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ABSTRACT. The aim of this paper is to provide new characterizations for polynomial dichotomies of discrete
nonautonomous systems on the half-line. First, we establish equivalent structures for the ranges of projections
for a polynomial dichotomy with respect to a sequence of norms. Next, we establish the connections between
polynomial dichotomies and other dichotomic behaviors. We obtain for the first time a characterization of
polynomial dichotomy with respect to a sequence of norms in terms of ordinary dichotomy and exponential
dichotomy of suitable systems with respect to well-chosen sequences of norms. The results are obtained in the
most general case, without any additional assumptions regarding the coefficients of the underlying systems.

1. INTRODUCTION

The notion of exponential dichotomy introduced in late twenties (see Perron [47, 48])
plays an important role in the asymptotic theory of nonautonomous dynamical systems.
It essentially corresponds to assuming the existence of an exponential contraction and
expansion along complementary directions. For detailed expositions on various aspects
of this theory and related studies we refer chronologically to monographs that substan-
tially marked the foundations of this area - see Massera and Schäffer [35], Daleckı̆i and
Kreı̆n [23], Coppel [22], Henry [33] and also to some remarkable books from the last
decades - see Chicone and Latushkin [18], Palmer [46], Elaydi [28], Pötzsche [51], Kloe-
den and Rasmussen [34], Barreira, Dragičević and Valls [6]. We emphasize that ever
since the nineties and especially during the recent years, the studies on exponential di-
chotomies significantly advanced. A large variety of methods were progressively brought
into attention, starting on the one hand from diverse characterizations of exponential di-
chotomies and their related applications and arriving on the other hand at thorough an-
alyzes regarding certain properties of systems that admit exponential dichotomies (see
[2–5, 9, 12–14, 19–21, 26, 29, 30, 36–39, 41–45, 49, 50, 52, 55–60, 62–68, 70, 72–75]).

Despite its importance, in some situations, the exponential dichotomy might be re-
garded as being restrictive, since it requires that the rates of contraction and expansion
along the stable and unstable directions are exponential. On the other hand, it is rela-
tively easy to construct broad classes of nonautonomous dynamics which admit a split-
ting into stable and unstable directions, but with non-exponential rates in describing sta-
bility and instability. Among many meaningful and useful concepts used to describe
this type of asymptotic behaviors, we particularly mention those of polynomial type
(see [7,8,10,11,15–17,24,25,31,32,40,53,54,69] and the references therein). The polynomial
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stability was studied in the autonomous case by Bátkai, Engel, Prüss and Schnaubelt in [8]
and later, from a different perspective, by Hai for evolution families in [31] and for skew-
evolution semiflows in [32]. The nonuniform polynomial dichotomy was introduced in
slightly different forms, independently, by Barreira and Valls in [7] and respectively by
Bento and Silva in [10, 11]. In contrast to the exponential dichotomy, the rates of con-
traction and expansion in the concept of polynomial dichotomy are of polynomial type.
Moreover, in the general case of nonuniform polynomial dichotomies, these rates are also
allowed to depend on the initial time.

In [24], Dragičević introduced (for nonautonomous dynamics in the discrete-time case)
the concept of polynomial dichotomy with respect to a sequence of norms and obtained
a characterization of this asymptotic property by means of a so-called admissibility con-
dition. The relevance of these results stem from the fact that the notion of polynomial
dichotomy with respect to a sequence of norms includes both the notions of polynomial
dichotomy and respectively of nonuniform polynomial dichotomy as particular cases.
For similar results in the case of continuous time dynamics, we refer to Dragičević [25].
Moreover, the polynomial dichotomies and their properties are also relevant in the con-
text of generalized dichotomies (see Silva [71]). In this framework, over the last decade,
many studies initiated and coordinated by Megan were devoted to polynomial behav-
iors (among we mention polynomial stabilities, polynomial instabilities, polynomial di-
chotomies). Most of these studies were focused on the connections between various con-
cepts (of stability, instability, dichotomy) and also on Datko or Barbashin type criteria for
diverse asymptotic properties of polynomial type (see [15–17, 40, 53, 54, 69] and the refer-
ences therein).

Some important technical aspects that occur when one explores an asymptotic prop-
erty such as dichotomy, trichotomy or exponential (forward) splitting is related to the
families of projections with respect to which one describes that behavior. We recall that
on the one hand, it is of interest to establish the structure of the potential candidates
for projections and, on the other hand, one should investigate whether the families of
projections are unique or not. The studies on these matters were developed from var-
ious perspectives (see Aulbach and Kalkbrenner [1], Aulbach, Minh and Zabreiko [2],
Barreira, Dragičević and Valls [5], Battelli, Franca and Palmer [9], Chow and Yi [19],
Chow and Leiva [20, 21], Dragičević, Sasu and Sasu [26], Kloeden and Rasmussen [34],
Megan, Sasu and Sasu [36–38], Minh, Räbiger and Schnaubelt [41], Minh and Huy [42],
Palmer [44, 45], Pötzsche [51], Pliss and Sell [50], Sacker and Sell [55], Sasu [56], Sasu,
Babuţia and Sasu [63], Sasu and Sasu [57–62, 64–68], Zhou, Lu and Zhang [72], Zhou
and Zhang [73, 75]). We stress that depending on the method, sometimes it is impor-
tant to establish the structure of the (initial) stable subspace(s) (see Sasu [56], Sasu and
Sasu [57, 62, 65], Sasu, Babuţia and Sasu [63]), in some cases it is necessary to study the
projections uniqueness (see Battelli, Franca and Palmer [9], Megan, Sasu and Sasu [37,38],
Sasu and Sasu [58, 61, 65, 66, 68]) and, if so, in certain situations it is natural to give suit-
able descriptions of the ranges and/or of the kernels of the dichotomy (or trichotomy)
projections in every moment by means of trajectories (see Battelli, Franca and Palmer [9],
Megan, Sasu and Sasu [37,38], Sasu and Sasu [58–60,64–68], Zhou and Zhang [75] and the
references therein).

Thus, in the case of the uniform asymptotic behaviors the studies advanced signifi-
cantly, while in the nonuniform setting there still are open questions to be answered. For
instance, it turned out that the projections for uniform exponential dichotomy or uniform
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exponential trichotomy of nonautonomous systems on the whole line are uniquely de-
termined and so they are in the case of variational systems over flows (see e.g. Megan,
Sasu and Sasu [37, 38], Sasu and Sasu [58–61, 66–68] and the details provided therein).
But, when exploring a uniform exponential dichotomy of nonautonomous systems on
the (positive) half-line, one can determine only the expression of the ranges of the pro-
jections, because in this case, in general, the dichotomy projections are not unique (see
for instance Minh, Räbiger and Schnaubelt [41], Sasu and Sasu [62, 65]). For all that, it is
worth mentioning that the situation is different in the autonomous case, in which, even
on the half-line, both the range and the kernel of the dichotomy projection for exponential
dichotomy can be determined and so the projection is unique (see Sasu and Sasu [64]).

In this framework, it should be emphasized that even when a family of projections
(for dichotomy or trichotomy) is unique, their ranges and kernels can be expressed in di-
verse equivalent forms (see Sasu and Sasu [59, 60, 66, 68]). A new and interesting study
regarding the dichotomy projections that completely treated both the case of the exponen-
tial dichotomy on the half-line(s) and also the exponential dichotomies on the whole line
was presented by Battelli, Franca and Palmer in [9]. In the case of the uniform exponen-
tial dichotomy with respect to a sequence (and respectively to a family) of norms, on the
whole line, the structure of the dichotomy projections was obtained by Zhou and Zhang
in [75]. An important contribution in exploring the structure of the ranges and kernels of
projections in the case of nonuniform exponential dichotomies was brought by Zhou and
Zhang in [73]. In this context - of the progress made in this direction so far - a natural
question arises how can be represented the projections for a polynomial dichotomy with
respect to a sequence of norms that comes along with another question that concerns their
uniqueness.

As mentioned above, the majority of the studies regarding the polynomial behaviors
were devoted to Datko and Barbashin type criteria (see [15–17,32,40,53,54] and the refer-
ences therein), while the admissibility type methods have proved to be a challenging topic
that required distinct approaches and completely different techniques (see [24,25,31] and
the presentations therein). In order to further develop studies in this direction, based on
new admissibility properties among other topics, it would be necessary to establish new
connections between polynomial dichotomies and other dichotomy concepts for which
the admissibility methods are more advanced. We recall for instance that (especially in
the uniform case) exponential dichotomies (or trichotomies) of nonautonomous systems
for continuous time can be recovered from the homologous behaviors of some associated
discrete-time systems (see Henry [33], Megan, Sasu and Sasu [36], Palmer [46], Sasu and
Sasu [65–67], Zhou and Zhang [75]). Furthermore, these equivalences were also shown in
the variational case for both dichotomy and trichotomy (see Chow and Leiva [21], Megan,
Sasu and Sasu [37], Sasu and Sasu [61]). These kind of connections between asymptotic
behaviors - by considering information only at certain moments of time (that are sufficient
for making complete conclusions in describing a property) - lead to important applica-
tions as it was pointed out in [37, 61, 65, 66, 75], being particularly useful in admissibility
methods. Thus, coming back to the aim described above, a natural question is whether
a polynomial dichotomy of a system with respect to a family (or a sequence) of norms
could be ”recovered” from the dichotomic behavior of an associated system whose time
variable is ”rescaled”. In what follows one of our purposes will be to answer the questions
presented above.

The central aim of the present paper is to study the notion of polynomial dichotomy
with respect to a sequence of norms in the case of discrete nonautonomous systems and
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to provide new criteria for this asymptotic property. More precisely, we first explore the
structure of the dichotomy projections for a polynomial dichotomy on the half-line. We
prove that the associated stable directions are uniquely determined and we obtain their
various descriptions (see Theorem 2.1). Secondly, we study the connections between the
dichotomy notions - ordinary dichotomy, polynomial dichotomy, exponential dichotomy
with respect to sequences of norms. We show for the first time that the concept of poly-
nomial dichotomy with respect to a sequence of norms can be completely characterized
in terms of the notion of ordinary dichotomy with respect to a sequence of norms and the
notion of exponential dichotomy with respect to a sequence of norms, provided that this
is admitted by a suitable system and relative to a well-chosen sequence of norms (see The-
orem 3.1). This result is achieved by proving that the polynomial dichotomy of a nonau-
tonomous system can be (roughly speaking) related with an exponential dichotomy of an
associated rescaled system (subjected to a suitable ”renormalization” of time variable).
The results in this paper are obtained in the most general case, without making any ad-
ditional assumptions on the systems coefficients and without assuming any growth type
property for the propagators of the systems whose dichotomic properties are studied or
connected.

2. DICHOTOMIES WITH RESPECT TO SEQUENCES OF NORMS

In this section we present the dichotomy notions that will be considered in our study,
discuss some connections between them and explore the structure of the dichotomy pro-
jections for polynomial dichotomy with respect to a sequence of norms.

Denote by N = {1, 2, . . .} and by N0 = N ∪ {0}. Let Γ = {(m, k) ∈ N× N : m ≥ k}.

Let (X, ∥ · ∥) be an arbitrary Banach space. By B(X) we will denote the Banach algebra
of all bounded linear operators on X , equipped with the operator norm that we will also
denote by ∥ · ∥. By Id we denote the identity operator on X .

Let {A(n)}n∈N ⊂ B(X). Consider the nonautonomous system

(A) x(n+ 1) = A(n)x(n), n ∈ N

and the evolution family ΦA = {ΦA(m, k)}(m,k)∈Γ associated to (A) defined by

ΦA(m, k) =

{
A(m− 1) · · ·A(k), m > k

Id, m = k
.

We recall first the dichotomy notions. For more details and motivation we refer to
[4, 24, 65].

Let {∥ · ∥k}k∈N be an arbitrary but fixed sequence of norms on X such that ∥ · ∥k is
equivalent with ∥ · ∥, for each k ∈ N.

For every k ∈ N and every linear operator T : X → X we denote by

(2.1) ∥T∥k = inf {M ∈ (0,∞] : ∥Tx∥k ≤ M∥x∥k, ∀x ∈ X }.

Remark 2.1. Let k ∈ N. We note that:

(i) T ∈ B(X) if and only if ∥T∥k < ∞;
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(ii) ∥ · ∥k defined by (2.1) is a norm on B(X), which is equivalent with the operator
norm ∥ · ∥.

Definition 2.1. We say that (A) admits an ordinary dichotomy with respect to the sequence of
norms {∥ · ∥k}k∈N if there are a sequence of projections {P (k)}k∈N and K ≥ 1 such that:

(d1) A(k)P (k) = P (k + 1)A(k), for all k ∈ N;
(d2) sup

k∈N
∥P (k)∥k < ∞;

(d3) for every k ∈ N, A(k)| : KerP (k) → KerP (k + 1) is an isomorphism;
(d4) ∥ΦA(m, k)x∥m ≤ K ∥x∥k, for all x ∈ RangeP (k) and all (m, k) ∈ Γ;

(d5) ∥ΦA(m, k)y∥m ≥ 1

K
∥y∥k, for all y ∈ KerP (k) and all (m, k) ∈ Γ.

Remark 2.2. In the particular case ∥ · ∥k = ∥ · ∥, for all k ∈ N, in Definition 2.1 we obtain
the notion of ordinary dichotomy (see [65] and the references therein).

Remark 2.3. We note that
(i) property (d1) is equivalent to

ΦA(m, k)P (k) = P (m)ΦA(m, k), ∀(m, k) ∈ Γ;

(ii) property (d3) is equivalent to ΦA(m, k)| : KerP (k) → KerP (m) invertible, for all
(m, k) ∈ Γ.

Definition 2.2. We say that (A) admits an exponential dichotomy with respect to the sequence
of norms {∥ · ∥k}k∈N if there are a sequence of projections {P (k)}k∈N and N ≥ 1, ν > 0
such that properties (d1)− (d3) from Definition 2.1 are satisfied and furthermore:

(d′4) ∥ΦA(m, k)x∥m ≤ N e−ν(m−k) ∥x∥k, for all x ∈ RangeP (k) and all (m, k) ∈ Γ;

(d′5) ∥ΦA(m, k)y∥m ≥ 1

N
eν(m−k) ∥y∥k, for all y ∈ KerP (k) and all (m, k) ∈ Γ.

Remark 2.4. In the particular case ∥ · ∥k = ∥ · ∥, for all k ∈ N, in Definition 2.2 we obtain
the concept of exponential dichotomy (see [33] and the references therein).

Definition 2.3. We say that (A) admits a polynomial dichotomy with respect to the sequence of
norms {∥ · ∥k}k∈N if there are projections {P (k)}k∈N and L ≥ 1, δ > 0 such that properties
(d1)− (d3) from Definition 2.1 are satisfied and in addition:

(d′′4) ∥ΦA(m, k)x∥m ≤ L

(
m

k

)−δ

∥x∥k, for all x ∈ RangeP (k) and all (m, k) ∈ Γ;

(d′′5) ∥ΦA(m, k)y∥m ≥ 1

L

(
m

k

)δ

∥y∥k, for all y ∈ KerP (k) and all (m, k) ∈ Γ.

Remark 2.5. In the particular case ∥ · ∥k = ∥ · ∥, for all k ∈ N, in Definition 2.3 we obtain
the notion of polynomial dichotomy.

Remark 2.6. We note that in Definition 2.2 the assembly of relations (d2), (d′4) and (d′5)
can be expressed in equivalent form by

(d̃′4) ∥ΦA(m, k)P (k)x∥m ≤ K e−ν(m−k)∥x∥k, for all x ∈ X and all (m, k) ∈ Γ;

(d̃′5) ∥ΦA(m, k)−1
| (Id − P (m))y∥k ≤ K e−ν(m−k) ∥y∥m, for all y ∈ X and all (m, k) ∈ Γ
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for some constants K ≥ 1, ν > 0.
Similarly, in Definition 2.3 the assembly of relations (d2), (d′′4) and (d′′5) can be expressed

in equivalent form by

(d̃′′4) ∥ΦA(m, k)P (k)x∥m ≤ K
(m
k

)−δ

∥x∥k, for all x ∈ X and all (m, k) ∈ Γ;

(d̃′′5) ∥ΦA(m, k)−1
| (Id − P (m))y∥k ≤ K

(m
k

)−δ

∥y∥m, for all y ∈ X and all (m, k) ∈ Γ

for some constants K ≥ 1, δ > 0.

Here, for each (m, k) ∈ Γ, ΦA(m, k)−1
| denotes the inverse of ΦA(m, k)| : KerP (k) →

KerP (m).

Remark 2.7. The concept of polynomial dichotomy with respect to a sequence of norms
was introduced by Dragičević in [24]. The notion of ordinary dichotomy with respect
to a sequence of norms is defined for the first time in the present paper and the notion
of exponential dichotomy with respect to a sequence of norms was first presented and
studied by Barreira, Dragičević and Valls in [4].

One of the aims in what follows will be to establish characterizations for a polynomial
dichotomy based on the other two dichotomy notions (in the general case, i.e. with respect
to sequences of norms).

Remark 2.8. From Definitions 2.1-2.3 we deduce the following:

(i) if the system (A) admits a polynomial dichotomy with respect to the sequence of
norms {∥ · ∥k}k∈N, then (A) admits an ordinary dichotomy with respect to {∥ ·
∥k}k∈N (and the same sequence of projections);

(ii) since
m

k
≤ em−k, ∀(m, k) ∈ Γ

if (A) admits an exponential dichotomy with respect to the sequence of norms
{∥ · ∥k}k∈N, then (A) admits a polynomial dichotomy with respect to {∥ · ∥k}k∈N
(and the same sequence of projections).

In particular:

(i′) if (A) admits a polynomial dichotomy, then (A) admits an ordinary dichotomy
(with the same projections);

(ii′) if (A) admits an exponential dichotomy, then (A) admits a polynomial dichotomy
(with the same projections).

The first aim is to explore the structure of the projections for polynomial dichotomy
with respect to sequences of norms. The following result provides equivalent expressions
of the stable subspaces for a polynomial dichotomy.

Theorem 2.1. If (A) admits a polynomial dichotomy with respect to the sequence of norms
{∥ · ∥k}k∈N relative to a sequence of projections {P (k)}k∈N, then there exists r ∈ (1,∞) such that
for every k ∈ N we have

RangeP (k) = {x ∈ X : sup
j≥k

∥ΦA(j, k)x∥j < ∞}

= {x ∈ X : lim
j→∞

∥ΦA(j, k)x∥j = 0}

= {x ∈ X :

∞∑
j=k

∥ΦA(j, k)x∥pj < ∞}, ∀p ∈ (r,∞).
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Proof. Let L ≥ 1 and δ > 0 be given by Definition 2.3. Then

(2.2) ∥ΦA(m, k)x∥m ≤ L
(m
k

)−δ

∥x∥k, ∀x ∈ RangeP (k),∀(m, k) ∈ Γ

and

(2.3) ∥ΦA(m, k)y∥m ≥ 1

L

(m
k

)δ

∥y∥k, ∀y ∈ KerP (k),∀(m, k) ∈ Γ.

Let r = 1/δ and let p ∈ (r,∞).

Let k ∈ N be arbitrary but fixed. We denote by

X1(k) = {x ∈ X : sup
j≥k

∥ΦA(j, k)x∥j < ∞}

Y1(k) = {x ∈ X : lim
j→∞

∥ΦA(j, k)x∥j = 0}

and

Zp
1 (k) = {x ∈ X :

∞∑
j=k

∥ΦA(j, k)x∥pj < ∞}.

Let x ∈ RangeP (k). Using (2.2) we observe that

∥ΦA(j, k)x∥pj ≤ (Lkδ∥x∥k)p
1

jpδ
, ∀j ≥ k.

This shows that x ∈ Zp
1 (k), so Range P (k) ⊂ Zp

1 (k). It follows that

(2.4) Range P (k) ⊂ Zp
1 (k) ⊂ Y1(k) ⊂ X1(k).

Let now x ∈ X1(k). Then

λ := sup
j≥k

∥ΦA(j, k)x∥j < ∞.

Setting u = P (k)x and v = (Id − P (k))x, from (2.2) and (2.3) we deduce that

jδ

Lkδ
∥v∥k ≤ ∥ΦA(j, k)v∥j ≤ ∥ΦA(j, k)x∥j + ∥ΦA(j, k)u∥j ≤ λ+ L∥u∥k, ∀j ≥ k

which implies that

(2.5) ∥v∥k ≤ Lkδ(λ+ L∥u∥k)j−δ, ∀j ≥ k.

Letting j → ∞ in (2.5) we obtain that v = 0. So x = u ∈ RangeP (k). This shows that

(2.6) X1(k) ⊂ RangeP (k).

From (2.4) and (2.6) it yields that

Range P (k) = Zp
1 (k) = Y1(k) = X1(k)

and the proof is complete. □
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Corollary 2.1. If (A) admits a polynomial dichotomy with respect to a sequence of projections
{P (k)}k∈N, then there exists r ∈ (1,∞) such that for every k ∈ N we have

RangeP (k) = {x ∈ X : sup
j≥k

∥ΦA(j, k)x∥ < ∞}

= {x ∈ X : lim
j→∞

ΦA(j, k)x = 0}

= {x ∈ X :

∞∑
j=k

∥ΦA(j, k)x∥p < ∞}, ∀p ∈ (r,∞).

Proof. This immediately follows from Theorem 2.1, for ∥ · ∥k = ∥ · ∥, for all k ∈ N. □

Remark 2.9. The representations of the ranges of projections given by Theorem 2.1 (and
respectively by Corollary 2.1) hold true also for the weaker concepts of polynomial di-
chotomies for which the property (d2) is dropped (i.e. without being necessary to assume
the uniform boundedness of projections).

Based on the previous theorem we can show that, in general, the converse implications
in the statements from Remark 2.8 (i), (ii) and respectively (i′), (ii′) do not hold true.

Example 2.1. Let X = R2 with ||(x1, x2)|| = max{|x1|, |x2|}.

For k ∈ N and (x1, x2) ∈ X , let

A(k)(x1, x2) = (esin(k+1)−sin kx1, e
cos k−cos(k+1)x2)

and
P (k)(x1, x2) = (x1, 0).

Then we note that

(2.7) ΦA(m, k)(x1, x2) = (esinm−sin kx1, e
cos k−cosmx2), ∀(m, k) ∈ Γ.

We observe that (A) admits an ordinary dichotomy with respect to the sequence of pro-
jections {P (k)}k∈N.

We show that (A) does not admit a polynomial dichotomy.

Suppose to the contrary that (A) admits a polynomial dichotomy with respect to a
sequence of projections {P̃ (k)}k∈N. By Corollary 2.1 we obtain that

(2.8) RangeP̃ (1) = {x ∈ X : sup
j≥1

∥ΦA(j, 1)x∥ < ∞}.

Let now L ≥ 1, δ > 0 be given by Definition 2.3. Then, in particular, we have

(2.9) ∥ΦA(m, 1)x∥ ≤ L

mδ
∥x∥, ∀x ∈ RangeP̃ (1),∀m ∈ N.

From (2.7) and (2.8) we have that u = (1, 0) ∈ RangeP̃ (1). Then, from (2.7) and (2.9) we
obtain

esinm−sin 1 = ∥ΦA(m, 1)u∥ ≤ L

mδ
, ∀m ∈ N

which yields a contradiction.

In conclusion, (A) does not admit a polynomial dichotomy.
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Example 2.2. Let X = R2 with ||(x1, x2)|| = max{|x1|, |x2|}.

For k ∈ N and (x1, x2) ∈ X , let

A(k)(x1, x2) =

(
k

k + 1
x1,

k + 1

k
x2

)
and

P (k)(x1, x2) = (x1, 0).

Then

(2.10) ΦA(m, k)(x1, x2) = (
k

m
x1,

m

k
x2), ∀(m, k) ∈ Γ.

We observe that (A) admits a polynomial dichotomy with the projections {P (k)}k∈N.

We show that (A) does not admit an exponential dichotomy.

Suppose to the contrary that (A) admits an exponential dichotomy with respect to a
sequence of projections {P̃ (k)}k∈N. By Remark 2.8 (ii’) and Corollary 2.1 we obtain that

(2.11) RangeP̃ (1) = {x ∈ X : sup
j≥1

∥ΦA(j, 1)x∥ < ∞}.

Let now N ≥ 1, ν > 0 be given by Definition 2.2. Then, in particular, we have that

(2.12) ∥ΦA(m, 1)x∥ ≤ Ne−ν(m−1)∥x∥, ∀x ∈ RangeP̃ (1),∀m ∈ N.

From (2.10) and (2.11) we deduce that u = (1, 0) ∈ RangeP̃ (1). Then, from (2.10) and (2.12)
we obtain

1

m
= ∥ΦA(m, 1)u∥ ≤ Ne−ν(m−1), ∀m ∈ N

which yields a contradiction.

In conclusion, (A) does not admit an exponential dichotomy.

Remark 2.10. Example 2.1 shows that in general the ordinary dichotomy does not im-
ply the polynomial dichotomy and Example 2.2 shows that in general the polynomial
dichotomy does not imply the exponential dichotomy. In conclusion, the converse impli-
cations in Remark 2.8 are not valid, not even in the classic case, when all the norms ∥ · ∥k
coincide with ∥ · ∥.

Even if the structures of the ranges of eligible projections are known via Theorem 2.1,
we emphasize that the sequence of projections for a polynomial dichotomy on the half-
line is not uniquely determined, as the next example shows:

Example 2.3. Let X = R2 with ||(x1, x2)|| = max{|x1|, |x2|}.

For k ∈ N and (x1, x2) ∈ X , let

A(k)(x1, x2) =

(
1

e
x1, e x2

)
.

Then

(2.13) ΦA(m, k)(x1, x2) = (e−(m−k)x1, e
m−kx2), ∀(m, k) ∈ Γ.

Let
X(k) = R× {0}, ∀k ∈ N.
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Let α ∈ [1,∞) be arbitrary. Let

Yα(k) = {(e−(k−1)ξ, αek−1ξ) : ξ ∈ R}, ∀k ∈ N.

Then, we observe that
X = X(k)⊕ Yα(k), ∀k ∈ N.

Then there exists a sequence of projections {Pα(k)}k∈N such that

RangePα(k) = X(k) and KerPα(k) = Yα(k), ∀k ∈ N.

It is easy to see that

(2.14) ∥ΦA(m, k)x∥ = e−(m−k)∥x∥, ∀x ∈ RangePα(k),∀(m, k) ∈ Γ

and

(2.15) ∥ΦA(m, k)y∥ = em−k∥y∥, ∀y ∈ KerPα(k),∀(m, k) ∈ Γ.

In addition, we note that

(2.16) ∥Pα(k)∥ = 1, ∀k ∈ N.

Using (2.14)-(2.16) we deduce that (A) admits an exponential dichotomy with respect
to {Pα(k)}k∈N. Thus, it admits a polynomial dichotomy and also an ordinary dichotomy
with respect to {Pα(k)}k∈N. Furthermore, these dichotomy properties are satisfied for
every α ∈ [1,∞).

In conclusion, the sequence of projections for (ordinary, exponential or polynomial)
dichotomy on the half-line is not unique.

Remark 2.11. We stress that Example 2.3 shows even more that there is an infinite number
of sequences of projections through which one can describe a dichotomic behavior on the
half-line. Thus, while one knows a priori the candidates for stable subspaces (as shown in
Theorem 2.1), the adequate choice of the initial unstable subspace plays an important role
in the studies devoted to dichotomies on the half-line (see [36,56,57,65] and the references
therein).

3. POLYNOMIAL DICHOTOMY IN TERMS OF ORDINARY AND EXPONENTIAL
DICHOTOMY

In this section, our aim is establish further the connections between the three dichotomy
notions introduced in Section 2, pointing out the way how the polynomial dichotomy
with respect to a sequence of norms can be expressed in terms of ordinary dichotomy
and exponential dichotomy of certain systems with respect to (well-chosen) sequences of
norms.

We maintain in what follows the framework (and all the notations) from Section 2.

Let now h ∈ N, h ≥ 2. We associate with the system (A) the following operators

(3.1) Qh(n) = ΦA(h
n, hn−1), ∀n ∈ N

and we consider the nonautonomous system

(Qh) y(n+ 1) = Qh(n)y(n), n ∈ N.
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Remark 3.1. If ΦQh = {ΦQh(m, k)}(m,k)∈Γ is the evolution family associated to (Qh), then

(3.2) ΦQh(m, k) = ΦA(h
m−1, hk−1), ∀(m, k) ∈ Γ.

We associate with the sequence of norms {∥·∥k}k∈N a new sequence of norms {∥·∥hk}k∈N
(that depend on h), given by

(3.3) ∥ · ∥hk := ∥ · ∥hk−1 , ∀k ∈ N.

For every k ∈ N and every operator T ∈ B(X) we consider

(3.4) ∥T∥hk := ∥T∥hk−1

where ∥ · ∥hk−1 is the operator norm introduced in Section 2 (see relation (2.1)).

The central result of this section is:

Theorem 3.1. The following assertions are equivalent:

(i) the system (A) admits a polynomial dichotomy with respect to the sequence of norms
{∥ · ∥k}k∈N;

(ii) (A) admits an ordinary dichotomy with respect to the sequence of norms {∥ · ∥k}k∈N
relative to a sequence of projections {P (k)}k∈N and for every h ∈ N, h ≥ 2, the system
(Qh) admits an exponential dichotomy with respect to the norms {∥ · ∥hk}k∈N relative to
the sequence of projections {Ph(k)}k∈N, where

(3.5) Ph(k) = P (hk−1), ∀k ∈ N;
(iii) (A) admits an ordinary dichotomy with respect to the sequence of norms {∥ · ∥k}k∈N

relative to a sequence of projections {P (k)}k∈N and there is h ∈ N, h ≥ 2 such that
the system (Qh) admits an exponential dichotomy with respect to the norms {∥ · ∥hk}k∈N
relative to the sequence of projections {Ph(k)}k∈N that satisfy (3.5).

Proof. (i) =⇒ (ii) Let {P (k)}k∈N be a sequence of projections and let L ≥ 1, δ > 0 be given
by Definition 2.3. Then

(3.6) ∥ΦA(m, k)x∥m ≤ L

(
m

k

)−δ

∥x∥k, ∀x ∈ RangeP (k), ∀(m, k) ∈ Γ

and

(3.7) ∥ΦA(m, k)y∥m ≥ 1

L

(
m

k

)δ

∥y∥k, ∀y ∈ KerP (k), ∀(m, k) ∈ Γ.

As already noted in Remark 2.8 (i), the system admits an ordinary dichotomy with the
sequence of norms {∥ · ∥k}k∈N and the same projections {P (k)}k∈N.

Let h ∈ N, h ≥ 2 and let {Qh(n)}n∈N be defined as in (3.1). Consider the corresponding
system (Qh) and respectively the evolution family ΦQh (see Remark 3.1).

Let now {Ph(k)}k∈N be defined as in relation (3.5).

Then, using (3.1) and Remark 2.3 (i) we obtain that

Qh(k)Ph(k) = ΦA(h
k, hk−1)P (hk−1)

= P (hk)ΦA(h
k, hk−1)

= Ph(k + 1)Qh(k), ∀k ∈ N

(3.8)
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and respectively from (3.4) we have that

(3.9) sup
k∈N

∥Ph(k)∥hk = sup
k∈N

∥P (hk−1)∥hk−1 ≤ sup
j∈N

∥P (j)∥j < ∞.

In addition, from Remark 2.3 (ii) it follows that for every k ∈ N, ΦA(h
k, hk−1)| : KerP (hk−1)

→ KerP (hk) is invertible, so Qh(k)| : KerPh(k) → KerPh(k + 1) is invertible.

We set

(3.10) ν := δ lnh

and we note that ν > 0.

Let k ∈ N and x ∈ RangePh(k) = RangeP (hk−1). Then, using (3.2), (3.3), (3.6)

and (3.10) we deduce that

∥ΦQh(m, k)x∥hm = ∥ΦA(h
m−1, hk−1)x∥hm−1

≤ Lh−δ(m−k)∥x∥hk−1

= Le−ν(m−k)∥x∥hk , ∀m ≥ k.

(3.11)

Let k ∈ N and y ∈ KerPh(k) = KerP (hk−1). Then, using (3.2), (3.3), (3.7) and (3.10)

we obtain that
∥ΦQh(m, k)y∥hm = ∥ΦA(h

m−1, hk−1)y∥hm−1

≥ 1

L
hδ(m−k)∥y∥hk−1

=
1

L
eν(m−k)∥y∥hk , ∀m ≥ k.

(3.12)

From relations (3.8), (3.9), (3.11) and (3.12) it follows that (Qh) admits an exponential
dichotomy with respect to the sequence of norms {∥ · ∥hk}k∈N relative to the sequence of
projections {Ph(k)}k∈N.

(ii) =⇒ (iii) This implication is obvious.

(iii) =⇒ (i) Assume that (A) admits an ordinary dichotomy with respect to a sequence
of norms {∥ · ∥k}k∈N relative to the sequence of projections {P (k)}k∈N and let K ≥ 1 be
given by Definition 2.1. Then

(3.13) ∥ΦA(m, k)x∥m ≤ K ∥x∥k, ∀x ∈ RangeP (k), ∀(m, k) ∈ Γ

and

(3.14) ∥ΦA(m, k)y∥m ≥ 1

K
∥y∥k, ∀y ∈ KerP (k), ∀(m, k) ∈ Γ.

Let h ≥ 2 be such that the system (Qh) admits an exponential dichotomy with respect
to the sequence of norms {∥ · ∥hk}k∈N relative to the projections {Ph(k)}k∈N given by rela-
tion (3.5).

Then, via Definition 2.2 there are N ≥ 1, ν > 0 such that

(3.15) ∥ΦQh(m, k)x∥hm ≤ N e−ν(m−k) ∥x∥hk , ∀x ∈ RangePh(k),∀(m, k) ∈ Γ

and

(3.16) ∥ΦQh(m, k)y∥hm ≥ 1

N
eν(m−k) ∥y∥hk , ∀y ∈ KerPh(k),∀(m, k) ∈ Γ.
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We denote by

(3.17) δ :=
ν

lnh
and L1 := K2Ne2ν .

In addition, we set

(3.18) L := max{L1,Khδ}.

We prove that (A) admits a polynomial dichotomy with respect to the sequence of
norms {∥ · ∥k}k∈N relative to the projections {P (k)}k∈N and with the constants L and δ.

Let k ∈ N and x ∈ RangeP (k). Let m ∈ N,m ≥ k. We have two cases:

Case 1. If m ≥ kh, then we take

(3.19) j :=

[
ln k

lnh

]
and n :=

[
lnm

lnh

]
.

From (3.19) we observe that

k ≤ hj+1 and hn ≤ m.

In addition, since m ≥ kh, from (3.19) we deduce that n ≥ j + 1.

From Remark 2.3 (i) and from (3.5) it is clear that ΦA(h
j+1, k)x ∈ RangePh(j + 2). Hence,

from (3.2)-(3.4), (3.13) and (3.15) we have that

∥ΦA(m, k)x∥m = ∥ΦA(m,hn)ΦA(h
n, k)x∥m

≤ K∥ΦA(h
n, hj+1)ΦA(h

j+1, k)x∥hn

= K∥ΦQh(n+ 1, j + 2)ΦA(h
j+1, k)x∥hn+1

≤ KNe−ν(n−j−1)∥ΦA(h
j+1, k)x∥hj+2

= KNe−ν(n−j−1)∥ΦA(h
j+1, k)x∥hj+1

≤ K2Ne2νe−ν(n+1−j)∥x∥k.

(3.20)

We note that

(3.21) n+ 1− j ≥ lnm

lnh
− ln k

lnh
=

ln
m

k
lnh

.

From (3.20), (3.21) and (3.17) it follows that

(3.22) ∥ΦA(m, k)x∥m ≤ L1

(m
k

)−δ

∥x∥k.

Case 2. If m ∈ {k, . . . , kh− 1}, then, using (3.13), we get that

(3.23) ∥ΦA(m, k)x∥m ≤ K∥x∥k = K
(m
k

)δ (m
k

)−δ

∥x∥k ≤ Khδ
(m
k

)−δ

∥x∥k.

Then from (3.22), (3.23) and (3.18) we deduce that

(3.24) ∥ΦA(m, k)x∥m ≤ L
(m
k

)−δ

∥x∥k, ∀x ∈ RangeP (k),∀(m, k) ∈ Γ.

Let k ∈ N and y ∈ KerP (k). Let m ∈ N,m ≥ k. We have two cases:
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Case 1. If m ≥ kh, then we take j and n as in relation (3.19).

Using Remark 2.3 (i) and (3.5) we have that ΦA(h
j+1, k)y ∈ KerPh(j + 2). Similarly as

above, from (3.2)-(3.4), (3.14), (3.16) and (3.17) we deduce that

∥ΦA(m, k)y∥m = ∥ΦA(m,hn)ΦA(h
n, k)y∥m

≥ 1

K
∥ΦA(h

n, hj+1)ΦA(h
j+1, k)y∥hn

=
1

K
∥ΦQh(n+ 1, j + 2)ΦA(h

j+1, k)y∥hn+1

≥ 1

KN
eν(n−j−1)∥ΦA(h

j+1, k)y∥hj+2

=
1

KN
eν(n−j−1)∥ΦA(h

j+1, k)y∥hj+1

≥ 1

K2N
e−2νeν(n+1−j)∥y∥k

=
1

L1
eν(n+1−j)∥y∥k.

(3.25)

Since
ν(n+ 1− j) ≥ δ ln

m

k
from (3.17), (3.18) and (3.25) it follows that

(3.26) ∥ΦA(m, k)y∥m ≥ 1

L1

(m
k

)δ

∥y∥k ≥ 1

L

(m
k

)δ

∥y∥k.

Case 2. If m ∈ {k, . . . , kh− 1}, then, using (3.14) and (3.18), we get that

∥ΦA(m, k)y∥m ≥ 1

K
∥y∥k =

1

K

(m
k

)−δ (m
k

)δ

∥y∥k

≥ 1

Khδ

(m
k

)δ

∥y∥k ≥ 1

L

(m
k

)δ

∥y∥k.
(3.27)

From (3.26) and (3.27) we deduce that

(3.28) ∥ΦA(m, k)y∥m ≥ 1

L

(m
k

)δ

∥y∥k, ∀y ∈ KerP (k),∀(m, k) ∈ Γ.

In conclusion, from (3.24) and (3.28) we obtain that (A) admits a polynomial dichotomy
with respect to the norms {∥ · ∥k}k∈N relative to the projections {P (k)}k∈N. □

In the case of the classic dichotomy notions, we obtain the following consequence:

Theorem 3.2. The following assertions are equivalent:

(i) the system (A) admits a polynomial dichotomy;
(ii) (A) admits an ordinary dichotomy with respect to a sequence of projections {P (k)}k∈N

and for every h ∈ N, h ≥ 2, the system (Qh) admits an exponential dichotomy with
respect to the sequence of projections {Ph(k)}k∈N, where

(3.29) Ph(k) = P (hk−1), ∀k ∈ N;
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(iii) (A) admits an ordinary dichotomy with respect to a sequence of projections {P (k)}k∈N
and there is h ∈ N, h ≥ 2 such that the system (Qh) admits an exponential dichotomy
with respect to the sequence of projections {Ph(k)}k∈N that satisfy (3.29).

Proof. This immediately yields from Theorem 3.1 for ∥ · ∥k = ∥ · ∥, for all k ∈ N. □

Remark 3.2. The characterizations for polynomial dichotomies given in Theorem 3.1 and
Theorem 3.2 remain valid even if all the dichotomy notions are of weaker nature in the
sense that one removes the property (d2) for all of the dichotomies therein. More specific,
the criteria hold true inclusive for dichotomy notions in which the properties regarding
the boundedness of the sequences of projections are dropped.

Remark 3.3. The central results in this paper have been obtained in the most general case,
without making any additional assumptions on the system(s) coefficients. Furthermore,
there aren’t assumed any kind of (polynomial or exponential) growths for the propagators
of the systems considered herein.

4. CONCLUSIONS

In this paper we have shown that the ranges of projections for polynomial dichotomies
of discrete nonautonomous systems can be represented in terms of the belonging of the
associated trajectories to some spaces of bounded sequences or to certain ℓp-spaces. This
representation plays a key-role both in establishing connections between the dichotomy
notions as well as in the future studies of polynomial dichotomies by means of various
admissibility properties (among other topics).

We have proved that the polynomial dichotomy (relative to a sequence of norms) can
be characterized via ordinary dichotomy and exponential dichotomy (relative to a se-
quence of norms) provided that these behaviors hold for suitable systems, with respect
to well-chosen sequences of norms and relative to appropriate sequences of projections.
This characterization (and its consequence in the classic case) is important in the meth-
ods that will be employed to explore the polynomial behaviors (among we mention those
via input-output techniques or those devoted to their robustness). In addition, it opens
new perspectives in this area, as the study begun here can be extended to other classes of
dynamical systems.

A first class of methods in which we will apply the central results of the present paper
will be devoted to admissibility criteria for polynomial dichotomies and will be provided
in [27], based on a new and different approach compared with the one considered in [24].
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