary. Thus B1V1k ̸= 0 for k ̸= 0, which shows that N (A) ̸⊂
N (∆T̃∗).

Remark 3.3. Even under the condition S∗SH ⊂ H (as in Theorem 3.6) it can be seen
that B∗

0B1 ̸= 0 in (3.11), considering that A ̸= 0 (by Theorem 3.4). In this case B0 is a
contraction (as we noted earlier), so T̃ has a triangulation of the form (2.2), where B0 and
B1 satisfy the condition (2.3), more general than B∗

0B1 = 0.
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