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A linear quadratic tracking problem for stochastic systems
controlled by impulses. The finite horizon time case

VASILE DRĂGAN1,2 , IOAN-LUCIAN POPA3,4 and IVAN G. IVANOV5

ABSTRACT. We investigate a problem to solve the linear quadratic tracking problem for stochastic systems
controlled by impulses. Two optimal control problems are investigated where the different objective functions
are minimized. Explicit formulae for optimal controls are developed. The optimal controllers are computed
based on the solution of the backward jump matrix Lyapunov type linear differential equations.

1. INTRODUCTION

The study of impulsive systems have important theoretical and practical value. A real
life system may encounter at certain time moments some abrupt changes and from this
reason cannot be considered continuously. There are various examples of such systems,
see [12]. This impulsive phenomenon, represents the framework of impulsive differential
equations, see [2], [3]. In control area, many impulsive control methods have been de-
veloped into the framework of optimal control, the so called impulsive control. In fact,
optimal control assure the change of states at certain instants instantaneously. Reference
[13] present an overview for recent progress on impulsive control systems.

A linear quadratic tracking problem is an important control task. The tracking control
constructs a model of controller with state as close as possible to the given reference sig-
nal. It can be applied in a wide range of areas such as process control [14], in control of
vibrations, diffusion and many other mechanical problems [11]. The primary objective of
linear quadratic tracking control is to find an optimal controller to minimize the devia-
tion of the controlled output z( · ) from the reference signal r( · ). Tracking problems were
studied for stochastic and nonlinear systems intensively in the past several years. We can
mention here few references of interest, i.e. [4, 5, 6, 15].

The problem of minimization of the mean square value of the deviation of a random
signal z(tf ) from a given target is analysed in [7]. In this paper, we investigate a prob-
lem to solve the linear quadratic tracking problem for stochastic systems controlled by
impulses. We consider a system of affine stochastic differential equations of Itô type con-
trolled by impulses and introduce a set of the admissible controls. Two optimal control
problems are investigated where the different objective functions are minimized. Explicit
formulae for optimal controls are developed. The optimal controllers are computed based
on the solution of the backward jump matrix Lyapunov type linear differential equations.
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2. THE PROBLEM

Let us consider the controlled system described by:

dx(t) = (A0(t)x(t) + f0(t))dt+ (A1(t)x(t) + f1(t))dw(t), kh < t ≤ (k + 1)h(2.1a)

x(kh+) = Ad0(k)x(kh) +Bd0(k)u(k) + g0(k)+

+ wd(k)(Ad1(k)x(kh) +Bd1(k)u(k) + g1(k)), k = 0, 1, . . . , N,(2.1b)

z(t) = C(t)x(t), t ∈ [0, T ](2.1c)

where h > 0 is fixed and T > 0 is such that Nh < T ≤ (N + 1)h. In (2.1), x(t) ∈ Rn are
the state parameters, z(t) ∈ Rnz is the controlled output and u(k) ∈ Rm are the control
parameters.

In (2.1a), {w(t)}t≥0 is 1-dimensional Wiener process defined on the probability space
(Ω,F,P) while in (2.1b) {wd(k)}k≥0 is a sequence of random variables defined on the
same probability space (Ω,F,P). The system (2.1a)-(2.1b) is a system of affine stochastic
differential equations of Itó type, controlled by impulses or, equivalently, an impulsive
controlled stochastic system (ICSS).

In order to be able to provide a clear description of the class of admissible controls, let
us introduce an assumption regarding the properties of the random noises involved in
(2.1).
(A1)

(a) {w(t)}t≥0 is a 1-dimensional standard Wiener process, that is, it is a process of a Brownian
motion with the properties: w(0) = 0, E[w(t)] = 0, E[(w(t) − w(s))2] = t − s, for all
t ≥ s ≥ 0.

(b) {wd(k)}k≥0 are random variables with the properties E[wd(k)] = 0 and

E[wd(k)wd(j)] =

{
0, if k 6= j

1, if k = j.

(c) {w(t)}t≥0, {wd(k)}k≥0 are independent stochastic processes.

For more details regarding definitions and properties of standard Wiener processes we
refer to [9] and [10]. Throughout the paper E[·] stands for the mathematical expectation.
For each t ≥ 0, Ft ⊂ F stands for the sigma algebra generated by the random variables
w(s), wd(k) where s and k are such that 0 ≤ s ≤ t, k ∈ {0, 1, . . . , N} and kh < t. For each
t, Ft is augmented with the set of the events F0 = {θ ∈ F | P(θ) = 0}.

The set Uad of the admissible controls, consists of all sequences u = {u(k)}k∈{0,1,...,N}
with the properties that for each k, u(k) : Ω → Rm is the random vector fkh−measurable
and E[|u(k)|2] <∞.

Let r(·) : [0, T ] → Rnz be a continuous vector valued function which will be called
reference signal, or simple reference.

Our aim is that for a given initial state x0 ∈ Rn to design a control ũ ∈ Uad which
minimizes the deviation of the controlled output z(·) from the reference signal r(·). For a
rigorous setting of the tracking problem briefly described before we introduce two per-
formance criteria:

(2.2) J1(x0;u) = E

|z(T ;x0,u)− ζ|2 +

T∫
0

|z(t;x0,u)− r(t)|2dt

+

N∑
k=0

E[u>(k)R(k)u(k)]
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and

J2(x0;u) = E

|z(T ;x0,u)− ζ|2 +

T∫
0

|z(t;x0,u)− r(t)|2dt


+

N∑
k=0

E[(u(k)− v(k))>R(k)(u(k)− v(k))](2.3)

where z(t;x0,u) = C(t)x(t;x0,u), t ∈ [0, T ], x(·;x0,u) being the solution of the ICSS
(2.1a)-(2.1b) determined by the control u ∈ Uad and satisfying x(0;x0,u) = x0.

In (2.2) and (2.3), ζ ∈ Rnz have to be viewed as a target for the terminal value of the

controlled output of the ICSS (2.1). In (2.2), the term
N∑

k=0

E[u>(k)R(k)u(k)] represents a

measure of the control effort, while in (2.3), the term
N∑

k=0

E[(u(k) − v(k))>R(k)(u(k) −

v(k))] can be regarded as a penalization of the deviation of the controls u(k) from a given
reference v = {v(k)}0≤k≤N .

In this work, the finding of the control ũl ∈ Uad which achieves the best tracking of
the reference r(·) by the controlled output z(·;x0,u) of the ICSS (2.1), is done solving
one of the two optimal problems asking for the designing of an admissible control which
minimizes the cost Jl(x0; ·), l = 1, 2 along the trajectories of the ICSS (2.1) determined by
the admissible controls u ∈ Uad. With other words, for each l ∈ {1, 2} find the control
ũl ∈ Uad which solves the following problem:

(2.4) Problem l. Jl(x0; ũl) = min
u∈Uad

Jl(x0;u)

Explicit formulae of the controls ũl which solve Problem l, l ∈ {1, 2}, will be derived in
Section 4.

First, in Section 3, we analyse the problem of the global existence on the whole interval
[0, T ] of the solutions with given terminal values of some backward differential equations
with impulses.

For the developments in the next sections, we assume that the coefficients of the system
(2.1) and the weights matrices from the performance criteria (2.2) and (2.3) are satisfying
the assumption:
(A2)

(a) Aj(·) : [0, T ] → Rn×n, fj(·) : [0, T ] → Rn, j = 0, 1, C(·) : [0, T ] → Rnz×n are given
continuous functions.

(b) For each 0 ≤ k ≤ N, Adj(k) ∈ Rn×n, Bdj(k) ∈ Rn×m, gj(k) ∈ Rn, j = 0, 1, are known.
(c) R(k) ∈ Sm, is such that R(k) > 0, 0 ≤ k ≤ N.

Throughout this work Sq ⊂ Rq×q is the linear space of symmetric matrices of size q× q.

3. TWO KINDS OF BACKWARD LINEAR DIFFERENTIAL EQUATIONS WITH JUMPS

In this section we consider two types of backward jump linear differential equations
whose solutions will be used in the description of the optimal controls ũl for the Problem l,
l = 1, 2, given in (2.4).
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3.1. A backward jump matrix linear differential equation with Riccati type jumping
operators. Based on the matrix coefficients of the ICSS (2.1) we define the following back-
ward jump matrix linear differential equation (BJMLDE) on the space Sn :

− Ẏ (t) = A>0 (t)Y (t) + Y (t)A0(t) +A>1 (t)Y (t)A1(t) + C>(t)C(t),(3.5a)

kh ≤ t < (k + 1)h

Y (kh−) =

1∑
j=0

A>dj(k)Y (kh)Adj(k)−

 1∑
j=0

A>dj(k)Y (kh)Bdj(k)

(3.5b)

·

R(k) +

1∑
j=0

B>dj(k)Y (kh)Bdj(k)

−1 1∑
j=0

B>dj(k)Y (kh)Adj(k)

 , 0 ≤ k ≤ N.

Since the right hand side from (3.5b) has the form of a Riccati type operator arising in
connection with a discrete-time linear quadratic optimal control problem, we shall call
the BJMLDE (3.5) as a BJMLDE with Riccati type jumping operator. Before to study the
extensibility of the solutions with given terminal values of a BJMLDE of type (3.5) on the
whole interval [0, T ], we recall several auxiliary issues already known. For more details
we refer the reader to Chapter 2 from [6].

First, let us remark that Sn has a Hilbert space structure induced by the inner product

(3.6) 〈X,Y 〉 = Tr [XY ],

for all X,Y ∈ Sn, where Tr [·] is the trace operator. Moreover, Sn is a real ordered Hilbert
space. The order relation on Sn is induced by the convex cone

S+
n = {X ∈ Sn | X ≥ 0}.

Here X ≥ 0 means that X is a positive semidefinite matrix.
For each t ∈ [0, T ] we consider the linear operator X → L(t)[X] : Sn → Sn defined by

(3.7) L(t)[X] = A0(t)X +XA>0 (t) +A1(t)XA>1 (t), for all X ∈ Sn.
The adjoint L∗(t)[·] of the operator L(t)[·] with respect to the inner product (3.6) is de-
scribed by

(3.8) L∗(t)[Y ] = A>0 (t)Y + Y A0(t) +A>1 (t)Y A1(t).

With this notation, the differential equation (3.5a) may be rewritten as:

(3.9) −Ẏ (t) = L∗(t)[Y (t)] + C>(t)C(t), kh ≤ t < (k + 1)h.

Let T(t, τ) : Sn → Sn be the linear evolution operator on Sn defined by the linear differ-
ential equation

(3.10) Ẋ(t) = L(t)[X(t)].

This means that
T(t, t0)[X0] = X(t; t0, X0),

for all t, t0 ∈ [0, T ], X0 ∈ Sn, where X(·; t0, X0) is the solution of the linear differential
equation on Sn (3.10) which satisfy the initial condition X(t0; t0, X0) = X0.

From Theorem 2.6.1 from [6] applied to the special case of the differential equation
(3.10), we obtain:

Corollary 3.1. Under the assumption (A2) (a), both T(t, t0)[·] and its adjoint T∗(t, t0)[·] are
positive operators on the ordered Hilbert space (Sn,S+

n ). This means that

T(t, t0)[X0] ≥ 0
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and
T∗(t, t0)[X0] ≥ 0

for all 0 ≤ t0 ≤ t ≤ T, whenever X0 ∈ S+
n .

Now we are in position to prove the main result of this section.

Proposition 3.1. Let Y (·;T, YT ) be the solution of the BJMLDE (3.5) with the terminal value
Y (T ;T, YT ) = YT . Under the assumption (A2) the solution Y (·;T, YT ) is defined on the whole
interval [0, T ] if YT ≥ 0. Moreover, this solution has the properties:

(i) Y (t;T, YT ) ≥ 0, for all t ∈ [0, T ];
(ii) Y (·;T, YT ) is differentiable on each interval (kh, (k+ 1)h), 0 ≤ k ≤ N − 1 and on (Nh, T )

and is right continuous on each kh with possible discontinuities in kh, 0 ≤ k ≤ N.

Proof. Using the version (3.9) of (3.5a) we obtain the following representation formula of
the solution Y (·;T, YT ) on the interval [kh, (k + 1)h):

(3.11) Y (t;T, YT ) = T∗((k + 1)h, t)[Y ((k + 1)h−;T, YT )] +

(k+1)h∫
t

T∗(s, t)[C>(s)C(s)]ds.

When k = N in (3.11), (k + 1)h will be T. From (3.5b) and (3.11) one sees that the exten-
sibility of the solution Y (·;T, YT ) on each of the intervals [kh, (k+ 1)h) depends upon the
invertability of the matrices

R(k + 1) +

1∑
j=0

B>dj(k + 1)Y ((k + 1)h;T, YT )Bdj(k + 1), 0 ≤ k ≤ N − 1.

The right hand side of (3.5b) is the Schur complement of the 22-block in the matrix

Γ(k) =


1∑

j=0

A>dj(k)Y (kh)Adj(k)
1∑

j=0

A>dj(k)Y (kh)Bdj(k)

1∑
j=0

B>dj(k)Y (kh)Adj(k) R(k) +
1∑

j=0

B>dj(k)Y (kh)Bdj(k)

 .

We rewrite this matrix in the form

(3.12) Γ(k) =

1∑
j=0

(Adj(k) Bdj(k))>Y (kh)(Adj(k) Bdj(k)) +

(
0 0
0 R(k)

)
.

From (3.11) for k = N we obtain via Corollary 3.1 that

Y (t;T, YT ) ≥ 0, for all Nh ≤ t ≤ T.
Hence,

R(N) +

1∑
j=0

B>dj(N)Y (Nh)Bdj(N) > 0

and from (3.12) written for k = N we have Γ(N) ≥ 0. Applying, for example Lemma 2.3
from [8] (or Theorem 1 from [1]) in the case of the matrix Γ(N) we deduce that

1∑
j=0

A>dj(N)Y (Nh;T, YT )Adj(N)−

 1∑
j=0

A>dj(N)Y (Nh;T, YT )Bdj(N)


·

R(N) +

1∑
j=0

B>dj(N)Y (Nh;T, YT )Bdj(N)

−1 1∑
j=0

B>dj(N)Y (Nh;T, YT )Adj(N)

 ≥ 0.
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Thus (3.5b) written for k = N yields

Y (Nh−;T, YT ) ≥ 0.

Further, (3.11) written for k = N − 1 gives

Y (t;T, YT ) ≥ 0, for all (N − 1)h ≤ t ≤ Nh.

Let us assume by induction that for a k ∈ {N,N − 1, . . . , 1, 0}we have that

Y (t;T, YT ) ≥ 0, for all t ∈ [kh, (k + 1)h).

Based on (c) from assumption (A2) we deduce that

(3.13) R(k) +

1∑
j=0

B>dj(k)Y (kh;T, YT )Bdj(k) > 0

and from (3.12) we may infer that Γ(k) ≥ 0. Invoking again Lemma 2.3 from [8] (or Theo-
rem 1 from [1]) in the case of the matrix Γ(k) we obtain via (3.13) that the right hand side
of (3.5b) is a positive semidefinite matrix. Hence,

Y (kh−;T, YT ) ≥ 0.

This allows us to conclude via (3.11), written for k replaced by k − 1, that

Y (t;T, YT ) ≥ 0, for all t ∈ [(k − 1)h, kh).

So, the inductive process allows us to conclude that Y (·;T, YT ) can be extended to the
whole interval [0, T ] and it is positive semidefinite. Thus the proof is complete because
(ii) follows directly from (3.11). �

3.2. A backward jump linear differential equation on the spaceRn. Beside the BJMLDE
with Riccati type jumping operator of type (3.5), in the derivation of the optimal controls
which solve the optimal control problems (2.4), an important role will be played by a
backward jump linear differential equation of the form:

− ϕ̇(t) = A>0 (t)ϕ(t) + h(t), kh ≤ t < (k + 1)h(3.14a)

ϕ(kh−) = (Ad0(k) +Bd0(k)FY (k))>ϕ(kh) + ξ(k)(3.14b)

where FY (k) is associated to a solution Y (t) = Y (t;T, YT ) of the BJMLDE (3.5) by:

(3.15) FY (k)
∆
= −

R(k) +

1∑
j=0

B>dj(k)Y (kh)Bdj(k)

−1 1∑
j=0

B>dj(k)Y (kh)Adj(k)

 .

From Proposition 3.1 it follows that if the terminal value YT of the solution Y (·) lies in S+
n

then (3.13) holds and in this case, FY (k) can be computed for any 0 ≤ k ≤ N via (3.15). In
(3.14a), h(·) : [0, T ]→ Rn is a continuous vector valued function and in (3.14b), ξ(k) ∈ Rn

are given vectors. In the construction of the optimal controls h(·) will have an explicit
formula depending upon the reference signal r(·) as well as the functions fj(·) arising in
(2.1a) and ξ(k) will have an explicit formula involving the vectors gj(k) arising in (2.1b).
Since (3.14) is a linear equation all solutions with given terminal values at T are defined on
the whole interval [0, T ] provided that the matrices FY (k) are defined for any 0 ≤ k ≤ N.
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4. THE SOLUTION OF THE TRACKING PROBLEMS

Let Ỹ (t)
∆
= Y (t;T,C>(T )C(T )) be the solution of the BJMLDE (3.5) satisfying Ỹ (T ) =

C>(T )C(T ). Applying Proposition 3.1 in the case YT = C>(T )C(T ) ≥ 0 we deduce that
Ỹ (·) is defined on the whole interval [0, T ] and satisfies

Ỹ (t) ≥ 0, for all t ∈ [0, T ].

Let F̃ (·) ∈ Rm×n be computed as in (3.15) for Y (·) replaced by Ỹ (·). Let ϕ̃(·) : [0, T ]→ Rn

be the solution of the following problem with given terminal value (TVP)

− ϕ̇(t) = A>0 (t)ϕ(t) + C>(t)r(t)− Ỹ (t)f0(t)−A>1 (t)Ỹ (t)f1(t),(4.16a)

kh ≤ t < (k + 1)h

ϕ(kh−) = (Ad0(k) +Bd0(k)F̃ (k))>ϕ(kh)(4.16b)

−
1∑

j=0

(Adj(k) +Bdj(k)F̃ (k))>Ỹ (kh)gj(k)

ϕ(T ) = C>(T )ζ.(4.16c)

Further, employing the functions Ỹ (·) and ϕ̃(·) we introduce a new function µ̃(·) : [0, T ]→
R defined by

˙̃µ(t) + |r(t)|2 − 2f>0 (t)ϕ̃(t) + f>1 (t)Ỹ (t)f1(t) = 0, t ∈ [0, T )(4.17)

µ̃(T ) = |ζ|2.

We set

(4.18) Πd(k; Ỹ (kh))
∆
= R(k) +

1∑
j=0

B>dj(k)Ỹ (kh)Bdj(k), 0 ≤ k ≤ N.

With this notation, (3.13) written for Y (t) replaced by Ỹ (t) becomes:

(4.19) Πd(k; Ỹ (kh)) > 0.

4.1. The solution of the first tracking problem. We consider ũ = {ũ(k)}0≤k≤N defined
as

(4.20) ũ(k)
∆
= F̃ (k)x̃(kh) + Ψ̃(k)

where F̃ (k) is computed as in (3.15) for Y (·) replaced by Ỹ (·) and

(4.21) Ψ̃(k)
∆
= Π−1

d (k; Ỹ (kh))

B>d0(k)ϕ̃(kh)−
1∑

j=0

B>dj(k)Ỹ (kh)gj(k)

 ,

k ∈ {0, 1, . . . , N}. In (4.20) x̃(kh) are the values at impulsive instants times tk = kh of the
solution of the following initial value problem (IVP)

dx(t) = (A0(t)x(t) + f0(t))dt+ (A1(t)x(t) + f1(t))dw(t), kh < t ≤ (k + 1)h(4.22a)

x(kh+) = [Ad0(k) +Bd0(k)F̃ (k) + wd(k)(Ad1(k) +Bd1(k)F̃ (k))]x(kh)(4.22b)

+ (Bd0(k) + wd(k)Bd1(k))Ψ(k) + g0(k) + wd(k)g1(k), 0 ≤ k ≤ N,
x(0) = x0.(4.22c)

Now we are in position to state and prove a result which provides the solution of the first
tracking problem asking for the minimization of the objective function (2.2).
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Theorem 4.1. Under the assumptions (A1) and (A2), the optimal control problem which is re-
quiring the minimization of the objective function J1(x0;u) along of the trajectories of the ICSS
(2.1) determined by the controls ũ = { ˜u(k)}0≤k≤N . This control is described by (4.20)-(4.22).
The minimal value of the performance criterion (2.2) is:

J1(x0; ũ) = x>0 Ỹ (0−)x0 − 2x>0 ϕ̃(0−) + µ̃(0) +

N∑
k=0

 1∑
j=0

g>j (k)Ỹ (kh)gj(k)− 2g>0 (k)ϕ̃(kh)−

− (B>d0(k)ϕ̃(kh)−
1∑

j=0

B>dj(k)Ỹ (kh)gj(k))>Π−1
d (k; Ỹ (kh))(B>d0(k)ϕ̃(kh)(4.23)

−
1∑

j=0

B>dj(k)Ỹ (kh)gj(k))


Proof. We consider the function V (·, ·) : [0, T ]× Rn → R defined by

V (t, x) = x>Ỹ (t)x− 2x>ϕ̃(t) + µ̃(t).

Applying the Ito formula (see Theorem 5.2.1 from [10]) on intervals of the form [τ1, τ2] ⊂
[kh, (k+ 1)h] and letting τ1 → kh and τ2 → (k+ 1)h we obtain via (3.5a), (4.16a) and (4.17)
that

(k+1)h∫
kh

E[|z(t;x0,u)− r(t)|2]dt+ E[V ((k + 1)h−, x((k + 1)h;x0,u))](4.24)

= E[V (kh, x(kh+;x0,u))]

for all 0 ≤ k ≤ N with the convention that (k + 1)h = T when k = N. Substituting
x(kh+;x0,u) in (4.24), using (2.1b), (3.5b) and (4.16b) after some several algebraic calcula-
tions we obtain that

(k+1)h∫
kh

E[|z(t;x0,u− r(t)|2]dt+ E[u>(k)R(k)u(k)](4.25)

= E[V (kh−, x(kh;x0,u))]− E[V ((k + 1)h−, x((k + 1)h;x0,u))]

+ E[(u(k)− û(k))>Πd(k, Ỹ (kh))(u(k)− û(k))] + γ(k)

for all u ∈ Uad, where we denoted

(4.26) û(k) = F̃ (k)x(kh; k0,u) + Ψ̃(k)

and

(4.27) γ(k) :=

1∑
j=0

g>j (k)Ỹ (kh)gj(k)− 2g>0 ϕ̃(kh)− Ψ̃>(k)Πd(k, Ỹ (kh))Ψ̃(k).

Summing up (4.25) from k = 0 to k = N we obtain according to (2.2), that

J1(x0;u) =V (0−, x0) +

N∑
k=0

E[(u(k)− û(k))>Πd(k, Ỹ (kh))(u(k)− û(k))](4.28)

+

N∑
k=0

γ(k)
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for all u ∈ Uad. Invoking (4.19) we deduce that

(4.29) J1(x0,u) ≥ V (0−, x0) +

N∑
k=0

γ(k), for all u ∈ Uad.

On the other hand, from the uniqueness of the solution of the ICSS (2.1) we deduce that
x(·;x0, ũ) coincides to the solution x̃(·) of the IVP (4.22). Comparing (4.26) and (4.20) we
may infer that û(k) = ũ(k), when u(k) = ũ(k). Thus (4.28) yields:

(4.30) J1(x0;u) ≥ J1(x0; ũ), for all u ∈ Uad.

Hence, ũ described in (4.20)-(4.22) achieves the minimal value of (2.2). Moreover, com-
paring (4.21) and (4.27), we may conclude that the right hand side of (4.30) coincides to
the right hand side of (4.23). The proof is complete. �

4.2. The solution of the second tracking problem. Setting ν(k) := u(k) − v(k), 0 ≤ k ≤
N, we can see that the minimization of J2(x0;u) along of the trajectories of the ICSS (2.1)
is equivalent to the minimization of

(4.31) J3(x0;ννν)
∆
= E[|z(T ;x0, ννν)− ζ|2 +

T∫
0

|z(t;x0, ν)− r(t)|2dt] +

N∑
k=0

E[ν>(k)R(k)ν(k)]

along the trajectories of the following ICSS:

dx(t) = (A0(t)x(t) + f0(t))dt+ (A1(t)x(t) + f1(t))dw(t), kh < t ≤ (k + 1)h(4.32a)

x(kh+) = Ad0(k)x(kh) +Bd0(k)ν(k) + g̃0(k) + wd(k)(Ad1(k)x(kh)(4.32b)

+Bd1(k)ν(k) + g̃1(k)), k ∈ {0, 1, . . . , N}
x(0) = x0,(4.32c)

where we have denoted

(4.33) g̃j(k)
∆
= gj(k) +Bdj(k)v(k), j = 0, 1.

So, to obtain the solution of the second tracking problem we can apply the result derived
in Theorem 4.1 in the case of the problem asking for the minimization of the objective
function (4.31) along the trajectories of the ICSS (4.32) determined by the set of admissible
controls Uad.

First, let us update the IVPs (4.16) and (4.17) according to the coefficients of the ICSS
(4.32)-(4.33). Thus TVP (4.16) is replaced by

− ϕ̇(t) = A>0 (t)ϕ(t) + C>(t)r(t)− Ỹ (t)f0(t)−A>1 (t)Ỹ (t)f1(t),(4.34a)

kh ≤ t < (k + 1)h

ϕ(kh−) = (Ad0(k) +Bd0(k)F̃ (k))>ϕ(kh)(4.34b)

−
1∑

j=0

(Adj(k) +Bdj(k)F̃ (k))>Ỹ (kh)(gj(k) +Bdj(k)v(k)), 0 ≤ k ≤ N,

ϕ(T ) = C>(T )ζ.(4.34c)

If ˜̃ϕ(·) is a solution of the TVP (4.34) we can define the function ˜̃µ(·) : [0, T ]→ R by

d

dt
˜̃µ(t) + |r(t)|2 − 2f>0 (t) ˜̃ϕ(t) + f>1 (t)Ỹ (t)f1(t) = 0,(4.35)

˜̃µ(T ) = |ζ|2
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which is the new version of (4.17). Let ˜̃u = {˜̃u(k)}0≤k≤N be defined by

(4.36) ˜̃u(k)
∆
= v(k) + F̃ (k)˜̃x(kh) + ˜̃Ψ(k)

where

˜̃Ψ(k)
∆
= Π−1

d (k; Ỹ (kh))

B>d0(k) ˜̃ϕ(kh)−
1∑

j=0

B>dj(k)Ỹ (kh)(gj(k) +Bdj(k)v(k))

 ,(4.37)

k ∈ {0, 1, . . . , N}.

In (4.36), ˜̃x(kh) are the values at impulsive instant times tk = kh of the solution of the
following ICSS:

dx(t) = (A0(t)x(t) + f0(t))dt+ (A1(t)x(t) + f1(t))dw(t), kh < t ≤ (k + 1)h(4.38a)

x(kh+) = [Ad0(k) +Bd0(k)F̃ (k) + wd(k)(Ad1(k) +Bd1(k)F̃ (k))]x(kh)(4.38b)

+Bd0(k) ˜̃Ψ(k) + g̃0(k) + wd(k)(Bd1(k) ˜̃Ψ(k) + g̃1(k)), k ∈ {0, 1, . . . , N}
x(0) = x0,(4.38c)

Now, we are in position to state the result which provides the optimal control for the
second tracking problem investigated in this work.

Theorem 4.2. Under the assumptions (A1) and (A2), the tracking problem asking for the min-
imization of the objective function J2(x0;u) along the trajectories of the ICSS (2.1) determined
by the controls u ∈ Uad has a unique optimal control. The optimal control ˜̃u = {˜̃u(k)}0≤k≤N is
described by (4.36)-(4.38). The minimal value of the cost functional is:

J2(x0; ˜̃u) = x>0 Ỹ (0−)x0 − 2x>0 ˜̃ϕ(0−) + ˜̃µ(0)

+

N∑
k=0

[
(gj(k) +Bdj(k)v(k))>Ỹ (kh)(gj(k) +Bdj(k)v(k))

−2(g0(k) +Bd0(k)v(k))> ˜̃ϕ(kh)− ˜̃Ψ>(k)Πd(k; Ỹ (kh)) ˜̃Ψ(k)
]
.

Proof. The proof is obtained directly applying Theorem 4.1 to the auxiliary tracking prob-
lem described by the objective function (4.31) and the controlled system (4.32). �
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5SOFIA UNIVERSITY ”ST. KL. OHRIDSKI”
FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION

125 TZARIGRADSKO CHAUSSEE BLVD., BL. 3, SOFIA 1113, BULGARIA

Email address: i−ivanov@feb.uni-sofia.bg


