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General analytical solution of fractional Klein–Gordon
equation in a spherical domain

CONSTANTIN FETECAU1 and DUMITRU VIERU2

ABSTRACT. Time-fractional Klein–Gordon equation in a sphere is considered for the case of central sym-
metry under the time-variable Dirichlet condition. The time-fractional derivative with the power-law kernel is
used. The Laplace transform and convenient transformations of the independent variable and unknown func-
tion are used to determine the general analytical solution of the problem in the Laplace domain. In order to
obtain the solution in the real domain, the inverse Laplace transforms of two functions of exponential type
whose expressions are new in the literature have been determined. The similar solution for ordinary Klein–
Gordon equation is a limiting case of general solution but a simpler form for this solution is provided. The
convergence of general solution to the ordinary solution and the effects of fractional parameter on this solution
are graphically underlined.

1. INTRODUCTION

The Klein–Gordon equation has been used since 1925 to describe de Broglie waves of
the electron in the hydrogen atom [9]. It is worth pointing out that this equation is also
suitable in the description of some vibrating systems in the classical mechanics, such as
vibrating flexible strings [10]. This equation, whose general form is given by the relation

(1.1)
∂2u(x, t)
∂t2

= a∆u(x, t)− bu(x, t), (x, t) ∈ D × [0,∞), D ⊂ R3; a, b > 0,

is also used in the nonlinear optics, the quantum field theory, solid-state physics, and clas-
sical mechanics as well. If the domain D is a sphere of radius R, considering a spherical
coordinate system and the case of the central symmetry, Eq. (1.1) takes the simple form

(1.2)
∂2u(r, t)

∂t2
= a

[
∂2u(r, t)

∂r2
+

2

r

∂u(r, t)

∂r

]
− bu(r, t); r ∈ (0, R), t ∈ (0,∞).

Often a mathematical model put forward to describe a given phenomenon is replaced
by another mathematical model which is able to better describe the complex properties
of different physical processes. It should be noted that the fractional differential equa-
tions obtained as generalizations of some classical differential equations have numerous
applications in physics, plasma physics, chemistry, rheology, geophysics, biology, bio-
engineering, engineering, finance, and medicine [6, 15, 2, 4, 11].

There are many non-homogeneous media where the transport phenomena exhibit ano-
malous properties. The experiments and accurate measurements have shown that the ma-
thematical models based on fractional differential equations are more suitable to describe
complex processes at different scales.
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In this paper we consider the time-fractional differential equation

(1.3) CDα
t u(x, t) = a∆u(x, t)− bu(x, t), (x, t) ∈ D × [0,∞), D ⊂ R3; a, b > 0, α ∈ (1, 2],

that is an extension of the hyperbolic equation (1.1). In this equation the operator
CDα

t u(x, t), α ∈ (1, 2] denotes time-fractional Caputo derivative defined as [15, 5]

(1.4) CDα
t u(x, t) =


1

Γ(2− α)

∫ t

0

(t− τ)1−α ∂
2u(x, τ)
∂τ2

dτ, α ∈ (1, 2),

∂2u(x, t)
∂t2

, α = 2,

where Γ(ζ) =
∫∞
0
tζ−1e−tdt, Re(ζ) > 0 is the Euler integral of second kind.

The kernel Ch(t, α) of the Caputo derivative (1.4) is

(1.5) Ch(t, α) =
t1−α

Γ(2− α)

and the operator (1.4) can be written as a convolution product, namely

(1.6) CDα
t u(x, t) =

Ch(t, α) ∗ ∂
2u(x, t)
∂t2

=

∫ t

0

Ch(t− τ, α)
∂2u(x, τ)
∂τ2

dτ, α ∈ (1, 2).

Using Eq. (1.6) and some properties of the Laplace transform [7], one obtains

(1.7)
L{CDα

t u(x, t)} = L{Ch(t, α)}L
{
∂2(x, t)
∂t2

}
= sαū(x, s)− sα−1u(x, 0)− sα−2 ∂u(x, t)

∂t

∣∣∣∣
t=0

; α ∈ (1, 2],

where ū(x, s) = L{u(x, t)} =
∫ t

0
u(x, t) exp(−st)dt denotes the Laplace transform of the

unknown function u(x, t).
The time-fractional differential equation (1.3) has been studied in several publications.

Some nonlinear fractional Klein–Gordon equations in Caputo sense have been analyti-
cally and numerically studied in [1]. The authors used the fractional reduced differen-
tial transform method that provides the solutions as convergent series. Kheiri et al. [12]
studied a non-homogeneous fractional Klein–Gordon equation with Dirichlet, Neumann,
and Robin boundary conditions using the separating variables method. Other studies
regarding the Klein–Gordon equation can be found in the references [3, 13, 8, 14].

In this paper, an initial-boundary value problem for the equation (1.3) with the Dirichlet
boundary condition variable in time is studied in a spherical domain with central symme-
try. Using Laplace transform and suitable transformations of the unknown function and
independent variable the corresponding equation is transformed into a modified Bessel
equation with known solution. To change the Laplace transforms in the real domain,
two adequate inverses Laplace transforms are determined. Making α = 2 in the analy-
tical solution corresponding to the fractional case, the solution of classical Klein–Gordon
equation in the same domain can be obtained. However, for completion and convenience,
an equivalent but simpler form of this solution is also established. The convergence of
general solution to this simple form of the classical Klein–Gordon equation is graphically
proved.

2. SOLUTION OF FRACTIONAL KLEIN–GORDON EQUATION IN A SPHERICAL DOMAIN

In this section we determine the analytical solution of the fractional differential equa-
tion (1.3) in a sphere of radius R. Considering the case of central symmetry, this equation
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can be written in the next form (see also Eq. (1.2))

(2.8) CDα
t u(r, t) = a

[
∂2u(r, t)

∂r2
+

2

r

∂u(r, t)

∂r

]
− bu(r, t); r ∈ (0, R), t ∈ (0,∞), α ∈ (1, 2].

Along with this fractional differential equation, the following initial-boundary conditions
are considered

u(r, 0) = 0,
∂u(r, t)

∂t

∣∣∣∣
t=0

= 0; r ∈ [0, R],(2.9)

u(R, t) = f(t); t > 0.(2.10)

Here, f(·) is a piecewise continuous function of exponential order as t→ ∞.
Applying the Laplace transform to Eq. (2.8) and using the identity (1.7) as well as the

initial conditions (2.9), one obtains the transformed equation

(2.11)
∂2ū(r, s)

∂r2
+

2

r

∂ū(r, s)

∂r
− γ(s)ū(r, s) = 0; r ∈ (0, R),

where γ(s) = (sα + b)/a. The function ū(r, s) has to satisfy the boundary condition

(2.12) ū(R, s) = f̄(s),

where f̄(s) = L{f(t)} is the Laplace transform of f(t).
Making the following changes of independent variable and unknown function

(2.13) r =
1√
γ(s)

z, ū(r, s) =
4
√
γ(s)√
z

U(z, s),

in Eq. (2.11), one obtain the next modified Bessel equation

(2.14) z2
∂2U(z, s)

∂z2
+ z

∂U(z, s)

∂z
−
(
z2 +

1

4

)
U(z, s) = 0.

The general solution of Eq. (2.14) is given by the relation [16]

(2.15) U(z, s) = C1(s)I1/2(z) + C2(s)K1/2(z),

where I1/2(·) and K1/2(·) are modified Bessel functions of first and second kind of order
1/2 and the functions C1(·) and C2(·) will be determined from the boundary condition.
On the basis of the relations (2.13) we find that

(2.16) ū(r, s) =
1√
r

[
C1(s)I1/2

(
r
√
γ(s)

)
+ C2(s)K1/2

(
r
√
γ(s)

)]
.

Now, using the identities (A1) from Appendix, it results that

(2.17) ū(r, s) =
1

r 4
√
γ(s)

[√
2

π
C1(s)sinh

(
r
√
γ(s)

)
+

√
π

2
C2(s)e

−r
√

γ(s)

]
.

In order to have a solution ū(r, s) with finite values inside the sphere the function C2(s)
has to be identically equal to zero. Consequently, the solution of the equation (2.11) is

(2.18) ū(r, s) =
C1(s)

r

√
2

π
√
γ(s)

sinh
[
r
√
γ(s)

]
.

Imposing the boundary condition (2.10), it results that

(2.19) ū(r, s) =
R

r

sinh
[
r
√
γ(s)

]
sinh

[
R
√
γ(s)

] f̄(s); r ∈ (0, R),
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or equivalently

(2.20) ū(r, s) =
R

r
f̄(s)

∞∑
k=0

[
e[r−(2k+1)R]

√
γ(s) − e−[r+(2k+1)R]

√
γ(s)
]
.

Applying the inverse Laplace transform to Eq. (2.20), it results that

(2.21) u(r, t) =
R

r
f(t)∗

∞∑
k=0

[
L−1

{
e[r−(2k+1)R]

√
γ(s)
}
−L−1

{
e−[r+(2k+1)R]

√
γ(s)
}]
,

where “∗” denotes the convolution product of the two functions and L−1{·} means the
inverse Laplace transform.

Consequently, in order to determine the problem solution u(r, t), we need the inverse
Laplace transform of the exponential function exp[−c

√
γ(s)]. To find it, the auxiliary func-

tion h̄(c, s) = exp[−c
√
s] (whose inverse Laplace transform h(c, t) is given by Eq. (A2)

from Appendix) and the property of the inverse Laplace transform of the composite func-
tions will be used. More exactly, the inverse Laplace transform of exp[−c

√
γ(s)] is

(2.22) L−1
{
exp

[
−c
√
γ(s)

]}
= L−1

{
h̄(c, γ(s)

}
=

∫ ∞

0

h(c, ξ)φ(ξ, t)dξ,

where the function φ(ξ, t) is given by the relation

(2.23)
φ(ξ, t) = L−1 {exp [−ξγ(s)]} = L−1

{
exp

(
−ξ(s

α + b)

a

)}
= exp

(
−bξ
a

)
L−1

{
exp

(
− ξsα

a

)}
.

Lemma 2.1. The inverse Laplace transform of the function ψ(ξ, s) = exp(−ξsa/a) is

(2.24) ψ(ξ, t) = L−1

{
exp

(
−ξs

α

a

)}
= −

∞∑
k=1

1

k!Γ(αk)

(
− ξ
a

)k ∫ ∞

0

zαk−1/2

√
t

J1(2
√
tz)dz

and the function φ(ξ, t) is given by the relation

(2.25) φ(ξ, t) = ψ(ξ, t) exp[−bξ/a].

Proof. Let us consider the function

(2.26) ḡ(s) = exp

(
− ξ

asα

)
= 1 +

∞∑
k=1

(
− ξ
a

)k
1

k!sαk
,

whose inverse Laplace transform is given by the expression

(2.27) g(t) = L−1{ḡ(s)} = δ(t) +

∞∑
k=1

(
− ξ
a

)k
tαk−1

k!Γ(αk)
,

where δ(·) is the Dirac’ distribution and Γ(·) is the well known Gamma function.
Now, using the (A3) property and the identity (A4)1 from Appendix and bearing in

mind Eq. (2.27), it results that

(2.28)

L−1

{
1

s
exp

(
−ξs

α

a

)}
= L−1

{
1

s
ḡ

(
1

s

)}
=

∫ ∞

0

J0

(
2
√
tz
)
g(z)dz

= 1 +

∞∑
k=1

1

k!Γ(αk)

(
− ξ
a

)k ∫ ∞

0

zαk−1J0

(
2
√
tz
)
dz.
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On the other hand,

(2.29) L−1

{
1

s
exp

(
−ξs

α

a

)}
=L−1

{
1

s
ψ(ξ, s)

}
=

∫ t

0

L−1{ψ(ξ, s)}(τ)dτ=
∫ t

0

ψ(ξ, τ)dτ.

From the last two relations it clearly results

(2.30)
∫ t

0

ψ(ξ, τ)dτ = 1 +

∞∑
k=1

1

k!Γ(αk)

(
− ξ
a

)k ∫ ∞

0

zαk−1J0

(
2
√
tz
)
dz.

By deriving the last relation with respect to t and using the equality (A4)2 from Appendix,
one obtains the equality (2.24).

Now, from Eqs. (2.21), (2.22), (2.25) and (A2) from Appendix it clearly results that

(2.31)
uf (r, t) =

R

2r
√
π
f(t) ∗

∞∑
k=0

∫ ∞

0

{
[(2k + 1)R− r] exp

[
− [(2k + 1)R− r]2

4ξ

]
−[(2k + 1)R+ r] exp

[
− [(2k + 1)R+ r]2

4ξ

]}
ψ(ξ, t) exp(−bξ/a)

ξ
√
ξ

dξ,

where, for difference, uf (r, t) denotes the solution of fractional Klein–Gordon equation.

3. SOLUTION OF CLASSICAL KLEIN–GORDON EQUATION

Although the general solution given by Eq. (2.31) is also valid for the classical Klein–
Gordon equation corresponding to α = 2, we shall establish an equivalent but simpler
form for the solution of this equation. In order to do this, let us observe that for α = 2 Eq.
(2.20) can be written in the form

(3.32) ū(r, s) =
R

r
f̄(s)

∞∑
k=0

{w̄[d1(r), s]− w̄[d2(r), s]},

where d1(r) = [(2k + 1)R− r]/
√
a and d2(r) = [(2k + 1)R+ r]/

√
a,

(3.33) w̄(d, s) = exp(−d
√
s2 + b).

□

Lemma 3.2. The inverse Laplace transform of the function w̄(d, s) is

(3.34) w(d, t) = L−1{w̄(d, s)} = δ(t− d)− d
√
b√

t2 − d2
J1

[√
b(t2 − d)2)

]
.

Proof. Rewriting the function w̄(d, s) in a convenient form, namely

(3.35) w̄(d, s) = exp(−ds) +

{
exp

[
d

(
s−

√
s2 −

(
i
√
b
)2)]

− 1

}
exp(−ds)

and using the relations (A5) and (A6) from Appendix, it results that its inverse Laplace
transform w(d, t) is given by the relation

(3.36)

w(d, t) = δ(t− d) + δ(t− d) ∗ id
√
b√

t2 + 2dt
I1

[
i
√
bt(t+ 2d)

]

= δ(t− d) +
id
√
b√

t2 − d2
I1

[
i
√
b(t2 − d2)

]
.

Now, using the identities (A7) from Appendix, one obtains for w(d, t) the simpler form
from the equality (3.34) and this lemma is proved.
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Finally, applying the inverse Laplace transform to Eq. (3.32) and bearing in mind Eqs.
(3.34) and (A6) from Appendix, we obtain for the solution of the classical Klein–Gordon
equation (1.2) the following expression

(3.37)

uc(r, t) =
R

r

∞∑
k=0

f(t) ∗
{
w1

(
(2k + 1)R+ r√

a
, t

)
− w1

(
(2k + 1)R− r√

a
, t

)}

+
R

r

∞∑
k=0

{
f

[
t− (2k + 1)R− r√

a

]
− f

[
t− (2k + 1)R+ r√

a

]}
,

where uc(r, t) denotes the solution of classical Klein–Gordon equation and

(3.38) w1(d, t) =
d
√
b√

t2 − d2
J1

[√
b(t2 − d2)

]
.

4. SOME NUMERICAL RESULTS AND CONCLUSIONS

In this work fractional Klein–Gordon equation with time-variable boundary condition
has been analytically investigated in a spherical domain with central symmetry. The exact
solution given by the equality (2.31) has been obtained using the Laplace transform and
convenient changes of the spatial variable and the unknown function. It reduces to the
corresponding solution of the ordinary Klein–Gordon equation if the fractional parame-
ter α = 2. However, for this equation an equivalent but simpler form of solution has
been separately determined and due to the generality of the boundary condition (2.10)
the problems in discussion are completely solved. As a check of results that have been
here obtained, Figs. 1 and 2 were drawn to show that the solution uf (r, t) corresponding
to the fractional equation converges to the solution uc(r, t) of the classical Klein–Gordon
equation if the fractional parameter α→ 2, R = 2, a = 3, b = 0.5, f(t) = 5 exp(−t).

In Fig. 1 are presented the profiles of uf (r, t) (for three increasing values of the frac-
tional parameter α) and uc(r, t) versus r at two values of the time t, while Fig. 2 provides
the profiles of the same solutions versus t for two distinct values of the radial coordinate
r. In all cases, as it was to be expected, the diagrams of uf (r, t) corresponding to increa-
sing values of α < 2 tend to overlap over the curve corresponding to the classical solution
when the fractional parameter α → 2. In addition, the curves from Fig. 2 show that both
solutions tend to the zero asymptotic value for large values of the time t and fixed values
of the radial coordinate r. This property can be analytically proved using the equality
(2.19) and the relation (A8) from Appendix regarding the function f(·) and its Laplace
transform. Indeed, using Eqs. (2.19) and (A8), one obtains

(4.39)

lim
s→0

sū(r, s) = lim
s→0

sf̄(s) lim
s→0

R

r

sinh
(
r
√
a−1(sα + b)

)
sinh

(
R
√
a−1(sα + b)

)
=
R

r

sinh
(
r
√
b/a
)

sinh
(
R
√
b/a
) lim

t→∞
f(t).

In our case, since lim
t→∞

f(t) = 0, the two solutions tend to zero for large values of t.
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FIGURE 1. Convergence of the solution uf (r, t) to uc(r, t) versus r, for
two values of the time t when the fractional parameter α→ 2.

FIGURE 2. Convergence of the solution uf (r, t) to uc(r, t) versus t, for two
values of the spatial variable r when the fractional parameter α→ 2.

The variation of the general solution uf (r, t) with the fractional parameter α in different
spatial positions and for two values of the time t is plotted in Fig 3. From this figure it
results that uf (r, t) is a decreasing function with regard to both variables. It is almost
constant for values of α from one up to a critical value αc and then grows for increasing
values of this parameter less or equal to two. All graphical representations have been here
prepared for R = 2, a = 3, b = 0.5, f(t) = 5 exp(−t).

FIGURE 3. Profiles of solution uf (r, t) versus the fractional parameter
α ∈ (1, 2], for two values of the time t and different values of the spa-
tial variable r.
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APPENDIX

(A1) I1/2(z) =

√
2

πz
sinh(z), K1/2(z) =

√
2

πz
e−z,

(A2) H(c, t) = L−1
{
exp

(
−c

√
s
)}

=
c

2t
√
πt

exp

(
−c

2

4t

)
,Re(c2) > 0,

(A3) L−1

{
1

s
ḡ

(
1

s

)}
=

∫ ∞

0

J0

(
2
√
tz
)
g(z)dz if ḡ(s) = L{g(t)},

(A4)

∫ ∞

0

J0

(
2
√
tz
)
δ(z)dz = J0(0) = 1,

d

dz
[J0(u(z))] = −J1(u(z))

du(z)

dz

(A5)

L−1{exp(−ds)} = δ(t− d), L−1
{
exp

[
d
(
s−

√
s2 − (ib)2

)]
− 1
}

=
ibd√
t2 + 2dt

I1

(
ib
√
t2 + 2dt

)
,

(A6) f(t) ∗ δ(t− d) = f(t− d),

(A7) I1(iz) =
1

i
J1(−z), J1(−z) = −J1(z).

(A8) lim
t→∞

f(t) = lim
s→0

sf̄(s).
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