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Invariant manifolds for difference equations with
generalized trichotomies

ANTÓNIO J. G. BENTO

ABSTRACT. On an arbitrary Banach space, assuming that a linear nonautonomous difference equation
xm+1 = Amxm admits a very general type of trichotomy, we establish conditions for the existence of global
Lipschitz invariant center manifolds of the perturbed equation xm+1 = Amxm + fm(xm). Our results not only
improve results already existing in the literature, but also include new cases.

1. INTRODUCTION

LetX be a Banach space and let B(X) be the space of linear bounded operators acting on
X . Assume, for all m ∈ Z, that Am ∈ B(X) is an invertible operator and that fm : X → X
is a Lipschitz function such that fm(0) = 0. We find sufficient conditions in order that the
nonautonomous difference equation

xm+1 = Amxm + fm(xm),

has an invariant center Lipschitz manifolds, when the nonautonomous linear difference
equation

xm+1 = Amxm

admits a generalized trichotomy.
Center manifolds are a very important tool in the study of stability and of bifurcations

because they frequently permit the reduction of the dimension of the state space (see
Carr [14], Henry [24], Guckenheimer and Holmes [21], Hale and Koçak [22] and Haragus
and Iooss [23]). The first results on the existence of center manifolds were obtained in the
sixties by Pliss [32] and by Kelley [25, 26]. After that many authors studied the problem
and proved results about center manifolds. For autonomous differential equations in
the finite dimensional case see Vanderbauwhede [39] (see also Vanderbauwhede and
Gils [40]) and for autonomous differential equations in the infinite dimensional case
see Vanderbauwhede and Iooss [41]. For nonautonomous invariant manifolds, and in
particular to nonautonomous center manifolds, we suggest the paper by Aulbach and
Wanner [2]. See also Chow, Liu and Yi [17, 16] for more details in the finite dimensional
case and Sijbrand [38], Mielke [29], Chow and Lu [18, 19] and Chicone and Latushkin [15]
for the infinite dimensional case.

The notion of (uniform) exponential trichotomy, introduced by Sacker and Sell [33],
Aulbach [1] and Elaydi and Hájek [20], is inspired in the concept of (uniform) exponential
dichotomy that goes back to the works of Perron [30, 31]. The definition of Sacker and
Sell [33] is motivated by the autonomous case of a matrix having semisimple eigenvalues
on the imaginary axis and because of that they only impose boundedness in the central
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direction. On the other hand, Elaydi and Hájek [20] impose in both time directions an
exponential decay on the central direction and thus their case is inherently nonautonomous.

However, the definition of exponential trichotomy is very stringent and several general-
izations have appeared in the literature. On the one hand, Fenner and Pinto [27] introduced
the so-called (h, k)-trichotomies, replacing the exponential growth rates by nonexponential
growth rates, and, on the other hand, Barreira and Valls [5, 6] introduced the nonuniform
exponential trichotomies that also depend on the initial time. The next step was given by
Barreira and Valls [8, 9] with the introduction of the ρ-nonuniform exponential trichotomies
that are both nonexponential and nonuniform, but the (h, k)-trichotomies of Fenner and
Pinto [27] are not a particular case of the notion of ρ-nonuniform exponential trichotomy.
For characterizations of exponential trichotomies we recommend Barreira, Dragičević and
Valls [3, 4] and Sasu and Sasu [34, 35, 36, 37] and the references therein.

In [11] it was introduced, for linear differential equations, a very general type of tri-
chotomies that include as particular cases all the notions of trichotomies mentioned above,
as well as new cases. Despite of this generality, it was possible to prove the existence of
central invariant Lipschitz manifolds for sufficiently small Lipschitz perturbations of the
linear differential equations that admit this type of generalized trichotomy.

This paper is a discrete time counterpart of [11]. We are going to consider for linear
difference equations the same general type of trichotomies. We only suppose that the linear
equation admits an invariant splitting in three invariant subspaces and the norms of the
linear evolution operator composed with the three different projections are bounded by
general sequences that only depend on the initial and on the final time (see (T1), (T2)
and (T3)). Despite of that we were able to obtain invariant manifolds provided that the
Lipschitz constants of the perturbation are sufficiently small. Note that for dichotomies
this has already been done in [12] and in [13] for differential and for difference equations,
respectively.

The proof of the main theorem is based in the Lyapunov-Perron method (see [28, 30, 31])
that consists in the following:
• relate the solutions of the linear equation with the solutions of the perturbed equation

using the variation of constants formula;
• construction of a suitable space of sequences of functions that is a complete metric

space and the construction of a suitable contraction on this complete metric space;
• the application of Banach’s fixed point theorem to the referred contraction gives a

sequence of functions that is the only fixed point of the contraction and whose graphs
are the invariant manifold.

The Lyapunov-Perron method was used by many authors, namely [6, 8, 12, 13]. In the
mentioned papers the authors use two applications of the Banach’s fixed point theorem, the
first one to obtain the solutions of the perturbed equation along the stable/center direction
and the other to obtain the solutions of the perturbed equation in the other directions. In
this paper, as in [11], we use only one application of the Banach’s fixed point theorem to
obtain the solutions of the perturbed equation in all directions.

As particular case of our main result we improve the results obtained by Barreira
and Valls [5, 10] for nonuniform exponential trichotomies. Moreover, we also obtain as
particular cases new results for nonuniform (a,b, c,d)-trichotomies.

The structure of the paper is as follows. In Section 2 we introduce the notation and
preliminaries. The main theorem of the paper is stated in Section 3 and in Section 4 we
apply our main result to particular cases of trichotomies. Finally, in Section 5, we prove the
main theorem.
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2. NOTATION AND PRELIMINARIES

Let X be a Banach space and let B(X) be the Banach algebra of all bounded linear
operators acting on X . Given a sequence (Am)m∈Z of invertible operators in B(X), we are
going to consider the difference equation

(2.1) xm+1 = Amxm, m ∈ Z,

and denote by Φm,n its evolution operator, i.e.,

Φm,n =


Am−1 · · ·Am if m > n,

Id if m = n,

A−1m · · ·A−1n−1 if m < n.

We say that equation (2.1) admits an invariant trichotomic splitting if, for every m ∈ Z,
there are projections P o

m, P
+
m , P

−
m ∈ B(X) such that

(S1) P o
m + P+

m + P−m = Id for all m ∈ Z;
(S2) P o

mP
+
m = 0 for all m ∈ Z;

(S3) Φm,nP
o
n = P o

mΦm,n for all m,n ∈ Z;
(S4) Φm,nP

+
n = P+

mΦm,n for all m,n ∈ Z;
From (S1) and (S2) it follows that

P o
mP
−
m = P+

mP
o
m = P+

mP
−
m = P−mP

o
m = P−mP

+
m = 0 for all m ∈ Z

and from (S1), (S3) and (S4) we obtain

Φm,nP
−
n = P−mΦm,n for all m,n ∈ Z.

Under these conditions we define, for every m ∈ Z, the subspaces Eo
m = P o

m(X), E+
m =

P+
m(X) andE−m = P−m(X) and, as usual we identifyEo

m×E+
m×E−m andEo

m⊕E+
m⊕E−m = X

as the same vector space.
Consider αo : Z2 →]0,+∞[, α+ : Z2

> →]0,+∞[ and α− : Z2
6 →]0,+∞[, where

Z2
> =

{
(m,n) ∈ Z2 : m > n

}
and Z2

6 =
{

(m,n) ∈ Z2 : m 6 n
}
,

and denote αo(m,n), α+(m,n) and α−(m,n) by αo
m,n, α+

m,n and α−m,n, respectively. We say
that equation (2.1) admits a generalized trichotomy with bounds (αo, α+, α−) if it admits an
invariant trichotomic splitting such that
(T1) ‖Φm,nP o

m‖ 6 αo
m,n for all (m,n) ∈ Z2;

(T2) ‖Φm,nP+
m‖ 6 α+

m,n for all (m,n) ∈ Z2
>;

(T3) ‖Φm,nP−m‖ 6 α−m,n for all (m,n) ∈ Z2
6.

Example 2.1. Let (kn)n∈Z be a sequence such that kn > 1 for every n ∈ Z and let

P o,+
n , P o,−

n , P+
n , P

−
n : R4 → R4

be defined by

P o,+
n (x1, x2, x3, x4) = (0, 0, x3 + (kn − 1)x4, 0) ,

P o,−
n (x1, x2, x3, x4) = ((1− kn)x2, x2, 0, 0) ,

P+
n (x1, x2, x3, x4) = (x1 + (kn − 1)x2, 0, 0, 0) ,

P−n (x1, x2, x3, x4) = (0, 0, (1− kn)x4, x4) .

It is clear that
P o,+
n + P o,−

n + P+
n + P−n = Id
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for every n ∈ Z. Moreover,
P o,+
m P o,+

n = P o,+
n

P o,+
m P o,−

n = 0

P o,+
m P+

n = 0


P o,−
m P o,+

n = 0

P o,−
m P o,−

n = P o,−
m

P o,−
m P+

n = 0

P o,−
m P+

n = 0


P+
mP

o,+
n = 0

P+
mP

+
n = P+

n

P+
mP

+
n = 0


P−mP

o,+
n = 0

P−mP
o,−
n = P o,−

m

P−mP
+
n = 0

P−mP
+
n = P−m

and
P o,+
m P−n (x1, x2, x3, x4) = (0, 0, (km − kn)x4, 0)

and
P+
mP

o,−
n (x1, x2, x3, x4) = ((km − kn)x2, 0, 0, 0)

for every m,n ∈ Z.
If (an)n∈Z, (bn)n∈Z, (cn)n∈Z and (dn)n∈Z are sequences of positive numbers, then

An =
an

an+1
P o,+
n +

cn+1

cn

kn

kn+1
P o,−
n+1 +

dn

dn+1
P+
n +

bn+1

bn

kn

kn+1
P−n+1

is an invertible operator (on R4) and

A−1n =
an+1

an
P o,+
n+1 +

cn

cn+1

kn+1

kn
P o,−
n +

dn+1

dn
P+
n+1 +

bn

bn+1

kn+1

kn
P−n .

Clearly,

Φm,n =
an

am
P o,+
n +

cm

cn

kn

km
P o,−
m +

dn

dm
P+
n +

bm

bn

kn

km
P−m

and using the projections P o
n = P o,+

n + P o,−
n , P+

n and P−n we have

Φm,nP
o
n =

an

am
P o,+
n +

cm

cn

kn

km
P o,−
m = P o

mΦm,n,

Φm,nP
+
n =

dn

dm
P+
n = P+

mΦm,n,

Φm,nP
−
n =

bm

bn

kn

km
P−m = P−mΦm,n.

Equipping R4 with the maximum norm, we have∥∥P o,+
n

∥∥ =
∥∥P+

n

∥∥ = kn and
∥∥P o,−

n

∥∥ =
∥∥P−n ∥∥ = max {1,kn − 1} 6 kn

and this implies that

‖Φm,nP o
n‖ = max

{
an

am

∥∥P o,+
n

∥∥ , cm
cn

kn

km

∥∥P o,−
m

∥∥} 6 max

{
an

am
,
cm

cn

}
kn,∥∥Φm,nP

+
n

∥∥ =
dn

dm

∥∥P+
n

∥∥ =
dn

dm
kn∥∥Φm,nP

−
n

∥∥ =
bm

dn

kn

km

∥∥P−m∥∥ 6 bm

bn
kn.

Thus, if

(2.2)
an

am
>
cm

cn
for every (m,n) ∈ Z2

>,

we get

‖Φm,nP o
n‖ 6


an

am
kn if m > n,

cm

cn
kn if m 6 n.
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Therefore, if (2.2) holds, then we conclude that (2.1) admits a generalized trichotomy with bounds
given by

(2.3)

αo
m,n =


an

am
kn

cm

cn
kn

for all (m,n) ∈ Z2
>,

for all (m,n) ∈ Z2
6,

α+
m,n =

dn

dm
kn for all (m,n) ∈ Z2

>,

α−m,n =
bm

bn
kn for all (m,n) ∈ Z2

6.

The trichotomies with these bounds are called nonuniform (a,b, c,d)-trichotomies.

Example 2.2. Let ρ : Z→ R be a strictly increasing sequence such that

ρ(0) = 0, lim
m→−∞

ρ(m) = −∞ and lim
m→+∞

ρ(m) = +∞.

Taking in (2.3)

an = e−aρ(n), bn = e−bρ(n), cn = e−cρ(n), dn = e−dρ(n)

and
kn = K eε|ρ(n)|,

where a, b, c, d ∈ R, K > 1 and ε > 0, we obtain the following bounds

(2.4)

αo
m,n =

{
K ea(ρ(m)−ρ(n))+ε|n|

K ec(ρ(n)−ρ(m))+ε|n|

for all (m,n) ∈ Z2
>,

for all (m,n) ∈ Z2
6,

α+
m,n = K ed(ρ(m)−ρ(n))+ε|n| for all (m,n) ∈ Z2

>,

α−m,n = K eb(ρ(n)−ρ(m))+ε|n| for all (m,n) ∈ Z2
6.

Note that for this bounds inequality (2.2) is equivalent a + c > 0. This type of trichotomies is
called nonuniform ρ-trichotomy (see [7] where, in our notation, the conditions 0 6 a < −b and
0 6 c < −d were also imposed).

Example 2.3. Taking ρ(n) = n in (2.4) we obtain the nonuniform exponential trichotomies
considered by Barreira and Valls in [5] with bounds given by

αo
m,n =

{
K ea(m−n)+ε|n|

K ec(n−m)+ε|n|

for all (m,n) ∈ Z2
>,

for all (m,n) ∈ Z2
6,

α+
m,n = K ed(m−n)+ε|n| for all (m,n) ∈ Z2

>,

α−m,n = K eb(n−m)+ε|n| for all (m,n) ∈ Z2
6.

As in the last example, inequality (2.2) is equivalent to a + c > 0. Moreover, in [5] conditions
0 6 a < −b and 0 6 c < −d were also imposed.

3. MAIN THEOREM

Suppose that (2.1) admits a generalized trichotomy with bounds (αo, α+, α−) and con-
sider the equation

(3.5) xm+1 = Amxm + fm(xm), m ∈ Z,



822 António J. G. Bento

where fm : X → X is a sequence of functions such that, for every m ∈ Z,

Am + fm is invertible;(3.6)

fm(0) = 0;(3.7)

Lip(fm) := sup

{
‖fm(x)− fm(y)‖

‖x− y‖
: x, y ∈ X, x 6= y

}
< +∞.(3.8)

From (3.8) if follows immediately that

(3.9) ‖fm(x)− fm(y)‖ 6 Lip(fm) ‖x− y‖ for all x, y ∈ X and all m ∈ Z
and from (3.7) and (3.9) we obtain that

(3.10) ‖fm(x)‖ 6 Lip(fm) ‖x‖ for all x ∈ X and all m ∈ Z.
Since we are assuming that (2.1) admits a generalized trichotomy, given an initial

condition xn = (xon, x
+
n , x

−
n ) ∈ Eo

n × E+
n × E−n , the sequence (xm)m∈Z that satisfies

xm+1 = Amxm + fm(xm), m ∈ Z
is denoted by(

xom, x
+
m, x

−
m

)
=
(
xom(n, xn), x+m(n, xn), x−m(n, xn)

)
∈ Eo

m × E+
m × E−m.

Then

(3.11) xom =


Φm,nx

o
n +

m−1∑
k=n

Φm,k+1P
o
k+1fk(xok, x

+
k , x

−
k ) if m > n,

Φm,nx
o
n −

n−1∑
k=m

Φm,k+1P
o
k+1fk(xok, x

+
k , x

−
k ) if m 6 n,

(3.12) x+m =


Φm,nx

+
n +

m−1∑
k=n

Φm,k+1P
+
k+1fk(xok, x

+
k , x

−
k ) if m > n,

Φm,nx
+
n −

n−1∑
k=m

Φm,k+1P
+
k+1fk(xok, x

+
k , x

−
k ) if m 6 n,

(3.13) x−m =


Φm,nx

−
n +

m−1∑
k=n

Φm,k+1P
−
k+1fk(xok, x

+
k , x

−
k ) if m > n,

Φm,nx
−
n −

n−1∑
k=m

Φm,k+1P
−
k+1fk(xok, x

+
k , x

−
k ) if m 6 n.

For every k ∈ Zwe set

(3.14) Ψk(n, xn) =
(
n+ k, xon+k(n, xn), x+n+k(n, xn), x−n+k(n, xn)

)
The invariant manifolds that we are looking for will be given as the graphs of a sequence

of functions. To find that sequence of functions we need to introduce a suitable space of
sequences of functions. Given D > 0, let BD be the space of sequences ϕ = (ϕn)n∈Z of
functions

ϕn = (ϕ+
n , ϕ

−
n ) : Eo

n → E+
n × E−n

such that

ϕn(0) = 0 for all n ∈ Z;(3.15) ∥∥ϕn(ξ)− ϕn(ξ)
∥∥ 6 D ∥∥ξ − ξ∥∥ for all n ∈ Z and all ξ, ξ ∈ Eo

n.(3.16)
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Clearly, by (3.15) and (3.16) we have

(3.17) ‖ϕn(ξ)‖ 6 D ‖ξ‖ for all n ∈ Z and all ξ ∈ Eo
n.

For every ϕ ∈ BD we set

Γn,ϕ = {(ξ, ϕn(ξ)) : n ∈ Z, ξ ∈ Eo
n}

=
{(
ξ, ϕ+

n (ξ), ϕ−n (ξ)
)

: n ∈ Z, ξ ∈ Eo
n

}
.

Before stating the main theorem we need to introduce the following quantities:

(3.18) σ := sup
(m,n)∈Z2

>

[
max

{
m−1∑
k=n

αo
m,k+1 Lip(fk)αo

k,n

αo
m,n

,

m−1∑
k=n

αo
n,k+1 Lip(fk)αo

k,m

αo
n,m

}]
and

(3.19) ω := sup
n∈Z

[
n−1∑
k=−∞

α+
n,k+1 Lip(fk)αo

k,n +

+∞∑
k=n

α−n,k+1 Lip(fk)αo
k,n

]
.

Theorem 3.1. Let X be a Banach space and suppose that equation (2.1) admits a generalized
trichotomy with bounds (αo, α+, α−). Suppose that fm : X → X satisfies (3.6), (3.7) and (3.8). If

(3.20) lim
m→−∞

α+
n,mα

o
m,n = lim

m→+∞
α−n,mα

o
m,n = 0

and

(3.21) σ + ω < 1/2,

then there exists D ∈ ]0, 1[ and a unique ϕ ∈ BD such that

(3.22) Ψm−n (Γn,ϕ) = Γm,ϕ for all m,n ∈ Z.
Moreover,

(3.23)
∥∥Ψm−n (n, ξ, ϕn(ξ))−Ψm−n

(
n, ξ, ϕn(ξ)

)∥∥ 6 D

ω
αo
m,n

∥∥ξ − ξ∥∥
for every m,n ∈ Z and every ξ, ξ ∈ Eo

n.

The proof of this theorem will be given in the last section of this paper.

4. PARTICULAR CASES OF THE MAIN THEOREM

Now we will apply our main theorem to nonuniform (a,b, c,d)-trichotomies.

Corollary 4.1. Let X be a Banach space and suppose that equation (2.1) admits a nonuniform

(a,b, c,d)-trichotomy and such that the sequences
(
cmdm

km

)
m∈Z

and (ambmkm)m∈Z are

increasing. Assume that fm : X → X , m ∈ Z, satisfies (3.6), (3.7) and

(4.24) Lip(fm) 6
δmin

{
γm,

cm+1

cm
− dm

dm+1

km+1

km
,
bm+1

bm

km+1

km
− am

am+1

}
k2
m+1

with δ ∈ ]0, 1/6[ and (γm)m∈Z a sequence of positive numbers such that

(4.25) max

{
+∞∑

k=−∞

ak+1

ak kk+1
γk,

+∞∑
k=−∞

ck

ck+1 kk+1
γk

}
6 1.

If

(4.26) lim
m→−∞

cmdmkm = lim
m→+∞

km

ambm
= 0,
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then there exists D ∈ ]0, 1[ and a unique ϕ ∈ BD such that

Ψm−n (Γn,ϕ) = Γm,ϕ for all m,n ∈ Z.

Moreover,

∥∥Ψm−n (n, ξ, ϕn(ξ))−Ψm−n
(
n, ξ, ϕn(ξ)

)∥∥ 6

D

ω

an

am
kn

∥∥ξ − ξ∥∥ if m > n,

D

ω

cm

cn
kn

∥∥ξ − ξ∥∥ if m 6 n,

for every m,n ∈ Z and every ξ, ξ ∈ Eo
n.

Proof. For this type of bounds it is obvious that (3.20) is equivalent to (4.26). From (4.24)
and (4.25) it follows for (m,n) ∈ Z2

> that

m−1∑
k=n

αo
m,k+1 Lip(fk)αo

k,n

αo
m,n

=

m−1∑
k=n

ak+1

ak
kk+1 Lip(fk) 6

m−1∑
k=n

ak+1

ak kk+1
δγk 6 δ

and for (m,n) ∈ Z2
6 that

n−1∑
k=m

αo
m,k+1 Lip(fk)αo

k,n

αo
m,n

=

n−1∑
k=m

ck

ck+1
kk+1 Lip(fk) 6

n−1∑
k=m

ck

ck+1 kk+1
δγk 6 δ,

which proves that σ 6 δ. From (4.24) and (4.26) we have

n−1∑
k=−∞

α+
n,k+1 Lip(fk)αo

k,n +

+∞∑
k=n

α−n,k+1 Lip(fk)αo
k,n

=
kn

cndn

n−1∑
k=−∞

dk+1kk+1ck Lip(fk) + anbnkn

+∞∑
k=n

kk+1

akbk+1
Lip(fk)

6 δ
kn

cndn

n−1∑
k=−∞

[
ck+1dk+1

kk+1
− ckdk

kk

]
+ δanbnkn

+∞∑
k=n

[
1

akbkkk
− 1

ak+1bk+1kk+1

]
= δ − δ kn

cndn
lim

k→−∞

ckdk

kk
+ δ − δanbnkn lim

k→+∞

1

ak+1bk+1kk+1

= 2δ

and thus ω 6 2δ. Hence σ + ω 6 3δ < 1/2 and from Theorem 3.1 the conclusions of this
theorem follow. �

Now we consider the ρ-nonuniform exponential trichotomies. For that we need to
introduce the following notation:

ρ(m) = ρ(m+ 1)− ρ(m) and ρ(m) = |ρ(m+ 1)| − |ρ(m)| .

Corollary 4.2. Let X be a Banach space and suppose that (2.1) admits ρ-nonuniform exponential
trichotomy such that

(4.27) a+ b+ ε < 0 and c+ d+ ε < 0,

Assume that fm : X → X satisfies (3.6), (3.7) and

Lip(fm) 6
δmin

{
γm, e

−c ρ(m)− ed ρ(m)+ε ρ(m), e−b ρ(m)+ε ρ(m)− ea ρ(m)
}

K2 e2ε|ρ(m+1)| ,
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where δ ∈ ]0, 1/6[, β > 0 and

γm =
K
∣∣e−β|ρ(m+1)|− e−β|ρ(m)|

∣∣
2 emax{−a,c}ρ(m)−ε|ρ(m+1)| .

Then there exists D ∈ ]0, 1[ and a unique ϕ ∈ BD such that

Ψm−n (Γn,ϕ) = Γm,ϕ for all m,n ∈ Z.

Moreover, putting πn,ξ = (n, ξ, ϕn(ξ)) and πn,ξ =
(
n, ξ, ϕn(ξ)

)
, we have

∥∥∥Ψm−n (πn,ξ)−Ψm−n

(
πn,ξ

)∥∥∥ 6

DK

ω
ea(ρ(m)−ρ(n))+ε|ρ(n)|

∥∥ξ − ξ∥∥ if m > n,

DK

ω
ec(ρ(n)−ρ(m))+ε|ρ(n)|

∥∥ξ − ξ∥∥ if m 6 n,

for every m,n ∈ Z and every ξ, ξ ∈ Eo
n.

Proof. It is easy to see that for this type of bounds (4.27) is equivalent to (4.26) and

am+1

am
= e−a ρ(m),

bm+1

bm
= e−c ρ(m),

cm+1

cm
= e−c ρ(m),

dm+1

dm
= e−d ρ(m)

and
km+1

km
= eε ρ(m) .

This implies that

cm+1

cm
− dm

dm+1

km+1

km
= e−c ρ(m)− ed ρ(m)+ε ρ(m)

and
bm+1

bm

km+1

km
− am

am+1
= e−b ρ(m)+ε ρ(m)− ea ρ(m) .

Moreover,

ak+1

akkk+1
γk =

e−aρ(k)

K eε|ρ(k+1)|
K
∣∣e−β|ρ(k+1)|− e−β|ρ(k)|

∣∣
2 emax{−a,c}ρ(k)−ε|ρ(k+1)| 6

1

2

∣∣∣e−β|ρ(k+1)|− e−β|ρ(k)|
∣∣∣

and

ck

ck+1kk+1
γk =

ecρ(k)

K eε|ρ(k+1)|
K
∣∣e−β|ρ(k+1)|− e−β|ρ(k)|

∣∣
2 emax{−a,c}ρ(k)−ε|ρ(k+1)| 6

1

2

∣∣∣e−β|ρ(k+1)|− e−β|ρ(k)|
∣∣∣ .

Since
+∞∑

k=−∞

∣∣∣e−β|ρ(k+1)|− e−β|ρ(k)|
∣∣∣ =

+∞∑
k=0

e−βρ(k)− e−βρ(k+1) +

−1∑
k=−∞

eβρ(k+1)− eβρ(k)

= e−βρ(0)− lim
k→+∞

e−βρ(k+1) + eβρ(0)− lim
k→−∞

eβρ(k+1)

= 2,

the theorem is proved. �

Corollary 4.3. LetX be a Banach space and suppose that (2.1) admits a generalized trichotomy with
bounds of the form (2.4) and such that (4.27) holds. Assume that fm : X → X satisfies (3.6), (3.7)
and

Lip(fm) 6

δmin

{
K
∣∣e−β|m+1|− e−β|m|

∣∣
2 emax{−a,c}−ε|m+1| , e

−c− ed+εν(m), e−b+εν(m)− ea

}
K2 e2ε|m+1|
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with

ν(m) =

{
1 if m > 0,

−1 if m < 0,

δ ∈ ]0, 1/6[ and β > 0. Then there exists D ∈ ]0, 1[ and a unique ϕ ∈ BD such that

Ψm−n (Γn,ϕ) = Γm,ϕ for all m,n ∈ Z.

Moreover, putting πn,ξ = (n, ξ, ϕn(ξ)) and πn,ξ =
(
n, ξ, ϕn(ξ)

)
, we have

∥∥∥Ψm−n (πn,ξ)−Ψm−n

(
πn,ξ

)∥∥∥ 6

DK

ω
ea(m−n)+ε|n|

∥∥ξ − ξ∥∥ if m > n,

DK

ω
ec(n−m)+ε|n|

∥∥ξ − ξ∥∥ if m 6 n,

for every m,n ∈ Z and every ξ, ξ ∈ Eo
n.

This theorem improves Barreira and Valls [5, Theorem 2] (see also Barreira and Valls [10,
Theorem 2]) because we obtain a better decay along the invariant manifold.

5. PROOF OF THE MAIN THEOREM

Lemma 5.1 ([11, Lemma 5.1]). If σ and ω are positive numbers such that σ + ω < 1/2, then
there are C ∈ ]1, 2[ and D ∈ ]0, 1[ such that

(5.28) σ =
C − 1

C(1 +D)
and ω =

D

C(1 +D)
.

From now on the numbers C and D will be given by (5.28). Moreover, the number D in
Theorem 3.1 is also given by (5.28).

To prove the main theorem we need to introduce another space of sequences of functions.
Let AC be the space of sequences x = (xm,n)m,n∈Z of functions

xm,n : Eo
n → Eo

m

such that

xm,n(0) = 0 for all m,n ∈ Z;(5.29)

xn,n(ξ) = ξ for all n ∈ Z and all ξ ∈ Eo
n;(5.30) ∥∥xm,n(ξ)− xm,n(ξ)

∥∥ 6 Cαo
m,n

∥∥ξ − ξ∥∥ for all m,n ∈ Z and all ξ, ξ ∈ Eo
n.(5.31)

It is obvious that from (5.29) and (5.31) we have

(5.32) ‖xm,n(ξ)‖ 6 Cαo
m,n ‖ξ‖ for all m,n ∈ Z and all ξ ∈ Eo

n.

The space AC equipped with the metric defined, for every x, y ∈ AC , by

(5.33) d1(x, y) = sup

{
‖xm,n(ξ)− ym,n(ξ)‖

αo
m,n ‖ξ‖

: m,n ∈ Z, ξ ∈ Eo
n \ {0}

}
is a complete metric space.

The space BD is also a complete metric space with the metric given, for all ϕ,ψ ∈ BD,
by

(5.34) d2(ϕ,ψ) = sup

{
‖ϕn(ξ)− ψn(ξ)‖

‖ξ‖
: n ∈ Z, ξ ∈ Eo

n \ {0}
}
.

Therefore, the space CC,D = AC × BD equipped with the metric defined, for every
(x, ϕ), (y, ψ) ∈ CC,D, by

(5.35) d((x, ϕ), (y, ψ)) = d1(x, y) + d2(ϕ,ψ)
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is a complete metric space.
For every (x, ϕ) ∈ CC,D and every k, n ∈ Z set

fx,ϕ,k,n(ξ) = fk(xk,n(ξ), ϕk(xk,n(ξ)))

= fk(xk,n(ξ), ϕ+
k (xk,n(ξ)), ϕ−k (xk,n(ξ))).

(5.36)

To prove (3.22) we need to show that there is a unique (x, ϕ) ∈ CC,D such that(
xm,n(ξ), ϕ+

m(xm,n(ξ)), ϕ−m(xm,n(ξ))
)

is a solution of (3.5). By (3.11), (3.12) and (3.13) we need to prove that

(5.37) xm,n(ξ) =


Φm,nξ +

m−1∑
k=n

Φm,k+1P
o
k+1fx,ϕ,k,n(ξ) if m > n,

Φm,nξ −
n−1∑
k=m

Φm,k+1P
o
k+1fx,ϕ,k,n(ξ) if m 6 n,

(5.38) ϕ+
m(xm,n(ξ)) =


Φm,nϕ

+
n (ξ) +

m−1∑
k=n

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ) if m > n,

Φm,nϕ
+
n (ξ)−

n−1∑
k=m

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ) if m 6 n,

and

(5.39) ϕ−m(xm,n(ξ)) =


Φm,nϕ

−
n (ξ) +

m−1∑
k=n

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ) if m > n

Φm,nϕ
−
n (ξ)−

n−1∑
k=m

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ) if m 6 n

Lemma 5.2. Let (x, ϕ) ∈ CC,D. Suppose that for everym,n ∈ Z and every ξ ∈ Eo
n equation (5.37)

holds. Then the following properties are equivalent:
a) for every m,n ∈ Z and every ξ ∈ Eo

n, identities (5.38) and (5.39) hold;
b) for every n ∈ Z and every ξ ∈ Eo

n,

(5.40) ϕ+
n (ξ) =

n−1∑
k=−∞

Φn,k+1P
+
k+1fx,ϕ,k,n(ξ)

and

(5.41) ϕ−n (ξ) = −
+∞∑
k=n

Φn,k+1P
−
k+1fx,ϕ,k,n(ξ).

Proof. First we prove that the series in equations (5.40) and (5.41) are convergent. By (5.36),
(3.10), (3.17) and (5.32) we have

‖fx,ϕ,k,n(ξ)‖ = ‖fk(xk,n(ξ), ϕk(xk,n(ξ)))‖
6 Lip(fk) ‖xk,n(ξ) + ϕk(xk,n(ξ))‖
6 Lip(fk) (‖xk,n(ξ)‖+ ‖ϕk(xk,n(ξ))‖)
6 Lip(fk) (‖xk,n(ξ)‖+D ‖xk,n(ξ)‖)
6 C(1 +D) Lip(fk)αo

k,n ‖ξ‖

(5.42)
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for every k, n ∈ Z and every ξ ∈ Eo
n. Thus by (T2), (5.42) and (3.19) we have

n−1∑
k=−∞

∥∥Φn,k+1P
+
k+1fx,ϕ,k,n(ξ)

∥∥ 6 n−1∑
k=−∞

∥∥Φn,k+1P
+
k+1

∥∥ ‖fx,ϕ,k,n(ξ)‖

6 C(1 +D) ‖ξ‖
n−1∑
k=−∞

α+
n,k+1 Lip(fk)αo

k,n

6 C(1 +D) ‖ξ‖ω

and from (T3), (5.42) and (3.19) it follows that
+∞∑
k=n

∥∥Φn,k+1P
−
k+1fx,ϕ,k,n(ξ)

∥∥ 6 +∞∑
k=n

∥∥Φn,k+1P
−
k+1

∥∥ ‖fx,ϕ,k,n(ξ)‖

6 C(1 +D) ‖ξ‖
+∞∑
k=n

α−n,k+1 Lip(fk)αo
k,n

6 C(1 +D) ‖ξ‖ω,

and this proves that the series in equations (5.40) and (5.41) are convergent.
Now we prove that a)⇒ b). From (5.38), for every m < n, it follows that

ϕ+
n (ξ) = Φn,mϕ

+
m(xm,n(ξ)) +

n−1∑
k=m

Φn,mΦm,k+1P
+
k+1fx,ϕ,k,n(ξ)

= Φn,mP
+
mϕ

+
m(xm,n(ξ)) +

n−1∑
k=m

Φn,k+1P
+
k+1fx,ϕ,k,n(ξ).

Since by (T2), (3.17) and (5.32) we have∥∥Φn,mP
+
mϕ

+
m(xm,n(ξ))

∥∥ 6 α+
n,mD ‖xm,n(ξ)‖ 6 CDα+

n,mα
o
m,n ‖ξ‖ ,

from (3.20) we conclude that lim
m→−∞

Φn,mP
+
mϕ

+
m(xm,n(ξ)) = 0 and this implies that

ϕ+
n (ξ) =

n−1∑
k=−∞

Φn,k+1P
+
k+1fx,ϕ,k,n(ξ).

Similarly, from (5.39) we have

ϕ−n (ξ) = Φn,mϕ
−
m(xm,n(ξ))−

m−1∑
k=n

Φn,mΦm,k+1P
−
k+1fx,ϕ,k,n(ξ)

= Φn,mP
−
mϕ
−
m(xm,n(ξ))−

m−1∑
k=n

Φn,k+1P
−
k+1fx,ϕ,k,n(ξ)

for every m > n. Because∥∥Φn,mP
−
mϕ
−
m(xm,n(ξ))

∥∥ 6 α−n,mD ‖xm,n(ξ)‖ 6 CDα−n,mαo
m,n ‖ξ‖ ,

by (3.20) we conclude that lim
m→+∞

Φn,mP
−
mϕ
−
m(xm,n(ξ)) = 0. Thus (5.41) holds.

Now we will prove that b)⇒ a). From (5.40) we get

Φm,nϕ
+
n (ξ) =

n−1∑
k=−∞

Φm,nΦn,k+1P
+
k+1fx,ϕ,k,n(ξ) =

n−1∑
k=−∞

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ)
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and this implies that for m > n we have

Φm,nϕ
+
n (ξ) +

m−1∑
k=n

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ)

=

m−1∑
k=−∞

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ)

=

m−1∑
k=−∞

Φm,k+1P
+
k+1fk(xk,n(ξ), ϕk(xk,n(ξ)))

=
m−1∑
k=−∞

Φm,k+1P
+
k+1fk(xk,m(xm,n(ξ)), ϕk(xk,m(xm,n(ξ))))

= ϕ+
m(xm,n(ξ))

and for m 6 n we obtain

Φm,nϕ
+
n (ξ)−

n−1∑
k=m

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ)

=

m−1∑
k=−∞

Φm,k+1P
+
k+1fx,ϕ,k,n(ξ)

=

m−1∑
k=−∞

Φm,k+1P
+
k+1fk(xk,n(ξ), ϕk(xk,n(ξ)))

=

m−1∑
k=−∞

Φm,k+1P
+
k+1fk(xk,m(xm,n(ξ)), ϕk(xk,m(xm,n(ξ))))

= ϕ+
m(xm,n(ξ)).

Similarly, from (5.41) we get

Φm,nϕ
−
n (ξ) = −

+∞∑
k=n

Φm,nΦn,k+1P
−
k+1fx,ϕ,k,n(ξ) = −

+∞∑
k=n

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ)

and this implies that for m > n we have

Φm,nϕ
−
n (ξ) +

m−1∑
k=n

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ)

= −
+∞∑
k=m

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ)

= −
+∞∑
k=m

Φm,k+1P
−
k+1fk(xk,n(ξ), ϕk(xk,n(ξ)))

= −
+∞∑
k=m

Φm,k+1P
−
k+1fk(xk,m(xm,n(ξ)), ϕk(xk,m(xm,n(ξ))))

= ϕ−m(xm,n(ξ))
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and for m 6 n we obtain

Φm,nϕ
−
n (ξ)−

n−1∑
k=m

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ)

= −
+∞∑
k=m

Φm,k+1P
−
k+1fx,ϕ,k,n(ξ)

= −
+∞∑
k=m

Φm,k+1P
−
k+1fk(xk,n(ξ), ϕk(xk,n(ξ)))

= −
+∞∑
k=m

Φm,k+1P
−
k+1fk(xk,m(xm,n(ξ)), ϕk(xk,m(xm,n(ξ))))

= ϕ−m(xm,n(ξ))

and the lemma is proved. �

On the space CC,D consider the operator T o that assigns to each (x, ϕ) ∈ CC,D the
sequence T o(x, ϕ) =

(
T o
m,n(x, ϕ)

)
(m,n)∈Z2 of functions T o

m,n(x, ϕ) : E◦n → X defined by

[
T o
m,n(x, ϕ)

]
(ξ) =


Φm,nξ +

m−1∑
k=n

Φm,k+1P
o
k+1fx,ϕ,k,n(ξ) if m > n,

Φm,nξ −
n−1∑
k=m

Φm,k+1P
o
k+1fx,ϕ,k,n(ξ) if m 6 n.

Lemma 5.3. If (x, ϕ) ∈ CC,D, then T o(x, ϕ) ∈ AC .

Proof. Let (x, ϕ) ∈ CC,D. By definition
[
T o
m,n(x, ϕ)

]
(ξ) ∈ Eo

m for every m,n ∈ Z and every
ξ ∈ Eo

n. From (5.29), (3.15) and (3.7) we have
[
T o
m,n(x, ϕ)

]
(0) = 0 for every m,n ∈ Z.

Also by definition
[
T o
n,n(x, ϕ)

]
(ξ) = ξ for every n ∈ Z and every ξ ∈ Eo

n. Hence T (x, ϕ)
satisfies (5.29) and (5.30).

To finish the proof we must prove that T (x, ϕ) satisfies (5.31). From (5.36), (3.9), (3.16)
and (5.31) it follows that

∥∥fx,ϕ,k,n(ξ)− fx,ϕ,k,n(ξ)
∥∥

=
∥∥fk(xk,n(ξ), ϕk(xk,n(ξ)))− fk(xk,n(ξ), ϕk(xk,n(ξ)))

∥∥
6 Lip(fk)

[∥∥xk,n(ξ)− xk,n(ξ)
∥∥+

∥∥ϕk(xk,n(ξ))− ϕk(xk,n(ξ))
∥∥]

6 Lip(fk)(1 +D)
∥∥xk,n(ξ)− xk,n(ξ)

∥∥
6 C(1 +D) Lip(fk)αo

m,n

∥∥ξ − ξ∥∥
(5.43)
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and this implies by (T1), (3.18) and (5.28) that∥∥[T o
m,n(x, ϕ)

]
(ξ)−

[
T o
m,n(x, ϕ)

]
(ξ)
∥∥

6 ‖Φm,nPn‖
∥∥ξ − ξ∥∥+

m−1∑
k=n

∥∥Φm,k+1P
o
k+1

∥∥∥∥fx,ϕ,k,n(ξ)− fx,ϕ,k,n(ξ)
∥∥

6 αo
m,n

∥∥ξ − ξ∥∥+ C(1 +D)
∥∥ξ − ξ∥∥m−1∑

k=n

αo
m,k+1 Lip(fk)αo

k,n

6 αo
m,n

∥∥ξ − ξ∥∥+ C(1 +D)σαo
m,n

∥∥ξ − ξ∥∥
= Cαo

m,n

∥∥ξ − ξ∥∥
for every m > n and every ξ ∈ Eo

n. Similarly, for every m 6 n and every ξ ∈ Eo
n we also

have ∥∥[T o
m,n(x, ϕ)

]
(ξ)−

[
T o
m,n(x, ϕ)

]
(ξ)
∥∥

6 ‖Φm,nPn‖
∥∥ξ − ξ∥∥+

n−1∑
k=m

∥∥Φm,k+1P
o
k+1

∥∥ ∥∥fx,ϕ,k,n(ξ)− fx,ϕ,k,n(ξ)
∥∥

6 αo
m,n

∥∥ξ − ξ∥∥+ C(1 +D)
∥∥ξ − ξ∥∥ n−1∑

k=m

αo
m,k+1 Lip(fk)αo

k,n

6 αo
m,n

∥∥ξ − ξ∥∥+ C(1 +D)σαo
m,n

∥∥ξ − ξ∥∥
= Cαo

m,n

∥∥ξ − ξ∥∥
and this finishes the proof. �

Now, let T± be the operator that assigns to every (x, ϕ) ∈ CC,D the sequence T±(x, ϕ) =
(T±n (x, ϕ))n∈Z of functions T±n (x, y) : Eo

n → X defined by[
T±n (x, ϕ)

]
(ξ) =

([
T+
n (x, ϕ)

]
(ξ),

[
T−n (x, ϕ)

]
(ξ)
)

=

(
n−1∑
k=−∞

Φn,k+1P
+
k+1fx,ϕ,k,n(ξ),−

+∞∑
k=n

Φn,k+1P
−
k+1fx,ϕ,k,n(ξ)

)
.

Lemma 5.4. If (x, ϕ) ∈ CC,D, then T±(x, ϕ) ∈ BD.

Proof. Let (x, ϕ) ∈ CC,D. It is obvious from the definition that [T+
n (x, ϕ)] (ξ) ∈ E+

n and
[T+
n (x, ϕ)] (ξ) ∈ E−n for every n ∈ Z and every ξ ∈ Eo

n. From (5.29), (3.15) and (3.7) we
have [T±n (x, ϕ)] (0) = 0 for every n ∈ Z, i.e., T (x, ϕ) satisfies (3.15).

To finish the proof we must prove that T (x, ϕ) satisfies (3.16). Since from by (T2)
and (5.43) we obtain∥∥[T+

n (x, ϕ)
]

(ξ)−
[
T+
n (x, ϕ)

]
(ξ)
∥∥

6
n−1∑
k=−∞

∥∥Φn,k+1P
+
k+1

∥∥ ∥∥fx,ϕ,k,n(ξ)− fx,ϕ,k,n(ξ)
∥∥

6 C(1 +D)
∥∥ξ − ξ∥∥ n−1∑

k=−∞

α+
n,k+1 Lip(fk)αo

k,n
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and from (T3) and (5.43) we have

∥∥[T−n (x, ϕ)
]

(ξ)−
[
T−n (x, ϕ)

]
(ξ)
∥∥ 6 +∞∑

k=n

∥∥Φn,k+1P
−
k+1

∥∥ ∥∥fx,ϕ,k,n(ξ)− fx,ϕ,k,n(ξ)
∥∥

6 C(1 +D)
∥∥ξ − ξ∥∥ +∞∑

k=n

α−n,k+1 Lip(fk)αo
k,n,

it follows by (3.19) and (5.28) that∥∥[T±n (x, ϕ)
]

(ξ)−
[
T±n (x, ϕ)

]
(ξ)
∥∥

6
∥∥[T+

n (x, ϕ)
]

(ξ)−
[
T+
n (x, ϕ)

]
(ξ)
∥∥+

∥∥[T−n (x, ϕ)
]

(ξ)−
[
T−n (x, ϕ)

]
(ξ)
∥∥

6 C(1 +D)
∥∥ξ − ξ∥∥[ n−1∑

k=−∞

α+
n,k+1 Lip(fk)αo

k,n +

+∞∑
k=n

α−n,k+1 Lip(fk)αo
k,n

]
6 C(1 +D)ω

∥∥ξ − ξ∥∥
= C

∥∥ξ − ξ∥∥ ,
which finishes the proof. �

Lemma 5.5. Let (x, ϕ), (y, ψ) ∈ CC,D. Then

(5.44) d(T o(x, ϕ), T o(y, ψ)) 6 σ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

and

(5.45) d(T±(x, ϕ), T±(y, ψ)) 6 ω [(1 +D)d1(x, y) + Cd2(ϕ,ψ)] .

Proof. By (3.9), (3.16), (5.33), (5.34) and (5.32) we have

‖fx,ϕ,k,n(ξ)− fy,ψ,k,n(ξ)‖
= ‖fk(xk,n(ξ), ϕk(xk,n(ξ)))− fk(yk,n(ξ), ψk(yk,n(ξ)))‖
6 Lip(fk) [‖xk,n(ξ)− yk,n(ξ)‖+ ‖ϕk(xk,n(ξ))− ψk(yk,n(ξ))‖]
6 Lip(fk) [(1 +D) ‖xk,n(ξ)− yk,n(ξ)‖+ ‖ϕk(yk,n(ξ))− ψk(yk,n(ξ))‖]
6 Lip(fk)

[
(1 +D)αo

k,nd1(x, y)‖ξ‖+ d2(ϕ,ψ) ‖yk,n(ξ)‖
]

6 Lip(fk)
[
(1 +D)αo

k,nd1(x, y)‖ξ‖+ d2(ϕ,ψ)Cαo
k,n ‖ξ‖

]
= Lip(fk)αo

k,n ‖ξ‖ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)] .

(5.46)

From (T2), (5.46) and (3.18), for every (m,n) ∈ Z2
>, it follows that∥∥[T o

m,n(x, ϕ)
]

(ξ)−
[
T o
m,n(x, ϕ)

]
(ξ)
∥∥

6
m−1∑
k=n

∥∥Φm,k+1P
o
k+1

∥∥ ‖fx,ϕ,k,n(ξ)− fy,ψ,k,n(ξ)‖

6 ‖ξ‖ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

m−1∑
k=n

αo
m,k+1 Lip(fk)αo

k,n

6 αo
m,n ‖ξ‖σ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]
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and for every (m,n) ∈ Z2
6 we obtain∥∥[T o

m,n(x, ϕ)
]

(ξ)−
[
T o
m,n(x, ϕ)

]
(ξ)
∥∥

6
n−1∑
k=m

∥∥Φm,k+1P
o
k+1

∥∥ ‖fx,ϕ,k,n(ξ)− fy,ψ,k,n(ξ)‖

6 ‖ξ‖ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

n−1∑
k=m

αo
m,k+1 Lip(fk)αo

k,n

6 αo
m,n ‖ξ‖σ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

and this proves that (5.44).
On the other hand, using (T2) and (5.46) we get∥∥[T+

n (x, ϕ)
]

(ξ)−
[
T+
n (x, ϕ)

]
(ξ)
∥∥

6
n−1∑
k=−∞

∥∥Φn,k+1P
+
k+1

∥∥ ‖fx,ϕ,k,n(ξ)− fy,ψ,k,n(ξ)‖

6 ‖ξ‖ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

n−1∑
k=−∞

α+
n,k+1 Lip(fk)αo

k,n

and using (T3) and (5.46) we obtain∥∥[T−n (x, ϕ)
]

(ξ)−
[
T−n (x, ϕ)

]
(ξ)
∥∥

6
+∞∑
k=n

∥∥Φn,k+1P
−
k+1

∥∥ ‖fx,ϕ,k,n(ξ)− fy,ψ,k,n(ξ)‖

6 ‖ξ‖ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

+∞∑
k=n

α−n,k+1 Lip(fk)αo
k,n.

This implies that∥∥[T±n (x, ϕ)
]

(ξ)−
[
T±n (x, ϕ)

]
(ξ)
∥∥

6
∥∥[T+

n (x, ϕ)
]

(ξ)−
[
T+
n (x, ϕ)

]
(ξ)
∥∥+

∥∥[T−n (x, ϕ)
]

(ξ)−
[
T−n (x, ϕ)

]
(ξ)
∥∥

6 ‖ξ‖ [(1 +D)d1(x, y) + Cd2(ϕ,ψ)][
n−1∑
k=−∞

α+
n,k+1 Lip(fk)αo

k,n +

+∞∑
k=n

α−n,k+1 Lip(fk)αo
k,n

]
6 ‖ξ‖ω [(1 +D)d1(x, y) + Cd2(ϕ,ψ)]

which proves (5.45). �

Define the operator T : CC,D → CC,D by

T (x, ϕ) =
(
T o(x, ϕ), T±(x, ϕ)

)
.

Lemma 5.6. The operator T : CC,D → CC,D is a contraction.

Proof. From last lemma and (5.35) it follows, for every (x, ϕ), (y, ψ) ∈ CC,D, that

d(T (x, ϕ), T (y, ψ)) = d1(T o(x, ϕ), T o(y, ψ)) + d2(T±(x, ϕ), T±(y, ψ))

6 (σ + ω) [Cd1(x, y) + (1 +D)d2(ϕ,ψ)]

6 (σ + ω) max {C, (1 +D)} [d1(x, y) + d2(ϕ,ψ)]

= (σ + ω) max {C, (1 +D)} d((x, ϕ), (y, ψ)).
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However by (3.21) and Lemma 5.1 we can conclude that

(σ + ω) max {C, (1 +D)} < 1

and this finishes the proof. �

Now we are in conditions to prove the main theorem.

Proof Theorem 3.1. In Lemma 5.6 we proved that T is a contraction. Since CC,D is a complete
metric space, by Banach Fixed Point Theorem, T as a unique fixed point (x, ϕ) ∈ CC,D that
satisfies (5.37), (5.40) and (5.41). By Lemma (5.2) the fixed point (x, ϕ) satisfies (5.37), (5.38)
and (5.39) and this proves that (3.22) holds.

To prove (3.23) we use (3.14), (3.16), (5.31) and (5.28) to get∥∥Ψm−n (n, ξ, ϕn(ξ))−Ψm−n
(
n, ξ, ϕn(ξ)

)∥∥
6
∥∥(m− n, xm,n(ξ), ϕm(xm,n(ξ)))−

(
m− n, xm,n(ξ), ϕm(xm,n(ξ))

)∥∥
6
∥∥xm,n(ξ)− xm,n(ξ)

∥∥+
∥∥ϕm(xm,n(ξ))− ϕm(xm,n(ξ))

∥∥
6 (1 +D)

∥∥xm,n(ξ)− xm,n(ξ)
∥∥

6 C(1 +D)αo
m,n

∥∥ξ − ξ∥∥
=
D

ω
αo
m,n

∥∥ξ − ξ∥∥
for every m,n ∈ Z and every ξ ∈ Eo

n and the theorem is proved. �
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