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On uniform polynomial trichotomy of skew-evolution
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ABSTRACT. The paper treats two concepts of uniform polynomial trichotomy for the skew-evolution semi-
flows in Banach spaces. We obtain the connection between them, a characterization for a property of uniform
polynomial growth and a sufficient criteria for the uniform polynomial trichotomy.

1. INTRODUCTION

The study of the asymptotic behaviors of dynamical systems as stability, dichotomy
and trichotomy has known an impressive development in the last decades. These pro-
perties are treated from various perspectives: exponential ([17], [18], [23]), polynomial
([4], [5], [8]-[10], [19], [21], [22]) or with growth rates ([3], [20]).

The polynomial behavior is approached for the first time by L. Barreira and C. Valls
in [2], more exactly a concept of nonuniform polynomial dichotomy for evolution ope-
rators. Also, we remark the results obtained by P. V. Hai ([12]) for the polynomial stabi-
lity, using techniques of Banach function spaces. Regarding more general properties of
nonuniform polynomial trichotomy, in [1], the authors consider three concepts of polyno-
mial trichotomy for evolution operators and emphasize interesting examples, respectively
counterexamples.

The article of R. Datko ([7]) represented an important direction of research to obtain
integral conditions for the asymptotic properties. In this sense, we mention the contribu-
tions of M. Megan, A. L. Sasu, B. Sasu ([14]-[16]) for the the exponential stability/instability
of linear skew-product semiflows. Recently, R. Boruga (Toma) and M. Megan ([6]) have
proved necessary and sufficient conditions of Datko-type for the polynomial dichotomy
of evolution operators in the nonuniform case.

The trichotomy property is considered the most complex asymptotic property and it
is intensive studied in a large number of papers: [11], [13], [27], [28] and the references
therein. Different known tools are used to obtain qualitative results: in [24] and [26],
the authors prove important criteria for the exponential trichotomy, using input-output
techniques. Also, the exponential trichotomy is studied in discrete case by A. L. Sasu and
B. Sasu in [25], with Zabczyk-type methods.

In this paper the uniform polynomial trichotomy in the classical sense and the uniform
polynomial trichotomy are approached with invariant families of projectors. The relation
between them is established and a sufficient condition of Datko type is given, using a
property of uniform polynomial growth.
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2. PRELIMINARIES

Let X be a real or complex Banach space and Θ a metric space. B(X) represents the
Banach algebra of all bounded linear operators on X and the norms on X , respectively on
B(X), will be denoted by || · ||. Also,

∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}
and Γ = Θ×X.
Definition 2.1. We say that a continuous mapping ϕ : ∆×Θ→ Θ is evolution semiflow on
Θ if:

(es1) ϕ(s, s, θ) = θ, for all (s, θ) ∈ R+ ×Θ;

(es2) ϕ(t, s, ϕ(s, t0, θ)) = ϕ(t, t0, θ), for all (t, s, t0, θ) ∈ T ×Θ.

Definition 2.2. The mapping Φ : ∆×Θ→ B(X) is called evolution cocycle over the evolu-
tion semiflow ϕ if the following conditions hold:

(ec1) Φ(s, s, θ) = I (the identity operator on X), for all (s, θ) ∈ R+ ×Θ;

(ec2) Φ(t, s, ϕ(s, t0, θ))Φ(s, t0, θ) = Φ(t, t0, θ), for all (t, s, t0, θ) ∈ T ×Θ;

(ec3) (t, s, θ) 7→ Φ(t, s, θ)x is continuous for every x ∈ X.
Definition 2.3. If ϕ is an evolution semiflow on Θ and Φ is an evolution cocycle over the
evolution semiflow ϕ, then the pair C = (ϕ,Φ) is called skew-evolution semiflow on Γ.

Definition 2.4. A continuous mapping P : R+ ×Θ→ B(X), with

P 2(t, θ) = P (t, θ), for all (t, θ) ∈ R+ ×Θ,

is called family of projectors on X.

Definition 2.5. A family of projectors P : R+ × Θ → B(X) is called compatible with the
skew-evolution semiflow C = (ϕ,Φ) if:

P (t, ϕ(t, s, θ))Φ(t, s, θ) = Φ(t, s, θ)P (s, θ), for all (t, s, θ) ∈ ∆×Θ.

Remark 2.1. If a family of projectors P : R+ × Θ → B(X) is compatible with a skew-
evolution semiflow C = (ϕ,Φ), then the following invariance property holds:

Φ(t, s, θ)Range P (s, θ) ⊆ Range P (t, ϕ(t, s, θ)), for all (t, s, θ) ∈ ∆×Θ.

Definition 2.6. Let P1, P2, P3 : R+ × Θ → B(X) be three families of projectors on X . We
say that P = {P1, P2, P3} is a family of supplementary projectors if:

(s1) P1(s, θ) + P2(s, θ) + P3(s, θ) = I;
(s2) Pi(s, θ)Pj(s, θ) = 0,

for all (s, θ) ∈ R+ ×Θ, i, j ∈ {1, 2, 3}, i 6= j.

3. THE MAIN RESULTS

Let C = (ϕ,Φ) be a skew-evolution semiflow on Γ and P = {P1, P2, P3} a family of
projectors supplementary and compatible with C.

Definition 3.7. We say that (C,P) admits a uniform polynomial trichotomy in the classical
sense if there exist N ≥ 1, ν, ω > 0 and s0 > 0 such that:

(cupt1) uν(||Φ(u, r, θ)P1(r, θ)x||+ ||Φ(s, r, θ)P2(r, θ)x||) ≤
≤ Nsν(||Φ(s, r, θ)P1(r, θ)x||+ ||Φ(u, r, θ)P2(r, θ)x||);

(cupt2) sω||Φ(u, r, θ)P3(r, θ)x|| ≤ Nuω||Φ(s, r, θ)P3(r, θ)x||;
(cupt3) sω||Φ(s, r, θ)P3(r, θ)x|| ≤ Nuω||Φ(u, r, θ)P3(r, θ)x||,
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for all (u, s, r) ∈ T, r ≥ s0 and all (θ, x) ∈ Γ.

Remark 3.1. The pair (C,P) is uniformly polynomially trichotomic in the classical sense
if and only if there are the constants N ≥ 1, ν, ω > 0 and s0 > 0 with:

(cupt′1) uν(||Φ(u, s, θ)P1(s, θ)x||+ ||P2(s, θ)x||) ≤
≤ Nsν(||P1(s, θ)x||+ ||Φ(u, s, θ)P2(s, θ)x||);

(cupt′2) sω||Φ(u, s, θ)P3(s, θ)x|| ≤ Nuω||P3(s, θ)x||;
(cupt′3) sω||P3(s, θ)x|| ≤ Nuω||Φ(u, s, θ)P3(s, θ)x||,

for all (u, s) ∈ ∆, s ≥ s0 and all (θ, x) ∈ Γ.

Example 3.1. We consider X = R3 endowed with the norm

||x|| = |x1|+ |x2|+ |x3|,
Θ = R+ and the evolution semiflow ϕ : ∆×Θ→ Θ,

ϕ(s, r, θ) =

{
ln s

r + θ, if s ≥ r > 0
θ, if s = r = 0.

In addition, we consider Pi : R+ × Θ → B(X), i = 1, 3, where P1(s, θ)x = (x1, 0, 0),
P2(s, θ)x = (0, x2, 0), P3(s, θ)x = (0, 0, x3) and the mapping Φ : ∆×Θ→ B(X) given by
Φ(s, r, θ)x =

=


e− s∫

r

A1(ln
ξ
r
+θ)

ξ dξ
x1, e

s∫
r

A1(ln
ξ
r
+θ)

ξ dξ
x2,
(
r
s

)β
e
2
s∫
r

A2(ln
ξ
r
+θ)

ξ dξ
x3

 , if s ≥ r > 0

(x1, x2, x3) , if s = r = 0,

where x = (x1, x2, x3) ∈ X . Here A1, A2 are two continuous functions such that A1 is
decreasing, A2 is nondecreasing and

lim
s→+∞

A1(s) = α, lim
s→+∞

A2(s) = β.

After some computations, we obtain that (C,P) is uniformly polynomially trichotomic in
the classical sense with N = 1, ν = α and ω = β.

Definition 3.8. The pair (C,P) is called uniformly polynomially trichotomic if there are N ≥
1, ν > 0 and s0 > 0 such that:

(upt1) uν(||Φ(u, r, θ)P1(r, θ)x||+ ||Φ(s, r, θ)P2(r, θ)x||) ≤
≤ Nsν(||Φ(s, r, θ)P1(r, θ)x||+ ||Φ(u, r, θ)P2(r, θ)x||);

(upt2) ||Φ(u, r, θ)P3(r, θ)x|| ≤ N ||Φ(s, r, θ)P3(r, θ)x||;
(upt3) ||Φ(s, r, θ)P3(r, θ)x|| ≤ N ||Φ(u, r, θ)P3(r, θ)x||,

for all (u, s, r) ∈ T, r ≥ s0 and all (θ, x) ∈ Γ.

Remark 3.2. (C,P) is uniformly polynomially trichotomic if and only if there existN ≥ 1,
ν > 0 and s0 > 0 with:

(upt′1) uν(||Φ(u, s, θ)P1(s, θ)x||+ ||P2(s, θ)x||) ≤
≤ Nsν(||P1(s, θ)x||+ ||Φ(u, s, θ)P2(s, θ)x||);

(upt′2) ||Φ(u, s, θ)P3(s, θ)x|| ≤ N ||P3(s, θ)x||;
(upt′3) ||P3(s, θ)x|| ≤ N ||Φ(u, s, θ)P3(r, θ)x||,

for all (u, s) ∈ ∆, s ≥ s0 and all (θ, x) ∈ Γ.
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Remark 3.3. We observe that if (C,P) is uniformly polynomially trichotomic, then it is
uniformly polynomially trichotomic in the classical sense. The converse is not accom-
plished, as we emphasize in the following example.

Example 3.2. Let X = R3, C(R+,R+) be the set of all continuous functions θ : R+ → R+,
endowed with the topology of uniform convergence on compact subsets of R+. Let Θ be
the closure in C of the set {θt, t ≥ 0}, with θt(u) = θ(t+ u), u ≥ 0.
Thus, the mapping ϕ : ∆×Θ→ Θ, ϕ(s, r, θ) = θln s+1

r+1
. is an evolution semiflow on Θ.

We consider the evolution cocycle Φ : ∆×Θ→ B(X),

Φ(s, r, θ) = e
c(s−r)−

s∫
r

θ(ln ξ+1
r+1 )dξ

P1(r, θ) + e
−c(s−r)+

s∫
r

θ(ln ξ+1
r+1 )dξ

P2(r, θ)+

+

(
ln(s+ 1)

ln(r + 1)

)θ(0)−c
P3(r, θ),

where θ : R+ → R+ is a decreasing function with lim
s→+∞

θ(s) = l, 0 < c < l and Pi :

R+ ×Θ→ B(X), i = 1, 3 are the families of projectors given by Example 3.1.
For all s ≥ r ≥ 1 and all (θ, x) ∈ Γ we have:

||Φ(s, r, θ)P1(r, θ)x|| ≤ ec(s−r)−l(s−r)||P1(r, θ)x|| ≤
(r
s

)l−c
||P1(r, θ)x|| =

=
(r
s

)ν
||P1(r, θ)x||,

where ν = l − c;

||Φ(s, r, θ)P2(r, θ)x|| ≥ e−c(s−r)+l(s−r)||P2(r, θ)x|| ≥
(s
r

)l−c
||P2(r, θ)x|| =

=
(s
r

)ν
||P2(r, θ)x||;

rθ(0)−c||Φ(s, r, θ)P3(r, θ)x|| = rθ(0)−c
(

ln(s+ 1)

ln(r + 1)

)θ(0)−c
||P3(r, θ)x|| ≤ sω||P3(r, θ)x||,

where ω = θ(0)− c;
sω||Φ(s, r, θ)P3(r, θ)x|| ≥ rω||P3(r, θ)x||.

So the pair (C,P) is uniformly polynomially trichotomic in the classical sense with the
constants N = 1, ν = l − c, ω = θ(0)− c.
We suppose that (C,P) is uniformly polynomially trichotomic. It follows that there is
Ñ ≥ 1 such that

||Φ(s, r, θ)P3(r, θ)x|| ≤ Ñ ||P3(r, θ)x||, for all (s, r) ∈ ∆, r > 0, (θ, x) ∈ Γ,

which implies (
ln(s+ 1)

ln(r + 1)

)θ(0)−c
≤ Ñ .

For r = e− 1 and s→ +∞we obtain a contradiction.
In conclusion, (C,P) is not uniformly polynomially trichotomic.

Remark 3.4. In contrast with the trichotomy notions in [24], [25], [26], [27], the concepts
considered in the present manuscript in Definition 3.7 and Definition 3.8 are of weaker
nature, in the sense that the asymptotic behavior does not assume any kind of reversibility
of the evolution cocycle restricted to the ranges of the second and of the third family
of projections. Furthermore, no type of invertibility property is considered within the
trichotomy concepts studied in this paper.
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Definition 3.9. We say that the pair (C,P) has a uniform polynomial growth if there exist
M ≥ 1, ω, ε > 0 and s0 > 0 with:

(upg1) sω(||Φ(u, r, θ)P1(r, θ)x||+ ||Φ(s, r, θ)P2(r, θ)x||) ≤
≤Muω(||Φ(s, r, θ)P1(r, θ)x||+ ||Φ(u, r, θ)P2(r, θ)x||);

(upg2) sε||Φ(u, r, θ)P3(r, θ)x|| ≤Muε||Φ(s, r, θ)P3(r, θ)x||;
(upg3) sε||Φ(s, r, θ)P3(r, θ)x|| ≤Muε||Φ(u, r, θ)P3(r, θ)x||,

for all (u, s, r) ∈ T, r ≥ s0 and all (θ, x) ∈ Γ.

We consider C = (ϕ,Φ) a skew-evolution semiflow on Γ and λ ∈ R.
We denote by Cλ = (ϕ,Φλ) the shifted skew-evolution semiflow, where

Φλ(s, r, θ) =

{ (
s
r

)−λ
Φ(s, r, θ), if s ≥ r > 0

I, if s = r = 0.

Proposition 3.1. The pair (C,P) has a uniform polynomial growth if and only if there exist
M ≥ 1, ω1, ω2, λ > 0 and s0 > 0 with:

(upg′1) uω1(||Φλ(u, r, θ)P1(r, θ)x||+ ||Φ−λ(s, r, θ)P2(r, θ)x||) ≤
≤Msω1(||Φλ(s, r, θ)P1(r, θ)x||+ ||Φ−λ(u, r, θ)P2(r, θ)x||);

(upg′2) uω2 ||Φλ(u, r, θ)P3(r, θ)x|| ≤Msω2 ||Φλ(s, r, θ)P3(r, θ)x||;
(upg′3) uω2 ||Φ−λ(s, r, θ)P3(r, θ)x|| ≤Msω2 ||Φ−λ(u, r, θ)P3(r, θ)x||,

for all (u, s, r) ∈ T, r ≥ s0 and all (θ, x) ∈ Γ.

Proof. Necessity. Suppose that the relations from Definition 3.9 are satisfied.
Thus, for all (u, s, r) ∈ T with r ≥ s0 and all (θ, x) ∈ Γ we have:
(upg′1) (u

r

)−λ
||Φ(u, r, θ)P1(r, θ)x||+

(s
r

)λ
||Φ(s, r, θ)P2(r, θ)x|| ≤

≤M
(u
s

)ω [(u
r

)−λ
||Φ(s, r, θ)P1(r, θ)x||+

(s
r

)λ
||Φ(u, r, θ)P2(r, θ)x||

]
=

= M
( s
u

)λ−ω
(||Φλ(s, r, θ)P1(r, θ)x||+ ||Φ−λ(u, r, θ)P2(r, θ)x||)

and for λ = 2ω, ω1 = ω, we deduce

uω1(||Φλ(u, r, θ)P1(r, θ)x||+ ||Φ−λ(s, r, θ)P2(r, θ)x||) ≤

≤Msω1(||Φλ(s, r, θ)P1(r, θ)x||+ ||Φ−λ(u, r, θ)P2(r, θ)x||);
(upg′2)

||Φλ(u, r, θ)P3(r, θ)x|| =
(u
r

)−λ
||Φ(u, r, θ)P3(r, θ)x|| ≤

≤M
( s
u

)λ−ε
||Φλ(s, r, θ)P3(r, θ)x|| ≤M

( s
u

)ω2

||Φλ(s, r, θ)P3(r, θ)x||,

where λ = 2ε, ω2 = ε;
(upg′3)

||Φ−λ(u, r, θ)P3(r, θ)x|| =
(u
r

)λ
||Φ(u, r, θ)P3(r, θ)x|| ≥

≥ 1

M

(u
s

)λ−ε
||Φ−λ(s, r, θ)P3(r, θ)x|| ≥ 1

M

(u
s

)ω2

||Φ−λ(s, r, θ)P3(r, θ)x||.
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Sufficiency. We prove that the inequalities from Definition 3.9 hold.
For all (u, s, r) ∈ T, r ≥ s0 and all (θ, x) ∈ Γ we deduce:
(upg1)

||Φ(u, r, θ)P1(r, θ)x||+ ||Φ(s, r, θ)P2(r, θ)x|| =

=
(u
r

)λ
||Φλ(u, r, θ)P1(r, θ)x||+

(s
r

)−λ
||Φ−λ(s, r, θ)P2(r, θ)x|| ≤

≤M
( s
u

)ω1
[(u
r

)λ
||Φλ(s, r, θ)P1(r, θ)x||+

(s
r

)−λ
||Φ−λ(u, r, θ)P2(r, θ)x||

]
≤

≤M
(u
s

)λ−ω1

(||Φ(s, r, θ)P1(r, θ)x||+ ||Φ(u, r, θ)P2(r, θ)x||) ≤

≤M
(u
s

)ω
(||Φ(s, r, θ)P1(r, θ)x||+ ||Φ(u, r, θ)P2(r, θ)x||),

where

ω =

{
λ− ω1, if λ > ω1

1, if λ ≤ ω1;

(upg2)

||Φ(u, r, θ)P3(r, θ)x|| =
(u
r

)λ
||Φλ(u, r, θ)P3(r, θ)x|| ≤

≤M
(u
s

)λ−ω2

||Φ(s, r, θ)P3(r, θ)x|| ≤M
(u
s

)ε
||Φ(s, r, θ)P3(r, θ)x||,

where

ε =

{
λ− ω2, if λ > ω2

1, if λ ≤ ω2;

(upg3)

||Φ(u, r, θ)P3(r, θ)x|| =
(u
r

)−λ
||Φ−λ(u, r, θ)P3(r, θ)x|| ≥

≥ 1

M

( s
u

)λ−ω2

||Φ(s, r, θ)P3(r, θ)x|| ≥ 1

M

( s
u

)ε
||Φ(s, r, θ)P3(r, θ)x||.

So the pair (C,P) has a uniform polynomial growth. �

Theorem 3.1. Let (C,P) be a pair with a uniform polynomial growth. If there exist D ≥ 1 and
s0 > 0 with:

(i)

+∞∫
t

||Φ(τ, s, θ)P1(s, θ)x||
τ

dτ +

u∫
s

||Φ(ξ, s, θ)P2(s, θ)x||
ξ

dξ ≤

≤ D(||Φ(t, s, θ)P1(s, θ)x||+ ||Φ(u, s, θ)P2(s, θ)x||);

(ii)

u∫
t

||Φ(τ, s, θ)P3(s, θ)x||
τ

dτ ≤ D||Φ(t, s, θ)P3(s, θ)x||;

(iii)

u∫
s

||Φ(τ, s, θ)P3(s, θ)x||
τ

dτ ≤ D||Φ(u, s, θ)P3(s, θ)x||,

for all (u, t, s) ∈ T, s ≥ s0 and all (θ, x) ∈ Γ, then (C,P) is uniformly polynomially trichotomic.
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Proof. Using similar arguments with those in the proof of Theorem 2.2. in [19], from (i)
we deduce that there are N ≥ 1 and ν > 0 such that

(3.1) uν(||Φ(u, s, θ)P1(s, θ)x||+ ||P2(s, θ)x||) ≤ Nsν(||P1(s, θ)x||+ ||Φ(u, s, θ)P2(s, θ)x||),
for all (u, s) ∈ ∆, s ≥ s0 and all (θ, x) ∈ Γ.

We consider u ≥ ts0 ≥ t, (θ, x) ∈ Γ and τ ∈
[
u

s0
, u

]
. Thus,

ln s0||Φ(u, s, θ)P3(s, θ)x|| =
u∫
u
s0

||Φ(u, τ, ϕ(τ, s, θ))Φ(τ, s, θ)P3(s, θ)x||
τ

dτ ≤

≤M
u∫
u
s0

(u
τ

)ε ||Φ(τ, s, θ)P3(s, θ)x||
τ

dτ ≤Msε0

u∫
t

||Φ(τ, s, θ)P3(s, θ)x||
τ

dτ ≤

≤MDsε0||Φ(t, s, θ)P3(s, θ)x||.
If u ∈ [t, ts0], then

||Φ(u, s, θ)P3(s, θ)x|| ≤M
(u
t

)ε
||Φ(t, s, θ)P3(s, θ)x|| ≤Msε0||Φ(t, s, θ)P3(s, θ)x||.

We denote L = max

{
Msε0,

MDsε0
ln s0

}
and we obtain

||Φ(u, s, θ)P3(s, θ)x|| ≤ L||Φ(t, s, θ)P3(s, θ)x||,
for all (u, t, s) ∈ T, s ≥ s0 and all (θ, x) ∈ Γ and for t = s it yields

(3.2) ||Φ(u, s, θ)P3(s, θ)x|| ≤ L||P3(s, θ)x||,
for all (u, s) ∈ ∆, s ≥ s0 and all (θ, x) ∈ Γ.
Similarly, it follows

(3.3) ||P3(s, θ)x|| ≤ L||Φ(u, s, θ)P3(s, θ)x||,
for all (u, s) ∈ ∆, s ≥ s0 and all (θ, x) ∈ Γ.

We consider Ñ = max{N,L} and from the relations (3.1), (3.2), (3.3) and Remark 3.2 it
yields that (C,P) is uniformly polynomially trichotomic. �
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