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On certain boundary value problems associated to some
fractional integro-differential inclusions

AURELIAN CERNEA

ABSTRACT. Two classes of fractional integro-differential inclusions with certain boundary conditions are
studied. The existence of solutions is established in the case when the set-valued map has nonconvex values.

1. INTRODUCTION

In this note we are considering the following boundary value problems. First we con-
sider a fractional integro-differential inclusion defined by Caputo fractional derivative

(1.1) Dβ2

C x(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, 1])

with boundary conditions of the form

(1.2) x(ν) = x′(0) = ... = x(n−2)(0) = 0, Iβ1x(1) = 0,

where Dq
C is the Caputo fractional derivative of order q, β1 > 0, n − 1 < β2 ≤ n, n ≥ 3,

n ∈ N, ν ∈ (0, 1), Ip is the Riemann-Liouville fractional integral of order p, F : [0, 1]×R×
R → P(R) is a set-valued map and V : C([0, 1],R) → C([0, 1],R) is a nonlinear Volterra
integral operator defined by V (x)(t) =

∫ t

0
k(t, s, x(s))ds with k(., ., .) : [0, 1]×R×R → R

a given function. We note that the fractional derivative introduced by Caputo in [3] and
afterwards adopted in the theory of linear visco elasticity allows to use Cauchy conditions
which have physical meanings.

Next we consider the problem

(1.3) Dα,β
H x(t) ∈ F (t, x(t), V (x)(t)) a.e. ([0, 1])

with boundary conditions of the form

(1.4) x(0) = 0, x(1) =

m∑
i=1

δiI
φix(ξi),

where Dα,β
H is the Hilfer fractional derivative of order α ∈ (1, 2) and type β ∈ [0, 1],

0 < ξi < 1, δi ∈ R, φi > 0, i = 1, 2, ...,m, F and V are as above.
Our study is motivated by some recent papers. Namely, in [16] an existence result for

problem (1.1)-(1.2) may be found in the case when F does not depends on the last variable
and is upper semicontinuous with compact convex values. Also, in the case when F
does not depends on the last variable several existence results for problem (1.3)-(1.4) are
provided in [17]. All the results in [16, 17] are proved by using several suitable theorems
from fixed point theory.
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Our goal is to obtain the existence of solutions for problems (1.1)-(1.2) and (1.3)-(1.4)
in the case when the set-valued map F has nonconvex values but it is assumed to be
Lipschitz in the second and third variable. Our results use Filippov’s techniques ([9]);
namely, the existence of solutions is obtained by starting from a given ”quasi” solution.
In addition, the result provides an estimate between the ”quasi” solution and the solution
obtained.

Our results extend or improve some existence theorems in [16, 17] in the case when the
right-hand side is Lipschitz in the second variable as one can see later. Moreover, these
results may be regarded as generalizations to the case when the right-hand side contains
a nonlinear Volterra integral operator. Even if the method we use here is known in the
theory of differential inclusions (e.g., [4, 5, 6, 7] etc.) it is largely ignored by the authors
that are dealing with such problems in favor of fixed point approaches, most probably,
because it is much easier to handle the applications of classical fixed point theorems.

Finally, we recall that the recent literature is full of motivations for considering systems
defined by fractional order derivatives (see [2, 8, 12, 14, 15] etc.).

The paper is organized as follows: in Section 2 we recall some preliminary results that
we need in the sequel and in Section 3 we prove our main results.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the closed
subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
Let I = [0, 1], we denote by C(I,R) the Banach space of all continuous functions from I

to R with the norm ||x(.)||C = supt∈I |x(t)| and L1(I,R) is the Banach space of integrable
functions u(.) : I → R endowed with the norm ||u(.)||1 =

∫ T

0
|u(t)|dt.

The fractional integral of order α > 0 of a Lebesgue integrable function f : (0,∞) → R is
defined by

Iαf(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)
Gamma function defined by Γ(α) =

∫∞
0

tα−1e−tdt.
The Riemann-Liouville fractional derivative of order α > 0 of a Lebesgue integrable function

f : (0,∞) → R is defined by

Dαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)−α+n−1f(s)ds,

where n = [α] + 1, provided the right-hand side is pointwise defined on (0,∞).
The Caputo fractional derivative of order α > 0 of a function f : [0,∞) → R is defined by

Dα
Cf(t) =

1

Γ(n− α)

∫ t

0

(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable whose n-th
derivative is absolutely continuous.

A generalization of both Riemann-Liouville and Caputo derivatives was introduced by
Hilfer in [10].
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The Hilfer fractional derivative of order α ∈ (n − 1, n) and type β ∈ [0, 1] of a function
f : (0,∞) → R is defined by

Dα,β
H f(t) = Iβ(n−α) d

n

dtn
I(1−β)(n−α)f(t)

In fact, this derivative interpolates between Riemann-Liouville and Caputo derivatives.
When β = 0 the Hilfer fractional derivative gives Riemann-Liouville fractional derivative
Dα,0

H f(t) = dn

dtn I
n−αf(t) and when β = 1 the Hilfer fractional derivative gives Caputo

fractional derivative Dα,1
H f(t) = In−α dn

dtn f(t). Several properties and applications of Hil-
fer fractional derivative may be found in [11].

Lemma 2.1. ([13]) Let ν ∈ (0, 1) with νn−1 ̸= Γ(n)/(β1 + n− 1)...(β1 + 1), β1 > 0, n− 1 <

β2 ≤ n, n ≥ 3, n ∈ N and h(.) ∈ C(I,R). Then, the solution of problem Dβ2

C x(t) = h(t) with
boundary conditions (1.2) is given by

(2.5)
x(t) = 1

Γ(β2)

∫ t

0
(t− s)β2−1h(s)ds− 1

Γ(β2)

∫ ν

0
(ν − s)β2−1h(s)ds+ (νn−1−

tn−1)Q[ 1
Γ(β1+β2)

∫ 1

0
(1− s)β1+β2−1h(s)ds− 1

Γ(β1+1)Γ(β2)

∫ ν

0
(ν − s)β2−1h(s)ds],

where Q = Γ(β1 + n)/[Γ(n)− νn−1(β1 + n− 1)...(β1 + 1)].

By definition a function x(.) ∈ C(I,R) is called a solution of a problem (1.1)-(1.2) if
there exists h(.) ∈ L1(I,R) such that h(t) ∈ F (t, x(t), V (x)(t)) a.e. (I) and x(.) is given by
(2.5)

Remark 2.1. If we denote

G1(t, s) = (νn−1 − tn−1)Q 1
Γ(β1+β2)

(1− s)β1+β2−1 + 1
Γ(β2)

(t− s)β2−1χ[0,t](s)−
1

Γ(β2)
(ν − s)β2−1χ[0,ν](s)[1 +

(νn−1−tn−1)Q
Γ(β1+1) ],

where χA(.) denotes the characteristic function of the set A, then the solution x(.) in (2.5)
may be put as x(t) =

∫ 1

0
G1(t, s)h(s)ds.

Moreover, for any t, s ∈ I

|G1(t, s)| ≤
(1 + νn−1)|Q|
Γ(β1 + β2)

+
1

Γ(β2)
+

νβ2−1

Γ(β2)
[1 +

(1 + νn−1)|Q|
Γ(β1 + 1)

] =: M1

Lemma 2.2. ([17]) Let α ∈ (1, 2), β ∈ [0, 1], γ = α + 2β − αβ, 0 < ξi < 1, δi ∈ R, φi > 0,

i = 1, 2, ...,m with Λ =
∑m

i=1
δiξ

γ+φi−1

i

Γ(γ+φi)
− 1

Γ(γ) ̸= 0 and h(.) ∈ C(I,R). Then, the solution of

problem Dα,β
H x(t) = h(t) with boundary conditions (1.4) is given by

(2.6) x(t) =
tγ−1

ΛΓ(γ)
(Iαh(1)−

m∑
i=1

δiI
α+φ1h(ξi)) + Iαh(t).

By definition a function x(.) ∈ C(I,R) is called a solution of a problem (1.3)-(1.4) if
there exists h(.) ∈ L1(I,R) such that h(t) ∈ F (t, x(t), V (x)(t)) a.e. (I) and x(.) is given by
(2.6)

Remark 2.2. If we denote

G2(t, s) =
tγ−1(1− s)α−1

ΛΓ(γ)Γ(α)
−

m∑
i=1

tγ−1(ξi − s)α+φi−1δiχ[0,ξi](s)

ΛΓ(γ)Γ(α+ φi)
+

(t− s)α−1χ[0,t](s)

Γ(α)

then the solution x(.) in (2.6) may be set as x(t) =
∫ 1

0
G2(t, s)h(s)ds.
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At the same time, for any t, s ∈ I

|G2(t, s)| ≤
1

Γ(α)
(

1

|Λ|Γ(γ)
+ 1) +

m∑
i=1

ξα+φi−1
i |δi|

|Λ|Γ(γ)Γ(α+ φi)
=: M2.

3. MAIN RESULTS

We need a variant of Kuratowski and Ryll-Nardzewski selection theorem concerning
measurable set-valued maps.

Lemma 3.3. ([1]) Consider X a separable Banach space, B is the closed unit ball in X , H :
I → P(X) is a set-valued map with nonempty closed values and g : I → X,L : I → R+ are
measurable functions. If

H(t) ∩ (g(t) + L(t)B) ̸= ∅ a.e.(I),

then the set-valued map t → H(t) ∩ (g(t) + L(t)B) has a measurable selection.

In order to prove our results we need the following hypotheses.

Hypothesis H1. i) F (., .) : I × R × R → P(R) has nonempty closed values and is L(I) ⊗
B(R×R) measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I, F (t, ., .) is L(t)-Lipschitz
in the sense that

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(|x1 − x2|+ |y1 − y2|) ∀ x1, x2, y1, y2 ∈ R.

iii) k(., ., .) : I×R×R → R is a function such that ∀x ∈ R, (t, s) → k(t, s, x) is measurable.
iv) |k(t, s, x)− k(t, s, y)| ≤ L(t)|x− y| a.e. (t, s) ∈ I × I, ∀x, y ∈ R.

We use next the following notations

M(t) := L(t)(1 +

∫ t

0

L(u)du), t ∈ I, K0 =

∫ T

0

M(t)dt.

Theorem 3.1. Let ν ∈ (0, 1) with νn−1 ̸= Γ(n)/(β1+n−1)...(β1+1), β1 > 0, n−1 < β2 ≤ n,
n ≥ 3, n ∈ N. Assume that Hypothesis H1 is satisfied and M1K0 < 1. Let y(.) ∈ C(I,R) be
such that y(ν) = y′(0) = ... = y(n−2)(0) = 0, Iβ1y(1) = 0 and there exists p(.) ∈ L1(I,R+)

with d(Dβ2

C y(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. (I).
Then there exists x(.) : I → R a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)− y(t)| ≤ M1

1−M1K0
||p(.)||1.

Proof. The set-valued map t → F (t, y(t), V (y)(t)) is measurable with closed values and

F (t, y(t), V (y)(t)) ∩ {Dβ2

C y(t) + p(t)[−1, 1]} ≠ ∅ a.e. (I).

From Lemma 3.3 there exists a measurable selection h1(t) ∈ F (t, y(t), V (y)(t)) a.e. (I)
such that

(3.7) |h1(t)−Dβ2

C y(t)| ≤ p(t) a.e. (I)

Define x1(t) =
∫ 1

0
G1(t, s)h1(s)ds and one has

|x1(t)− y(t)| ≤ M1

∫ 1

0

p(t)dt.
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We construct two sequences xn(.) ∈ C(I,R), hn(.) ∈ L1(I,R), n ≥ 1 with the following
properties

(3.8) xn(t) =

∫ 1

0

G1(t, s)hn(s)ds, t ∈ I,

(3.9) hn(t) ∈ F (t, xn−1(t), V (xn−1)(t)) a.e. (I),

(3.10) |hn+1(t)− hn(t)| ≤ L(t)(|xn(t)− xn−1(t)|+
∫ t

0

L(s)|xn(s)− xn−1(s)|ds) a.e. (I)

If this is done, then from (3.7)-(3.10) we have for almost all t ∈ I

|xn+1(t)− xn(t)| ≤ M1(M1K0)
n

∫ 1

0

p(t)dt ∀n ∈ N.

Indeed, assume that the last inequality is true for n− 1 and we prove it for n. One has

|xn+1(t)− xn(t)| ≤
∫ 1

0
|G1(t, t1)|.|hn+1(t1)− hn(t1)|dt1 ≤

M1

∫ 1

0
L(t1)[|xn(t1)− xn−1(t1)|+

∫ t1
0

L(s)|xn(s)− xn−1(s)|ds]dt1 ≤
M1

∫ 1

0
L(t1)(1 +

∫ t1
0

L(s)ds)dt1.M
n
1 K

n−1
0

∫ 1

0
p(t)dt = M1(M1K0)

n
∫ 1

0
p(t)dt.

Therefore {xn(.)} is a Cauchy sequence in the Banach space C(I,R), hence converging
uniformly to some x(.) ∈ C(I,R). Hence, by (3.10), for almost all t ∈ I , the sequence
{hn(t)} is Cauchy in R. Let h(.) be the pointwise limit of hn(.).

At the same time, one has

(3.11)
|xn(t)− y(t)| ≤ |x1(t)− y(t)|+

∑n−1
i=1 |xi+1(t)− xi(t)| ≤ M1

∫ 1

0
p(t)dt+∑n−1

i=1 (M1

∫ 1

0
p(t)dt)(M1K0)

i ≤ M1

∫ 1
0
p(t)dt

1−M1K0
.

On the other hand, from (3.7), (3.10) and (3.11) we obtain for almost all t ∈ I

|hn(t)−Dβ2

C y(t)| ≤
n−1∑
i=1

|hi+1(t)− hi(t)|+ |h1(t)−Dβ2

C y(t)| ≤ L(t)
M1

∫ 1

0
p(t)dt

1−M1K0
+ p(t).

Hence the sequence hn(.) is integrably bounded and therefore h(.) ∈ L1(I,R).
Using Lebesgue’s dominated convergence theorem and taking the limit in (3.8), (3.9)

we deduce that x(.) is a solution of (1.1)-(1.2). Finally, passing to the limit in (3.11) we
obtained the desired estimate on x(.).

It remains to construct the sequences xn(.), hn(.) with the properties in (3.8)-(3.10). The
construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we already con-
structed xn(.) ∈ C(I,R) and hn(.) ∈ L1(I,R), n = 1, 2, ...N satisfying (3.8), (3.10) for
n = 1, 2, ...N and (3.9) for n = 1, 2, ...N −1. The set-valued map t → F (t, xN (t), V (xN )(t))

is measurable. Moreover, the map t → L(t)(|xN (t)−xN−1(t)|+
∫ t

0
L(s)|xN (s)−xN−1(s)|ds)

is measurable. By the lipschitzianity of F (t, .) we have that for almost all t ∈ I

F (t, xN (t), V (xN )(t)) ∩ {hN (t) + L(t)(|xN (t)− xN−1(t)|+
∫ t

0
L(s)|xN (s)−

xN−1(s)|ds)[−1, 1]} ≠ ∅.
Lemma 3.3 yields that there exist a measurable selection hN+1(.) of F (., xN (.), V (xN )(.))
such that for almost all t ∈ I

|hN+1(t)− hN (t)| ≤ L(t)(|xN (t)− xN−1(t)|+
∫ t

0

L(s)|xN (s)− xN−1(s)|ds).

We define xN+1(.) as in (3.8) with n = N + 1. Thus fN+1(.) satisfies (3.9) and (3.10) and
the proof is complete. □
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Corollary 3.1. Let ν ∈ (0, 1) with νn−1 ̸= Γ(n)/(β1+n−1)...(β1+1), β1 > 0, n−1 < β2 ≤ n,
n ≥ 3, n ∈ N. Assume that Hypothesis H1 is satisfied, d(0, F (t, 0, 0) ≤ L(t) a.e. (I) and
M1K0 < 1. Then there exists x(.) a solution of problem (1.1)-(1.2) satisfying for all t ∈ I

|x(t)| ≤ M1

1−M1K0
||L(.)||1.

Proof. It is enough to take y(.) = 0 and p(.) = L(.) in Theorem 3.1. □

If F does not depend on the last variable, Hypothesis H1 becames

Hypothesis H2. i) F (., .) : I × R → P(R) has nonempty closed values and is L(I) ⊗ B(R)
measurable.

ii) There exists L(.) ∈ L1(I, (0,∞)) such that, for almost all t ∈ I , F (t, .) is L(t)-Lipschitz in
the sense that

dH(F (t, x1), F (t, x2)) ≤ L(t)|x1 − x2| ∀ x1, x2 ∈ R.

Denote L0 =
∫ T

0
L(t)dt.

Corollary 3.2. Let ν ∈ (0, 1) with νn−1 ̸= Γ(n)/(β1+n−1)...(β1+1), β1 > 0, n−1 < β2 ≤ n,
n ≥ 3, n ∈ N. Assume that Hypothesis H2 is satisfied, d(0, F (t, 0)) ≤ L(t) a.e. (I) and
M1L0 < 1. Then there exists x(.) a solution of the fractional differential inclusion

(3.12) Dβ2

C x(t) ∈ F (t, x(t)) a.e. (I),

with boundary conditions (1.2) satisfying for all t ∈ I |x(t)| ≤ M1L0

1−M1L0
.

Remark 3.3. An existence result for problem (3.12)-(1.2) is obtained in [16] under the hy-
pothesis that F (., .) is upper semicontinuous with compact convex values. On one hand,
our Corollary 3.2 provides an existence result for problem (3.12)-(1.2) under a hypothesis
that avoids the convexity and, on the other hand, Theorem 3.1 above extends the study in
[16] to the more general problem (1.1)-(1.2) where the right hand side contains a nonlinear
Volterra integral operator.

The proof of the next theorem is similar to the proof of Theorem 3.1.

Theorem 3.2. Let α ∈ (1, 2), β ∈ [0, 1], γ = α + 2β − αβ, 0 < ξi < 1, δi ∈ R, φi > 0,

i = 1, 2, ...,m with Λ =
∑m

i=1
δiξ

γ+φi−1

i

Γ(γ+φi)
− 1

Γ(γ) ̸= 0. Assume that Hypothesis H1 is satisfied and
M2K0 < 1. Let y(.) ∈ C(I,R) be such that y(0) = 0, y(1) =

∑m
i=1 δiI

φiy(ξi) and there exists
p(.) ∈ L1(I,R) with d(Dα,β

H y(t), F (t, y(t), V (y)(t))) ≤ p(t) a.e. (I).
Then there exists x(.) : I → R a solution of problem (1.3)-(1.4) satisfying for all t ∈ I

(3.13) |x(t)− y(t)| ≤ M2

1−M2K0
||p(.)||1.

Remark 3.4. If F (., ., .) does not depend on the last variable and y(.) = 0 a similar result to
the one in Theorem 3.2 may be found in [17]; namely, Theorem 2. The proof of Theorem 2
in [17] is done by using the set-valued contraction principle. Our approach improves the
hypothesis concerning the set-valued map in [17]. More exactly, we do not require for the
values of F to be compact as in [17] and we do not require that the Lipschitz constant of F
to be a mapping from C(I,R) as in [17]. Moreover, Theorem 2 in [17] does not contains a
priori bounds for solutions as in (3.13). As an example we consider the following problem

D
3
2 ,

1
2

H x(t) ∈ F (t, x(t)) a.e. [0, 1],

with boundary conditions

x(0) = 0, x(1) =
2

3
I

1
2x(

1

2
) +

3

4
I

3
2x(

3

4
),



On certain boundary value problems associated to some fractional integro-differential inclusions 661

where

F (t, x) =

{
[− |x|

a(1+|x|) , 0] if t ∈ [0, 1
2 ],

[0, | cos(x)|
(a+1)(1+| cos(x)|) ] if t ∈ [ 12 , 1].

Thus, α = 3
2 , β = 1

2 , γ = 7
4 , m = 2, δ1 = 2

3 , δ2 = 3
4 , ξ1 = 1

2 , ξ2 = 3
4 , φ1 = 1

2 , φ2 = 3
2 ,

Λ = 1

3·2
1
4 Γ( 9

4 )
+ 3

5
4

4
13
4 Γ( 13

4 )
− 1

Γ( 7
4 )

and M2 = 1
Γ( 3

2 )
+ 1

|Λ|Γ( 3
2 )Γ(

7
4 )

+ 1
3|Λ|Γ(2)Γ( 7

4 )
+ 27

64|Λ|Γ(3)Γ( 7
4 )

.

The Lipschitz constant of F (t, .) is

L(t) =

{
1
a , t ∈ [0, 1

2 ],
1

a+1 , t ∈ [ 12 , 1].

It is enough to choose a > M2 in order to deduce the existence of solutions for the problem
considered.
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[3] Caputo, M. Elasticità e Dissipazione. Zanichelli, Bologna, 1969.
[4] Cernea, A. Filippov lemma for a class of Hadamard-type fractional differential inclusions. Fract. Calc. Appl.

Anal. 18 (2015), 163–171.
[5] Cernea, A. On a fractional integro-differential inclusion of Caputo-Katugampola type. Bull. Math. Anal.

Appl. 11 (2019), 22–27.
[6] Cernea, A. On some fractional integro-differential inclusions with Erdélyi-Kober fractional integral bound-
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