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Spaces
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TOTH3

ABSTRACT. The paper considers three concepts of uniform instability for evolution operators: uniform ex-
ponential instability, uniform polynomial instability and uniform h-instability. Some characterizations of these
notions and connections between these concepts are given.

1. INTRODUCTION

The instability behaviors of evolution operators is a topic that has witnessed lately an
impressive development in recent years.

Among the most studied concepts in this field are the exponential instability ([1], [5],
[8], [9], [10], [12]), and the polynomial instability ([2], [3], [6], [11]).

As a generalization of the notions mentioned above, in a natural manner we focus
on an another type of uniform instability. In fact, we consider the concept of uniform
h-instability where h : R+ → [1,∞) is a growth rate (i.e. h is bijective and nondecreasing).

In this paper we give characterizations for uniform h-instability. As particular cases we
obtain necessary and sufficient conditions for uniform exponential instability and uniform
polynomial instability. Connections between these concepts are emphasized.

We obtain generalizations of some instability with growth rates results as well as ver-
sions of stability with growth rates theorems for the case of instability.([2], [4], [5], [6], [7],
[8], [9]).

2. UNIFORM INSTABILITY CONCEPTS

Throughout this paper we will consider X a real or complex Banach space and B(X)
the Banach algebra of all bounded linear operators acting on X , both with the norm ∥ · ∥.
Let I be the identity operator on X and by ∆ respectively T we denote the sets defined as
follows:

∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}.
Let Φ : ∆ → B(X) be an evolution operator on X (i.e. Φ(t, t) = I for every t ≥ 0 and

Φ(t, s)Φ(s, t0) = Φ(t, t0) for all (t, s, t0) ∈ T ).
Let h : R+ → [1,∞) be a growth rate.

Definition 2.1. The evolution operator Φ : ∆ → B(X) is called
(i) strongly measurable if for all (s, x) ∈ R+ × X , the mapping t 7→ ∥Φ(t, s)x∥ is mea-

surable on [s,∞).
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(ii) with uniform h-decay (u.h.d.) if there exist M > 1 and ω > 0 such that

Mh(t)ω∥Φ(t, s)x∥ ≥ h(s)ω∥x∥,
for all (t, s, x) ∈ ∆×X.

(iii) uniformly h-instable (u.h.is.) if there exist N > 1 and ν > 0 such that

h(t)ν∥x∥ ≤ Nh(s)ν∥Φ(t, s)x∥,
for all (t, s, x) ∈ ∆×X.

In particular, for h(t) = et and h(t) = t+ 1 we obtain the notions of uniform exponential
decay (u.e.d.), uniform exponential instability (u.e.is.), respectively uniform polynomial decay
(u.p.d.) and uniform polynomial instability (u.p.is.).

Remark 2.1. The evolution operator Φ : ∆ → B(X)

(i) has uniform h-decay if and only if there are M > 1 and ω > 0 such that

h(s)ω∥Φ(s, t0)x0∥ ≤ Mh(t)ω∥Φ(t, t0)x0∥,
for all (t, s, t0, x0) ∈ T ×X.

(ii) is uniformly h-instable if and only if there are N > 1 and ν > 0 such that

h(t)ν∥Φ(s, t0)x0∥ ≤ Nh(s)ν∥Φ(t, t0)x0∥,
for all (t, s, t0, x0) ∈ T ×X.

Remark 2.2. If the evolution operator Φ : ∆ → B(X) is uniformly h-instable, then it has
uniform h-decay. The following example shows that the converse implication is not true.

Example 2.1. Let h : R+ → [1,∞) with lim
t→∞

h(t) = ∞. For X = R and the evolution
operator

Φ : ∆ → B(R), Φ(t, s)x =
h(s)

h(t)
x,

we have that Φ has u.h.d. and it is not u.h.is.
Indeed, it is easy to see that Φ has u.h.d. for M = 2 and ω = 1.
If we suppose that Φ is u.h.is. then we have

h(t)ν+1 ≤ Nh(s)ν+1, for all (t, s) ∈ ∆.

For s = 0 and t → ∞, we obtain a contradiction.

Remark 2.3. The connections between the exponential and the polynomial concepts are
given in the following diagram

u.e.is. ⇒ u.e.d.
⇓ ⇑

u.p.is. ⇒ u.p.d.

In general, the converse implications are not true.

Example 2.2. For X = R and

Φ : ∆ → B(R), Φ(t, s)x =
t2 + 1

s2 + 1
x,

we have that Φ is u.p.is. and it is not u.e.is. (see [11]).

The connections between u.h.is., u.e.is. and u.p.is. are given by

Proposition 2.1. For every evolution operator Φ : ∆ → B(X) the following statements are
equivalent:
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(i) Φ is uniformly h-instable;
(ii) the evolution operator

Φh : ∆ → B(X),Φh(t, s) = Φ(h−1(et), h−1(es))

is uniformly exponentially instable;
(iii) the evolution operator

Ψh : ∆ → B(X),Ψh(t, s) = Φ(h−1(t+ 1), h−1(s+ 1))

is uniformly polynomially instable;

Proof. It results in the same manner as in the stability case. (see [4], Theorems III.1 and
III.2). □

A characterization of the u.e.is. property is given by

Proposition 2.2. Let Φ : ∆ → B(X) be an evolution operator with uniform exponential decay.
Then Φ is uniformly exponentially instable if and only if there exist r > 1 and c ∈ (0, 1) such that

∥x∥ ≤ c∥Φ(r + s, s)x∥,∀s ≥ 0, ∀ x ∈ X.

Proof. See [1]. □

3. THE MAIN RESULTS

In this section we will present some characterization theorems for the uniform h insta-
bility with growth rates.

Theorem 3.1. Let Φ : ∆ → B(X) be an evolution operator with uniform h-decay. The following
statements are equivalent:

(1) Φ is uniformly h-instable.

(2) there exists L > 1 such that ln
h(t)

h(s)
∥x∥ ≤ L∥Φ(t, s)x∥, for all (t, s, x) ∈ ∆×X.

(3) there are a constant L > 1 and a strictly nondecreasing application φ : [1,∞) → [1,∞)
with lim

t→∞
φ(t) = ∞ and φ(1) = 1 such that

(3.1) φ

(
h(t)

h(s)

)
∥x∥ ≤ L∥Φ(t, s)x∥, for all (t, s, x) ∈ ∆×X.

(4) there are r > e and c ∈ (0, 1) such that

∥x∥ ≤ c∥Φ(h−1(rs), h−1(s))x∥, for all s ≥ 1 and x ∈ X.

Proof. (1) ⇒ (2)

We suppose that Φ is u.h.is. Then using the inequality
lnu

uν
≤ 1

νe
we obtain

ln
h(t)

h(s)
∥x∥ ≤ N ln

h(t)

h(s)
·
(
h(t)

h(s)

)−ν

∥Φ(t, s)x∥ ≤ N

νe
∥Φ(t, s)x∥ = L∥Φ(t, s)x∥,

where L = 1 +
N

νe
> 1, so the relation (2) is proved.

(2) ⇒ (3) It results immediately if we consider φ(t) = ln t.
(3) ⇒ (4) We suppose that there are L > 1 and φ : [1,∞) → [1,∞) a strictly nondecreasing
application with lim

t→∞
φ(t) = ∞ and φ(1) = 1 such that the inequality from relation (3.1)

states for all (t, s, x) ∈ ∆×X .
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Let r > e and s ≥ 1 with φ(r) > L. Then c =
L

φ(r)
< 1.

Then for t = h−1(rs) and s = h−1(s) we obtain

φ(r)∥x∥ ≤ L∥Φ(h−1(rs), h−1(s))x∥, ∀s ≥ 1, ∀x ∈ X, which is equivalent to (4).

(4) ⇒ (1) We suppose that there are r > e and c ∈ (0, 1) such that

(3.2) ∥x∥ ≤ c∥Φ(h−1(rs), h−1(s))x∥,∀s ≥ 1 ∀x ∈ X.

Let u = ln r, which implies u > 1 and r = eu > e.
Let v ≥ 0 and s = ev ≥ 1. Then, from (3.2) we have

∥x∥ ≤ c∥Φ(h−1(eu+v), h−1(ev))x∥,

that is equivalent to

∥x∥ ≤ c∥Φh(u+ v, v)x∥, for all v ≥ 0 and x ∈ X.

From Theorem 2.2 we obtain that Φh is uniformly exponentially instable which implies
from the Proposition 2.2 that Φ is uniformly h-instable, so the theorem is proved.

□

Corollary 3.1. If Φ : ∆ → B(X) is an evolution operator which has uniform exponential decay,
then the following statements are equivalent:

(1) Φ is uniformly exponentially instable.
(2) there exists L > 1 with (t− s)∥x∥ ≤ L∥Φ(t, s)x∥, for all (t, s, x) ∈ ∆×X.
(3) there are L > 1 and φ : R+ → R+ a strictly nondecreasing application with lim

t→∞
φ(t) =

∞ and φ(1) = 1 such that:

φ(t− s)∥x∥ ≤ L∥Φ(t, s)x∥, for all (t, s, x) ∈ ∆×X.

(4) there are r > 1 and c ∈ (0, 1) with ∥x∥ ≤ c∥Φ(r + s, s)x∥, for all (s, x) ∈ R+ ×X.

Proof. It is immediate from Theorem 3.1 if we consider h(t) = et. □

Corollary 3.2. If Φ : ∆ → B(X) is an evolution operator which has uniform polynomial decay,
then the following statements are equivalent:

(1) Φ is uniformly polynomially instable.

(2) there exists L > 1 with ln
t+ 1

s+ 1
∥x∥ ≤ L∥Φ(t, s)x∥, for all (t, s, x) ∈ ∆×X.

(3) there are L > 1 and φ : R+ → R+ a strictly nondecreasing application with lim
t→∞

φ(t) =

∞ and φ(1) = 1 such that:

φ

(
t+ 1

s+ 1

)
∥x∥ ≤ L∥Φ(t, s)x∥, for all (t, s, x) ∈ ∆×X.

(4) there are r > 1 and c ∈ (0, 1) : ∥x∥ ≤ c∥Φ(r + s, s)x∥, for all (s, x) ∈ R+ ×X.

Proof. It is immediate from Theorem 3.1 if we consider h(t) = t+ 1. □

In what follows, we will give three characterization theorems of Datko type for the
concept of uniform instability with growth rates. In order to do this, we introduce the
following classes of functions:

• H the set of all functions h : R+ → [1,∞) with the property that there exists H > 1
such that h(t+ 1) ≤ Hh(t), for all t ≥ 0.

• H0 the set of all functions h : R+ → [1,∞) with the property that h(t) ≥ t+ 1, for
all t ≥ 0.
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• H1 the set of all functions h : R+ → [1,∞) with the property that for all α < 0,

there exists H1 > 1 such that

∞∫
s

h(t)α−1dt ≤ H1h(s)
α, for all s ≥ 0.

• H2 the set of all functions h : R+ → [1,∞) with the property that for all α < 0,

there exists H2 > 1 such that

∞∫
s

h(τ)αdτ ≤ H2h(s)
α, for all s ≥ 0.

• H3 the set of all functions h : R+ → [1,∞) with the property that for all α > 0,

there exists H3 > 1 such that

t∫
0

h(s)αds ≤ H3h(t)
α, for all t ≥ 0.

Remark 3.4. If we denote by e(t) = et and p(t) = t+ 1 then

• e, p ∈ H ∩H0 ;
• e ∈ H2 ∩H3 ⊂ H1 ∩H3 ;
• p ∈ H1 \ (H2 ∪H3) .

Theorem 3.2. Let Φ : ∆ → B(X) a strongly measurable evolution operator with uniform h-
decay and h ∈ H0 ∩H1 . Then Φ is uniformly h-instable if and only if there are D > 1 and α > 0
with

∞∫
s

h(t)α−1

∥Φ(t, s)x∥
dt ≤ Dh(s)α

∥x∥
,

for all s ≥ 0 and x ∈ X \ {0} .

Proof. Necessity. We suppose that Φ is u.h.is. Let α ∈ (0, ν) , where ν is given by Definition
2.1.(iii).

∞∫
s

h(t)α−1

∥Φ(t, s)x∥
dt ≤ N

∞∫
s

h(t)α−1

∥x∥

(
h(s)

h(t)

)ν

dt =
Nh(s)ν

∥x∥

∞∫
s

h(t)α−ν−1dt ≤ D
h(s)α

∥x∥
,

where D = NH1.

Sufficiency. Let (t, s) ∈ ∆ with h(t) > 2s . Then

h(t)α

∥Φ(t, s)x∥
=

2

h(t)

h(t)∫
h(t)
2

h(t)α

∥Φ(t, τ)Φ(τ, s)x∥
dτ ≤ 2M

h(t)

h(t)∫
h(t)
2

h(t)α

∥Φ(τ, s)x∥

(
h(t)

h(τ)

)ω

dτ ≤

≤ 2ω+1M

h(t)∫
h(t)
2

(
h(t)

h(τ)

)α−1
h(τ)α−1

∥Φ(τ, s)x∥
dτ ≤ 2ω+αM

∞∫
s

h(τ)α−1

∥Φ(τ, s)x∥
dτ ≤

≤ 2ω+αMD
h(s)α

∥x∥

It results

(3.3)
h(t)α

∥Φ(t, s)x∥
≤ 2ω+αMD

h(s)α

∥x∥
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Let (t, s) ∈ ∆ with h(t) < 2s . Then we obtain

h(t)α

∥Φ(t, s)x∥
≤ Mh(t)α

∥x∥

(
h(t)

h(s)

)ω

=
M

∥x∥

(
h(t)

h(s)

)α+ω

h(s)α ≤ M4α+ω h(s)
α

∥x∥

It results

(3.4)
h(t)α

∥Φ(t, s)x∥
≤ M4α+ω h(s)

α

∥x∥

In conclusion, from relations (3.3) and (3.4) we obtain that Φ este u.h.is., so the theorem is
proved. □

Corollary 3.3. Let Φ : ∆ → B(X) be a strongly measurable evolution operator with uniform
exponential decay. Then Φ is uniformly exponentially instable if and only if there are D > 1 and
α > 0 with

∞∫
s

e(α−1)t

∥Φ(t, s)x∥
dt ≤ Deαs

∥x∥
,

for all (s, x) ∈ R+ ×X \ {0}.

Proof. It results immediately from Theorem 3.2 taking h(t) = et. □

Corollary 3.4. Let Φ : ∆ → B(X) be a strongly measurable evolution operator with uniform
polynomial decay. Then Φ is uniformly polynomially instable if and only if there are D > 1 and
α > 0 with

∞∫
s

(t+ 1)α−1

∥Φ(t, s)x∥
dt ≤ D(s+ 1)α

∥x∥
,

for all (s, x) ∈ R+ ×X \ {0}.

Proof. It results immediately from Theorem 3.2 taking h(t) = t+ 1. □

Corollary 3.5. Let Φ : ∆ → B(X) be a strongly measurable evolution operator with uniform
h-decay and h ∈ H0 ∩ H2 . Then Φ is uniformly h-instable if and only if there are D > 1 and
α > 0 such that

∞∫
s

h(t)α

∥Φ(t, s)x∥
dt ≤ Dh(s)α

∥x∥
,

for all (s, x) ∈ R+ ×X \ {0} .

Corollary 3.6. Let Φ : ∆ → B(X) be a strongly measurable evolution operator with uniform
exponential decay. Then Φ is uniformly exponentially instable if and only if there are D > 1 and
α > 0 with

∞∫
s

eαt

∥Φ(t, s)x∥
dt ≤ Deαs

∥x∥
,

for all (s, x) ∈ R+ ×X \ {0}.

Proof. It follows from Corollary 3.5, if we consider h(t) = et. □
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Theorem 3.3. Let Φ : ∆ → B(X) be an evolution operator strongly measurable with uniform
h-decay and h ∈ H ∩ H3 . Then Φ is uniformly h-instable if and only if there are D > 1 and
α ∈ (0, 1) with

t∫
t0

∥Φ(s, t0)x0∥
h(s)α

ds ≤ D∥Φ(t, t0)x0∥
h(t)α

,

for all (t, t0, x0) ∈ ∆×X.

Proof. Necessity. We suppose that Φ is u.h.is. Let α ∈ (0, ν) where ν in given by Remark
2.1 (ii). Then

t∫
t0

∥Φ(s, t0)x0∥
h(s)α

ds ≤ N

t∫
t0

∥Φ(t, t0)x0∥
h(s)α

(
h(s)

h(t)

)ν

ds ≤ N∥Φ(t, t0)x0∥
h(t)ν

t∫
t0

h(s)ν−αds ≤

≤ N∥Φ(t, t0)x0∥
h(t)ν

H3h(t)
ν−α =

NH3∥Φ(t, t0)x0∥
h(t)α

=
D∥Φ(t, t0)x0∥

h(t)α

where D = NH3 .
Sufficiency. Let t > s+ 1 and s > t0 . Then we obtain

∥Φ(s, t0)x0∥
h(s)α

=

s+1∫
s

∥Φ(s, t0)x0∥
h(s)α

dτ ≤ M

s+1∫
s

h(τ)ω

h(s)ω+α
∥Φ(τ, t0)x0∥dτ ≤

≤ M

s+1∫
s

(
h(τ)

h(s)

)ω+α

h(τ)−α∥Φ(τ, t0)x0∥dτ ≤

≤ M

s+1∫
s

(
h(s+ 1)

h(s)

)ω+α ∥Φ(τ, t0)x0∥
h(τ)α

dτ ≤

≤ MHω+α

t∫
t0

∥Φ(τ, t0)x0∥
h(τ)α

dτ ≤ DMHω+α ∥Φ(t, t0)x0∥
h(t)α

.

It results

(3.5) h(t)α∥Φ(s, t0)x0∥ ≤ DMHω+αh(s)α∥Φ(t, t0)x0∥.

If t ∈ [s, s+ 1) we have

∥Φ(s, t0)x0∥ ≤ M

(
h(t)

h(s)

)ω

∥Φ(t, t0)x0∥ ≤ M

(
h(s+ 1)

h(s)

)ω

∥Φ(t, t0)x0∥ ≤

≤ MHω∥Φ(t, t0)x0∥.

It results

∥Φ(s, t0)x0∥ ≤ MHω∥Φ(t, t0)x0∥.
Then

h(t)α

∥Φ(t, t0)x0∥
≤ MHω h(t)α

∥Φ(s, t0)x0∥
= MHω

(
h(t)

h(s)

)α
h(s)α

∥Φ(s, t0)x0∥
≤

≤ MHω+α h(s)α

∥Φ(s, t0)x0∥
.
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We obtained

(3.6) h(t)α∥Φ(s, t0)x0∥ ≤ MHω+αh(s)α∥Φ(s, t0)x0∥.
In conclusion, from relations (3.5) and (3.6) we have that the evolution operator Φ is u.h.is.

□

Corollary 3.7. Let Φ : ∆ → B(X) be a strongly measurable evolution operator with uniform
exponential decay. Then Φ is uniformly eponentially instable if and only if there are D > 1 and
α > 0 with

t∫
t0

∥Φ(s, t0)x0∥
eαs

ds ≤ D∥Φ(t, t0)x0∥
eαt

,

for all (t, t0, x0) ∈ ∆×X .

Proof. It results immediately from Theorem 3.3 for h(t) = et. □
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