
CARPATHIAN J. MATH.
Volume 38 (2022), No. 3,
Pages 763 - 768

Online version at https://semnul.com/carpathian/

Print Edition: ISSN 1584 - 2851; Online Edition: ISSN 1843 - 4401

DOI: https://doi.org/10.37193/CJM.2022.03.19

Dedicated to Prof. Emeritus Mihail Megan on the occasion of his 75th anniversary

A case study in set-mapping pair theory: the set-mapping
pair bijections

A.-D. FILIP1 and I. A. RUS2

ABSTRACT. In a recent paper (I. A. Rus. Sets with structure, mappings and fixed point property: fixed point
structures. Fixed Point Theory 23 (2022), No. 2) the author introduced, amongst others, the following notions:
set-mapping pair and set-mapping pair bijection. In this paper we study the set-mapping pair bijections in
connection with the isomorphisms structure, and their impact on the fixed point theory in a set-mapping pair.
Some open problems are also formulated.

1. INTRODUCTION AND PRELIMINARIES

LetX and Y be two nonempty sets with some structure (ordered sets, or metric spaces,
or L-spaces, or topological spaces, or Kasahara spaces, or compact subsets of a topological
space, or convex subsets of a Banach space, . . .), as in [18] and the references therein (J.
Dieudonné (1982), S. Mac Lane (1996), K. Denecke (2007), D. Duffus and I. Rival (1981),
D. Gorenstein (1968), G. Longo (1983), B. Schröder (2003), S. Vasilache (1956), . . .).

We denote by M(X,Y ) := {f : X → Y | f is a mapping from the set X to the set Y }
and by Hom(X,Y ) := {f : X → Y | f is a mapping which preserves the structure, i.e., a
morphism}.

The following notions were introduced in [18].

Definition 1.1. Let U be a class of nonempty sets with some structure. We suppose that
for each ordered pair (X,Y ) with X and Y in U , a set of mappings from the set X to the
set Y , M(X,Y ) is given. By f ∈M we understand that there existX and Y in U such that,
f ∈M(X,Y ). By definition, the pair (U ,M) is a set-mapping pair.

Definition 1.2. A pair (U ,M) is with composition if for any f, g ∈ M such that f ◦ g is
defined, we have f ◦ g ∈M .

Definition 1.3. A pair (U ,M) is with identity if it is with composition and for eachX ∈ U ,
the identity mapping belongs to (U ,M), i.e., 1X ∈M(X,X).

Definition 1.4. Let (U ,M) be a set-mapping pair. By definition, a bijective mapping f ∈
M(X,Y ), with X,Y ∈ U , is a (U ,M)-bijection if for all g ∈ M(X,X) and h ∈ M(Y, Y ) we
have that, f−1 ◦ h ◦ f ∈M(X,X) and f ◦ g ◦ f−1 ∈M(Y, Y ). We also call such a bijective
mapping, a set-mapping pair bijection.

For examples and counterexamples related to these notions see [18]. Regarding the
notion of isomorphism in a category see [2], [11], [3], [4], [13].
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The aim of this paper is to study the set-mapping pair bijections in connection with the
isomorphisms structure and its impact on the fixed point theory in a set-mapping pair.

The structure of the paper is the following:
1. Introduction and preliminaries
2. Isomorphisms in (U , Hom) and (U ,M)-bijections
3. Properties preserved by (U ,M)-bijections
4. Set-mapping pairs in terms of Kasahara spaces
5. Conclusions

Throughout this paper we follow the notations and terminology given in [18].

2. ISOMORPHISMS IN (U , Hom) AND (U ,M)-BIJECTIONS

Let C be a category of sets with some structure, i.e., the class of objects of C. Let U be the
class of sets having the same structure as the sets belonging to C. Let Hom(X,Y ) := {f :
X → Y | f preserves the structure}. The class of Hom is a partial monoid with respect to
composition. By definition, for X,Y ∈ U , an element ϕ ∈ Hom(X,Y ) is an isomorphism
if ϕ is a bijection and ϕ−1 ∈ Hom(Y,X). If for two objects of C, i.e. two sets X,Y ∈ U ,
there exists an isomorphism, then we call X and Y isomorphic. It is clear that, (U , Hom)
is a set-mapping pair.

Example 2.1 (The category Ord). In this case, U := the class of all ordered sets (for the no-
tations and terminology in ordered sets see [12]) andHom(X,Y ) := {f : X → Y | f is increasing}.
A bijection ϕ ∈ Hom(X,Y ) is an isomorphism iff ϕ−1 ∈ Hom(Y,X), i.e., ϕ and ϕ−1 are
increasing. If ϕ is an isomorphism in Ord, then ϕ is a (U , Hom)-bijection.

Example 2.2 (The category Met). In this case, U := the class of all metric spaces and for
X and Y metric spaces, Hom(X,Y ) := {f : X → Y | f is nonexpansive}. An element
ϕ ∈ Hom(X,Y ) is an isomorphism iff ϕ is an isometry, i.e., ϕ : (X, dX) → (Y, dY ) is a
bijection such that, dY (ϕ(x), ϕ(y)) = dX(x, y), for all x, y ∈ X .

We observe that each isometry is a (U , Hom)-bijection. Moreover, if ϕ : (X, dX) →
(Y, dY ) is a bijection such that there exists k > 0, for which we have that

dY (ϕ(x), ϕ(y)) = kdX(x, y), ∀ x, y ∈ X,
then ϕ is a (U , Hom)-bijection, which, in general, is not in Hom. Indeed, let us consider
for example g ∈ Hom(X,X), i.e., dX(g(x), g(y)) ≤ dX(x, y), ∀ x, y ∈ X . We have that,

dY (ϕ(g(ϕ
−1(x))), ϕ(g(ϕ−1(y)))) = kdX(g(ϕ−1(x), g(ϕ−1(y)))

≤ kdX(ϕ−1(x), ϕ−1(y)) ≤ dY (x, y), ∀ x, y ∈ Y, i.e. ϕ ◦ g ◦ ϕ−1 ∈ Hom(Y, Y ).

Example 2.3 (The category HTop). In this case U := the class of all Hausdorff topological spaces
and Hom(X,Y ) := C(X,Y ) := {f : X → Y | f is continuous}. A bijection ϕ : X → Y is
an isomorphism if ϕ and ϕ−1 are continuous. Each isomorphism in HTop is a (U , Hom)-
bijection.

Example 2.4. Let U := the class of all ordered sets and M(X,Y ) := {f : X → Y | f is
decreasing}. Then (U ,M) is a set-mapping pair. This pair is not with composition. If
ϕ : X → Y is a bijection such that ϕ and ϕ−1 are increasing, then ϕ is a (U ,M)-bijection.
Indeed, let for example, g : X → X be decreasing, x, y ∈ Y , x ≤ y. We have that, ϕ−1(x) ≤
ϕ−1(y), g(ϕ−1(x)) ≥ g(ϕ−1(y)), ϕ(g(ϕ−1(x))) ≥ ϕ(g(ϕ−1(y))), i.e., ϕ ◦ g ◦ ϕ−1 ∈M(Y, Y ).

Example 2.5. Let (X,≤) be an ordered set. We take U := {(Y,≤) | Y ⊂ X, Y 6= ∅} and for
Y,Z ∈ U ,M(Y,Z) := {f : Y → Z | f is progressive, i.e., x ≤ f(x), ∀ x ∈ Y }. If ϕ : Y → Z
is a bijection such that ϕ and ϕ−1 are increasing, then ϕ is a (U ,M)-bijection. Indeed, for
example, if g ∈ M(Y, Y ) and z ∈ Z, then ϕ−1(z) ≤ g(ϕ−1(z)) and z ≤ ϕ(g(ϕ−1(z))), i.e.,
ϕ ◦ g ◦ ϕ−1 ∈M(Z,Z).
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From the above examples, we have the following open problems.

Problem 2.1. In which category (U , Hom) of sets with structure, each (U , Hom)-bijection is an
isomorphism?

Problem 2.2. If a category is not a solution of Problem 2.1, the problem is to give examples of
(U , Hom)-bijections which are not isomorphisms in (U , Hom).

Remark 2.1. If ϕ and ψ are isomorphisms in a category of sets with structure such that
ψ ◦ ϕ is defined, then ψ ◦ ϕ is an isomorphism. We have a similar property for (U ,M)-
bijections.

Let (U ,M) be a set-mapping pair and ϕ,ψ ∈ M be two (U ,M)-bijections. If ψ ◦ ϕ is
defined, then ψ ◦ ϕ is a (U ,M)-bijection.

Indeed, let ϕ ∈ M(X,Y ) and ψ ∈ M(Y, Z) and, for example, h ∈ M(X,X). From
h ∈ M(X,X) we have that, ϕ ◦ h ◦ ϕ−1 ∈ M(Y, Y ), ψ(ϕ ◦ h ◦ ϕ−1)ψ−1 ∈ M(Z,Z), i.e.,
(ψ ◦ ϕ) ◦ h ◦ (ψ ◦ ϕ)−1 ∈M(Z,Z).

Remark 2.2. More considerations on the set theory and the category theory can be found
in: [4], [2], [11], [14], [6], [17], [20], [3].

3. PROPERTIES PRESERVED BY (U ,M)-BIJECTIONS

The following notions were introduced in [18].
Let (U ,M) be a set-mapping pair and S ⊂ U , S 6= ∅.

Definition 3.5. The triple (U ,S,M) is a fixed point structure (f.p.s.) on (U ,M) if for each
X ∈ S and f ∈M(X,X), the fixed point set of f is not empty, i.e., Ff 6= ∅.

Let Smax := the class of all X ∈ U such that if f ∈M(X,X) then Ff 6= ∅. By definition,
the triple (U ,Smax,M) is the maximal f.p.s. on (U ,M).

Definition 3.6. Let (U ,S,M) be a f.p.s. on (U ,M). An element X ∈ S has the common
fixed point property if the following implication holds,

f, g ∈M(X,X), f ◦ g = g ◦ f ⇒ Ff ∩ Fg 6= ∅.

Definition 3.7. Let (U ,M) be a set mapping pair and (U ,S,M) be a f.p.s. on (U ,M). By
definition, an element X ∈ S has the coincidence point property if the following implica-
tion holds,

f, g ∈M(X,X), f ◦ g = g ◦ f ⇒ C(f, g) := {x ∈ X | f(x) = g(x)} 6= ∅.

Theorem 3.1. Let (U ,M) be a set mapping pair, X ∈ Smax and Y ∈ U . If there exists a
(U ,M)-bijection, ϕ : X → Y , then:

(1) Y ∈ Smax;
(2) if X has the common fixed point property then Y has the common fixed point property;
(3) if X has the coincidence point property then Y has the coincidence point property.

Proof. (1). Let g ∈M(Y, Y ). Since ϕ : X → Y is a (U ,M)-bijection, it follows that ϕ−1 ◦ g ◦
ϕ ∈ M(X,X). Since X ∈ Smax, we have Fϕ−1◦g◦ϕ 6= ∅. So, there exists x∗ ∈ X such that
ϕ−1(g(ϕ(x∗))) = x∗. It follows that g(ϕ(x∗)) = ϕ(x∗), so Fg 6= ∅. Hence, Y ∈ Smax.

(2). Let g, h ∈ M(Y, Y ) such that g ◦ h = h ◦ g. Since ϕ : X → Y is a (U ,M)-bijection,
we have ϕ−1 ◦ g ◦ ϕ ∈ M(X,X) and ϕ−1 ◦ h ◦ ϕ ∈ M(X,X). In addition, ϕ−1 ◦ g ◦ ϕ and
ϕ−1 ◦ h ◦ ϕ are commuting mappings.

Since X has the common fixed point property, it follows that Fϕ−1◦g◦ϕ ∩Fϕ−1◦h◦ϕ 6= ∅.
So, there exists x∗ ∈ X such that x∗ = (ϕ−1 ◦ g ◦ ϕ)(x∗) and x∗ = (ϕ−1 ◦ h ◦ ϕ)(x∗). It
follows that ϕ(x∗) = g(ϕ(x∗)) = h(ϕ(x∗)). Hence Fg∩Fh 6= ∅ and the conclusion follows.
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(3). Let g, h ∈M(Y, Y ) such that g ◦h = h◦g. Since ϕ : X → Y is a (U ,M)-bijection, we
have ϕ−1 ◦ g ◦ ϕ ∈M(X,X), ϕ−1 ◦ h ◦ ϕ ∈M(X,X) and both are commuting mappings.

SinceX has the coincidence point property, there exists x∗ ∈ X such that ϕ−1(g(ϕ(x∗)))
= ϕ−1(h(ϕ(x∗))). It follows that g(ϕ(x∗)) = h(ϕ(x∗)). So, C(g, h) 6= ∅ and the conclusion
follows. �

Remark 3.3. More considerations on the fixed point property, common fixed point prop-
erty and coincidence point property, can be found in [10], [19], [1], [5], [6], [14], [16], [20],
[13].

4. SET-MAPPING PAIRS IN TERMS OF KASAHARA SPACES

Let X be a nonempty set. Let X→ be an L-space structure on X and dX : X ×X → R+

be a metric on X . By definition (see [15], [7], [8], [9]), the triple (X,
X→, dX) is called a

Kasahara space if:
(1) if {xn}n∈N ⊂ X is a Cauchy sequence with respect to dX , then it is convergent

with respect to X→;
(2) if xn

X→ x∗, yn
X→ y∗ and dX(xn, yn)→ 0, then x∗ = y∗.

If the triple (X,
X→, dX) satisfies only the condition (2), then we call it pre-Kasahara space.

The following result is well known (see [15], [7]).
Contraction principle in a Kasahara space. Let (X, X→, dX) be a Kasahara space and f : X →
X be a mapping. We suppose that:

(1) f : (X,
X→)→ (X,

X→) is continuous;
(2) f : (X, dX)→ (X, dX) is a contraction.

Then, Ff = {x∗}.

Example 4.6. Let X be a nonempty set, dX and ρX be two metrics on X . If there exists
c > 0 such that, ρX(x, y) ≤ cdX(x, y), for all x, y ∈ X , then the triple (X,

ρX→, dX) is a
Kasahara space.

Example 4.7. Let X := R, c(R) := c1(R) ∪ c2(R) ∪ c3(R), where c1(R) is the set of
all convergent sequences with respect to the metric dX : R × R → R+, defined by

dX(x, y) = |x − y|, for all x, y ∈ R and, on c1(R), we consider X→:=
dX→; c2(R) is the set

of all subsequences {xn}n∈N of {n}n∈N with xn
X→ 0; c3(R) be the set of all subsequences

{yn}n∈N of {n + 1
n+1}n∈N with yn

X→ 1. Notice that (R, c(R), X→) is an L-space. But the

triple (R, X→, dX) is not a Kasahara space. The condition (1) of Kasahara space definition
is satisfied, but the condition (2) is not. Indeed, let xn := n and yn := n + 1

n+1 , for all

n ∈ N. For these two sequences we have xn
X→ 0, yn

X→ 1 and dX(xn, yn) → 0 as n → ∞,
but 0 6= 1.

Example 4.8. Let U := the class of all Kasahara spaces and for X,Y ∈ U , Hom(X,Y ) :=

{f : X → Y | f : (X, dX)→ (Y, dY ) is nonexpansive and f : (X,
X→)→ (Y,

Y→) is continuous}.
Then (U , Hom) is a category. A mapping f : X → Y is an isomorphism iff:

(i) f is a bijection;
(ii) f : (X,

X→)→ (Y,
Y→) and f−1 : (Y,

Y→)→ (X,
X→) are continuous;

(iii) f : (X, dX)→ (Y, dY ) is an isometry.
In this category we have (U , Hom)-bijections which are not isomorphisms (see Example

2.2).
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Example 4.9. Let U := the class of all Kasahara spaces and for X,Y ∈ U , M(X,Y ) := {f :

X → Y | f : (X,
X→) → (Y,

Y→) is continuous and f : (X, dX) → (Y, dY ) is a contraction}.
The set-mapping pair (U ,M) is with composition but is not with identity. Let f ∈M(X,Y )
be such that:

(a) f is a bijection;
(b) f : (X,

X→)→ (Y,
Y→) and f−1 : (Y,

Y→)→ (X,
X→) are continuous;

(c) there exists k > 0 such that dY (f(x), f(y)) = kdX(x, y), ∀ x, y ∈ X .
Then f is a (U ,M)-bijection.

Example 4.10. Let U := the class of all pre-Kasahara spaces and M as in Example 4.9. If S
:= the class of all Kasahara spaces, then (U ,S,M) is, by the contraction principle, a f.p.s.
It is an open problem if Smax = S or not (see [14], [16], [18]).

5. CONCLUSIONS

In this paper we have studied the concept of set-mapping pair bijections in connection
with the isomorphisms structure, and we have investigated their impact on the fixed point
theory in a set-mapping pair in terms of Kasahara spaces. Some open problems were
given (see Problem 2.1, Problem 2.2 and Example 4.10). Beside these problems, it would
be interesting to conduct a similar study in the case of multivalued mappings. Regarding
the fixed point structures for multivalued mappings on a set with some structure, see [14]
and [16] and the references therein.
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[19] Rus, I. A.; Petruşel, A.; Petruşel, G. Fixed Point Theory. Cluj Univ. Press, Cluj-Napoca, 2008.
[20] Szymik, M., Homotopies and the universal fixed point property. arXiv:1210.6496v3[math. GN], 29 Oct. 2013,

1–17.



768 A.-D. Filip and I. A. Rus

1DEPARTMENT OF STATISTICS-FORECASTS-MATHEMATICS
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