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A New Accelerated Viscosity Forward-backward Algorithm
with a Linesearch for Some Convex Minimization Problems
and its Applications to Data Classification

DAWAN CHUMPUNGAM1, PANITARN SARNMETA2 and SUTHEP SUANTAI1

ABSTRACT. In this paper, we focus on solving convex minimization problem in the form of a summation of two
convex functions in which one of them is Frecét differentiable. In order to solve this problem, we introduce a new
accelerated viscosity forward-backward algorithm with a new linesearch technique. The proposed algorithm
converges strongly to a solution of the problem without assuming that a gradient of the objective function is L-
Lipschitz continuous. As applications, we apply the proposed algorithm to classification problems and compare
its performance with other algorithms mentioned in the literature.

1. INTRODUCTION

Many problems in computer science, economics, engineering, statistics, physics and
medical science, such as signal processing, compressed sensing, medical image recon-
struction, digital image processing, data prediction and classification, can be formulated
as convex minimization problems in the form of the sum of two convex functions in which
one of these functions is Frecét differentiable. The problem is defined as follows:

(1.1) min
x∈H

{f(x) + g(x)},

where f : H → R ∪ {+∞} is a proper, convex differentiable function and g : H →
R ∪ {+∞} is proper, lower semicontinuous convex function defined on Hilbert space H .
We refer to [4, 5, 11, 12, 17, 25] for more information on its applications.

A solution of (1.1) is in fact a fixed point of a mapping proxαg(I − α▽f). To be more
precise, x∗ solves (1.1) if and only if

(1.2) x∗ = proxαg(I − α▽f)(x∗),

where α > 0, and proxαg(x) = argmin
y∈H

{g(y) + 1

2α
∥x− y∥2}.

The forward-backward algorithm [13] was proposed to solve (1.1). This algorithm is de-
fined by

(1.3) xn+1 = proxαng︸ ︷︷ ︸
backward

(I − αn▽f)︸ ︷︷ ︸
forward

(xn), for all n ∈ N,

where αn is a positive step size. This algorithm converges to a solution of (1.1) under
the assumption that ▽f is L-Lipschitz continuous and αn ∈ (0, 2

L ). Many authors have
studied and introduced forward-backward type algorithms to solve (1.1), see for instance
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[1, 5, 15, 22]. There are also several works which focus on the nonconvex cases that can be
reduced to (1.1), we refer to the work of Wu et al. [23] and the references therein, for more
in-depth discussion on this topic. However, most of these works assume the Lipschitz
assumption on ▽f which might not be an easy task to verify in general. So, in this paper,
we study another approach where ▽f is not necessary L-Lipschitz continuous.

In 2016, Cruz and Nghia [2] introduced a linesearch technique as the following:

Linesearch 1 Given x ∈ domg, δ > 0, σ > 0 and θ ∈ (0, 1).
Input Set α = σ.
While α∥▽f(proxαg(x− α▽fx))− ▽fx∥ > δ∥proxαg(x− α▽fx)− x∥
Set α = θα
End While
Output α.

They asserted that Linesearch 1 stops after finitely many steps and proposed the fol-
lowing algorithm:

Algorithm 1 Given x0 ∈ domg, δ ∈ (0, 1
2 ), σ > 0, and θ ∈ (0, 1), for all n ∈ N, define

(1.4) xn+1 = proxγng(I − γn▽f)(xn),

where γn := Linesearch 1(xn, δ, σ, θ). They also showed that a sequence generated by
Algorithm 1 converges weakly to a solution of (1.1) under assumptions A1 and A2 as
follows:

A1. f, g are proper lower semi-continuous convex functions with domg ⊆ domf,
A2. f is differentiable on an open set containing domg, and ▽f is uniformly continu-

ous on any bounded subset of domg and maps any bounded subset of domg to a
bounded set in H.

As we can see, the L-Lipschitz continuity of ▽f is not necessary. Moreover, if ▽f is L-
Lipschitz continuous, then A2 is satisfied.

In 2019, Kankam et. al. [11] proposed the following linesearch:

Linesearch 2 Given x ∈ domg, δ > 0, σ > 0 and θ ∈ (0, 1). Set

L(x, α) = proxαg(x− α▽f(x)), and

S(x, α) = proxαg(L(x, α)− α▽f(L(x, α))).

Input Set α = σ.
While αmax{(∥▽f(S(x, α))− ▽f(L(x, α))∥, ∥▽f(L(x, α))− ▽f(x)∥)}

> δ(∥S(x, α)− L(x, α)∥+ ∥L(x, α)− x∥),
Set α = θα
End While
Output α.

They also asserted that Linesearch 2 stops at finitely many steps, and proposed the fol-
lowing algorithm:

Algorithm 2 Given x0 ∈ domg, δ ∈ (0, 1
8 ), σ > 0 and θ ∈ (0, 1), for all n ∈ N, define{

yn = proxγng(xn − γn▽f(xn)),

xn+1 = proxγng(yn − γn▽f(yn)),
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where γn := Linesearch 2(xn, δ, σ, θ).

A weak convergence result of this algorithm was obtained under assumptions A1 and
A2. Although, Algorithm 1 and 2 obtained weak convergence results without the Lips-
chitz assumption on ▽f , some improvements are still welcome, specifically, to improve
its convergence behavior by using inertial step and viscosity technique.

Recently, in order to accelerate the convergence behavior of an algorithm, many au-
thors has utilized the inertial technique. Polyak [16] was the first to introduce and inves-
tigate this technique. In his work, he focused on solving smooth convex minimization
problems.

There are other approaches to solving the convex minimization problem (1.1) without
the Lipschitz assumption on the gradient of the objective function, for instance Shehu
et al. [18] considered the split feasibility problems which can be converted to convex
minimization problem (1.1), we refer to [18, 19] for more details.

Inspired by the works mentioned earlier, we focus our attention on linesearch algo-
rithms which relax L-Lipschitz continuity assumption on ▽f. Algorithm 1 and 2 only ob-
tain weak convergence results which might not be enough for infinite dimension spaces.
Moreover, accelerated techniques are also not used in these algorithms. So, our main
objective is to introduce a modified linesearch technique and propose a new algorithm
which utilizes a viscosity step, an inertial step and a modified linesearch to improve its
convergence behavior and obtain its strong convergence theorem to a solution of (1.1)
without the Lipschitz assumption on ▽f . Furthermore, we apply this new algorithm to
solving classification problems and compare its performance with Algorithm 1 and 2 to
show that the proposed algorithm has better performance.

2. PRELIMINARIES

In this section, we recall some definitions and lemmas which will be used in the main
results.

Let {xn} be a sequence in H . A strong and weak convergence of {xn} to x are denoted
by xn → x and xn ⇀ x, respectively. Let x ∈ H and h : H → R∪ {+∞} be a proper lower
semicontinuous convex function. We denote domh = {x ∈ H : h(x) < +∞}.

A subdifferential of h at x is defined as follows:

∂h(x) := {u ∈ H : ⟨u, y − x⟩ + h(x) ≤ h(y), y ∈ H}.

A proximal operator proxαh : H → domh is defined as follows:

proxαh(x) = (I + α∂h)−1(x),

where I is an identity and α is a positive number. This operator is single-valued and the
following is satisfied:

(2.5)
x− proxαh(x)

α
∈ ∂h(proxαh(x)), for all x ∈ H and α > 0.

Next, we present some important lemmas for this work.

Lemma 2.1 ([3]). A subdifferential ∂h is maximal monotone. Furthermore, a graph, Gph(∂h) :=
{(x, y) ∈ H ×H : y ∈ ∂h(x)}, is demiclosed, i.e., for any sequence {(xn, yn)} ⊆ Gph(∂h) such
that {xn} ⇀ x and {yn} → y, then (x, y) ∈ Gph(∂h).

Lemma 2.2 ([10]). Let f, g : H → R ∪ {+∞} be proper lower semicontinuous convex functions
with dom g ⊆ dom f and J(x, α) = proxαg(x − α▽f(x)). Then for any x ∈ dom g and
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α2 ≥ α1 > 0, we have
α2

α1
∥x− J(x, α1)∥ ≥ ∥x− J(x, α2)∥ ≥ ∥x− J(x, α1)∥.

Lemma 2.3 ([20]). Let H be a real Hilbert space. Then, for all a, b, c ∈ H and ζ ∈ [0, 1], the
following hold,

(i) ∥a± b∥2 = ∥a∥2 ± 2⟨a, b⟩+ ∥b∥2,
(ii) ∥ζa+ (1− ζ)b∥2 = ζ∥a∥2 + (1− ζ)∥b∥2 − ζ(1− ζ)∥a− b∥2,

(iii) ∥a+ b∥2 ≤ ∥a∥2 + 2⟨b, a+ b⟩,
(iv) ⟨a− b, b− c⟩ = 1

2 (∥a− c∥2 − ∥a− b∥2 − ∥b− c∥2).

Lemma 2.4 ([14]). Let {an} be a sequence of real numbers such that there exists a subsequence
{amj

} of {an} such that amj
< amj+1, for all j ∈ N. Then there exists a nondecreasing sequence

{nk} of N such that lim
k→+∞

nk = +∞ and for all sufficiently large k ∈ N the following holds:

ank
≤ ank+1 and ak ≤ ank+1.

Lemma 2.5 ([24]). Let {an} be a sequence of nonnegative real numbers, {ζn} a sequence in (0, 1)

with
+∞∑
n=1

ζn = +∞, {cn} a sequence of nonnegative real numbers with
+∞∑
n=1

cn < +∞ and {bn} a

sequence of real numbers with lim sup
n→+∞

bn ≤ 0. Suppose that the following holds

an+1 ≤ (1− ζn)an + ζnbn + cn,

for all n ∈ N, then lim
n→∞

an = 0.

3. MAIN RESULTS

In this section, we denote S∗ the set of all solutions of (1.1). We suppose that f, g :
H → R ∪ {+∞} are two proper lower semicontinuous convex functions which satisfy
assumptions A1 and A2. Furthermore, we also suppose that S∗ ̸= ∅.

We introduce the following linesearch technique.

Linesearch 3 Given x ∈ domg, δ > 0, σ > 0 and θ ∈ (0, 1).
Set

L(x, α) = proxαg(x− α▽f(x)), and

S(x, α) = proxαg(L(x, α)− α▽f(L(x, α))).

Input Set α = σ.
While
α

2
(∥▽f(S(x, α))−▽f(L(x, α))∥+∥▽f(L(x, α))−▽f(x)∥)>δ(∥S(x, α)−L(x, α)∥+∥L(x, α)−x∥),

or α∥▽f(L(x, α))− ▽f(x)∥ > 4δ∥L(x, α)− x∥.
Set α = θα
End While
Output α.

We first show that Linesearch 3 terminates at finitely many steps.

Lemma 3.6. Linesearch 3 stops at finitely many steps.
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Proof. If x ∈ S∗, then x = L(x, σ) = S(x, σ), so Linsearch 3 stops with zero step. If x /∈ S∗,
suppose by contradiction that, for all n ∈ N, the following hold

σθn

2
(∥▽f(S(x, σθn))− ▽f(L(x, σθn))∥+ ∥▽f(L(x, σθn))− ▽f(x)∥)

> δ(∥S(x, σθn)− L(x, σθn)∥+ ∥L(x, σθn)− x∥),(3.6)

or

(3.7) σθn∥▽f(L(x, σθn))− ▽f(x)∥ > 4δ∥L(x, σθn)− x∥.

Then, from these assumptions, we can find a subsequence {σθnk} of {σθn} such that (3.6)
or (3.7) holds. Then, it is sufficient to consider the following 2 cases.

Case 1, suppose that (3.6) holds, then it follows from assumption A2 and Lemma 2.2
that
∥S(x, σθnk) − L(x, σθnk)∥ → 0 and ∥L(x, σθnk) − x∥ → 0, as k → +∞. Since ▽f is
uniformly continuous, we get

∥▽f(S(x, σθnk))− ▽f(L(x, σθnk))∥ → 0 and ∥▽f(L(x, σθnk))− ▽f(x)∥ → 0,

as k → +∞. So, it follows from (3.6) that ∥L(x,σθnk )−x∥
σθnk

→ 0, as k → +∞. By (2.5), we
obtain

x− σθnk▽f(x)− L(x, σθnk)

σθnk
∈ ∂g(L(x, σθnk)).

Thus, L(x,σθnk )−x
σθnk

− ▽f(x) ∈ ∂g(L(x, σθnk)). Since L(x, σθnk) → x, as k → +∞, we
obtain from Lemma 2.1 that 0 ∈ ▽f(x) + ∂g(x) ⊆ ∂(f + g)(x). Hence, x ∈ S∗ which is a
contradiction.

Case 2, suppose that (3.7) holds, for all σθnk . Then, from A2 and Lemma 2.2, we have
∥L(x, σθnk)− x∥ → 0, as k → +∞. Again, from the uniform continuity of ▽f , we have

∥▽f(L(x, σθnk))− ▽f(x)∥ → +∞,

as k → +∞. From (3.7), we conclude that

∥L(x, σθnk)− x∥
σθnk

→ 0,

as k → +∞. By the same argument as in Case 1, we can show that 0 ∈ ∂(f + g)(x), and
hence x ∈ S∗, a contradiction. Therefore, we conclude that Linesearch 3 stops with finite
steps, and the proof is complete. □

Let F : domg → domg be a contractive mapping. We define a new algorithm as follows:

Algorithm 3 Given x0, x1 ∈ domg, δ ∈ (0, 1
8 ), σ > 0, θ ∈ (0, 1), µ ≥ 0, τn ∈ (0, 1), ζn ∈ (0, 1)

and αn ∈ [0, 1], for all n ∈ N, define

x̂n = xn + βn(xn − xn−1),

yn = Pdomgx̂n,

zn = (1− ζn)yn + ζnF (yn),

wn = proxγng(zn − γn▽f(zn)),

xn+1 = (1− αn)wn + αnproxγng(wn − γn▽f(wn)),

where γn := Linesearch 3(zn, δ, σ, θ), βn =

{
min{µ, τn

∥xn−xn−1∥}, if xn ̸= xn−1,

µ, otherwise,
and Pdomg is a metric projection onto domg.
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Lemma 3.7. Let γn := Linesearch 3(zn, δ, σ, θ). Then, for all n ∈ N and x ∈ domg, the
following hold:

(I) ∥zn − x∥2 − ∥wn − x∥2 ≥ 2γn[(f + g)(wn)− (f + g)(x)] + (1− 8δ)∥wn − zn∥2,
(II) ∥zn − x∥2 − ∥vn − x∥2 ≥ 2γn[(f + g)(wn) + (f + g)(vn)− 2(f + g)(x)]

+ (1− 8δ)(∥wn − zn∥2 + ∥vn − wn∥2),
where vn = proxγng(wn − γn▽f(wn)).

Proof. We first show that (I) is true. From (2.5), we know that
zn − wn

γn
− ▽f(zn) ∈ ∂g(wn), for all n ∈ N.

It follows from the definitions of ∂g(wn),▽f(zn) and ▽f(wn) that

g(x)− g(wn) ≥ ⟨zn − wn

γn
− ▽f(zn), x− wn⟩,

f(x)− f(zn) ≥ ⟨▽f(zn), x− zn⟩ and f(zn)− f(wn) ≥ ⟨▽f(wn), zn − wn⟩,
for all n ∈ N. Consequently,

f(x)−f(zn)+g(x)−g(wn) ≥
1

γn
⟨zn − wn, x− wn⟩+ ⟨▽f(zn), wn − zn⟩

=
1

γn
⟨zn−wn, x− wn⟩+⟨▽f(zn)− ▽f(wn), wn − zn⟩

+ ⟨▽f(wn), wn − zn⟩

≥ 1

γn
⟨zn−wn, x−wn⟩−∥▽f(zn)− ▽f(wn)∥∥wn − zn∥

+ ⟨▽f(wn), wn − zn⟩

≥ 1

γn
⟨zn−wn, x−wn⟩ −

4δ

γn
∥wn−zn∥2 + f(wn)−f(zn),

for all n ∈ N. Then, we obtain
1

γn
⟨zn − wn, wn − x⟩ ≥ (f + g)(wn)− (f + g)(x)− 4δ

γn
∥wn − zn∥2, for all n ∈ N.

It follows from Lemma 2.3 (iv) that ⟨zn−wn, wn−x⟩ = 1
2 (∥zn−x∥2−∥wn−zn∥2−∥wn−x∥2).

Then, we have
1

2γn
(∥zn− x∥2− ∥zn− wn∥2− ∥wn− x∥2) ≥ (f + g)(wn)− (f + g)(x)− 4δ

γn
∥zn− wn∥2,

for all n ∈ N. Hence, for any x ∈ domg, we have

∥zn− x∥2− ∥wn− x∥2 ≥ 2γn[(f+ g)(wn)− (f+ g)(x)]+ (1− 8δ)∥wn− zn∥2,

and (I) is proved. Next we show that (II) also hold. To prove our claim, we know that
zn − wn

γn
− ▽f(zn) ∈ ∂g(wn), and

wn − vn
γn

− ▽f(wn) ∈ ∂g(vn).

Then,

g(x)− g(wn) ≥ ⟨zn − wn

γn
− ▽f(zn), x− wn⟩, and

g(x)− g(vn) ≥ ⟨wn − vn
γn

− ▽f(wn), x− vn⟩, for all n ∈ N.
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Moreover,
f(x)− f(zn) ≥ ⟨▽f(zn), x− zn⟩,
f(x)− f(wn) ≥ ⟨▽f(wn), x− wn⟩,

f(zn)− f(wn) ≥ ⟨▽f(wn), zn − wn⟩, and

f(wn)− f(vn) ≥ ⟨▽f(vn), wn − vn⟩, for all n ∈ N.
These inequalities imply that

f(x)− f(zn) + f(x)− f(wn) + g(x)− g(wn) + g(x)− g(vn)

≥ 1

γn
⟨zn−wn, x−wn⟩+⟨▽f(zn), wn − zn⟩+

1

γn
⟨wn − vn, x− vn⟩+ ⟨▽f(wn), vn − wn⟩,

=
1

γn
⟨zn − wn, x− wn⟩+ ⟨▽f(zn)− ▽f(wn), wn − zn⟩+ ⟨▽f(wn), wn − zn⟩

+
1

γn
⟨wn − vn, x− vn⟩+ ⟨▽f(wn)− ▽f(vn), vn − wn⟩+ ⟨▽f(vn), vn − wn⟩,

≥ 1

γn
⟨zn − wn, x− wn⟩+

1

γn
⟨wn − vn, x− vn⟩ − ∥▽f(wn)− ▽f(zn)∥∥wn − zn∥

+ ⟨▽f(wn), wn − zn⟩ − ∥▽f(vn)− ▽f(wn)∥∥vn − wn∥+ ⟨▽f(vn), vn − wn⟩,

≥ 1

γn
⟨zn−wn, x−wn⟩+

1

γn
⟨wn−vn, x−vn⟩−∥▽f(wn)−▽f(zn)∥(∥wn − zn∥+ ∥vn − wn∥)

+⟨▽f(wn), wn−zn⟩−∥▽f(vn)−▽f(wn)∥(∥wn−zn∥+∥vn − wn∥) + ⟨▽f(vn), vn − wn⟩,

=
1

γn
⟨zn − wn, x− wn⟩+

1

γn
⟨wn − vn, x− vn⟩+ ⟨▽f(wn), wn − zn⟩+ ⟨▽f(vn), vn − wn⟩

− (∥▽f(wn)− ▽f(zn)∥+ ∥▽f(vn)− ▽f(wn)∥)(∥wn − zn∥+ ∥vn − wn∥),

≥ 1

γn
⟨zn − wn, x− wn⟩+

1

γn
⟨wn − vn, x− vn⟩+ ⟨▽f(wn), wn − zn⟩+ ⟨▽f(vn), vn − wn⟩

− 2δ

γn
(∥wn − zn∥+ ∥vn − wn∥)2,

≥ 1

γn
⟨zn−wn, x−wn⟩+

1

γn
⟨wn−vn, x−vn⟩+f(vn)− f(zn)−

4δ

γn
(∥wn−zn∥2+∥vn−wn∥2),

for all x ∈ dom g, and n ∈ N.

Hence,
1

γn
⟨zn − wn, wn − x⟩+ 1

γn
⟨wn − vn, vn − x⟩

≥ (f + g)(wn) + (f + g)(vn)− 2(f + g)(x)− 4δ

γn
∥wn − zn∥2 −

4δ

γn
∥vn − wn∥2.

Moreover, by Lemma 2.3 (iv), we also obtain the following, for all n ∈ N,

⟨zn − wn, wn − x⟩ = 1

2
(∥zn − x∥2 − ∥zn − wn∥2 − ∥wn − x∥2), and

⟨wn − vn, vn − x⟩ = 1

2
(∥wn − x∥2 − ∥wn − vn∥2 − ∥vn − x∥2).

As a result, we obtain
1

2γn
(∥zn − x∥2 − ∥zn − wn∥2)−

1

2γn
(∥wn − vn∥2 + ∥vn − x∥2)

≥ (f + g)(wn) + (f + g)(vn)− 2(f + g)(x)− 4δ

γn
∥wn − zn∥2 −

4δ

γn
∥vn − wn∥2,



132 D. Chumpungam, P. Sarnmeta and S. Suantai

for all x ∈ dom g, and n ∈ N. Therefore,

∥zn − x∥2 − ∥vn − x∥2 ≥2γn[(f + g)(wn) + (f + g)(vn)− 2(f + g)(x)]

+ (1− 8δ)(∥wn − zn∥2 + ∥vn − wn∥2),

for all x ∈ dom g, and n ∈ N, and (II) is proved. □

Theorem 3.1. Let xn be a sequence generated by Algorithm 3. Suppose that the following hold:

C1. lim
n→+∞

ζn = 0 and
+∞∑
n=1

ζn = +∞,

C2. there exists γ > 0 such that γn ≥ γ, for all n ∈ N,
C3. lim

n→+∞

τn
ζn

= 0.

Then {xn} converges strongly to x∗ = PS∗F (x∗).

Proof. We know that S∗ is closed and convex, so mapping PS∗F has a fixed point. It also

follows from C3 that lim
n→+∞

βn

ζn
∥xn − xn−1∥ = 0. Now, let x∗ = PS∗F (x∗), we know that

xn ∈ dom g. Consequently, the following hold, for all n ∈ N,

(3.8) ∥yn − x̂n∥ ≤ ∥xn − x̂n∥ = βn∥xn − xn−1∥ =
βn

ζn
∥xn − xn−1∥ζn → 0, as n → ∞,

(3.9) ∥zn − yn∥ = ζn∥Fyn − yn∥.

Since x∗ ∈ domg and Pdomg is nonexpansive, we also have

(3.10) ∥yn − x∗∥ ≤ ∥x̂n − x∗∥ ≤ ∥xn − x∗∥+ βn

ζn
∥xn − xn−1∥ζn ≤ ∥xn − x∗∥+ ζnM1,

for some M1 ≥ βn

ζn
∥xn − xn−1∥. Moreover, we obtain the following , for all n ∈ N,

∥yn − x∗∥2 ≤ ∥xn − x∗∥2 + 2βn∥xn − x∗∥∥xn − xn−1∥+ β2
n∥xn − xn−1∥2

= ∥xn − x∗∥2 + βn

ζn
∥xn − xn−1∥(2ζn∥xn − x∗∥+ ζnβn∥xn − xn−1∥).(3.11)

It follows directly from Leamma 3.7 that

(3.12) ∥zn − x∗∥2 − ∥wn − x∗∥2 ≥ (1− 8δ)∥wn − zn∥2,

and

(3.13) ∥zn − x∗∥2 − ∥vn − x∗∥2 ≥ (1− 8δ)(∥wn − zn∥2 + ∥vn − wn∥2),

where vn = proxγng(wn − γn▽f(wn)), for all n ∈ N. So,

∥xn+1 − x∗∥2 ≤ (1− αn)∥wn − x∗∥2 + αn∥vn − x∗∥2

≤ ∥zn − x∗∥2, for all n ∈ N.(3.14)
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Next, we prove that {xn} is bounded. Indeed, from (3.10) and (3.14), we have

∥xn+1−x∗∥ ≤ ∥zn−x∗∥ = ∥ζnFyn + (1− ζn)yn − x∗∥
≤ ζn∥Fyn − Fx∗∥+ ζn∥Fx∗ − x∗∥+ (1− ζn)∥yn − x∗∥
≤ (1− (1− c)ζn)∥yn − x∗∥+ ζn∥Fx∗ − x∗∥
≤ (1−(1−c)ζn)∥xn−x∗∥+(1−(1−c)ζn)ζnM1+ζn∥Fx∗−x∗∥

≤ (1− (1− c)ζn)∥xn − x∗∥+ ζn(1− c)(
M1 + ∥Fx∗ − x∗∥

1− c
)

≤ max{∥xn − x∗∥, M1 + ∥Fx∗ − x∗∥
1− c

}.

So, ∥xn+1 − x∗∥ ≤ max{∥x0 − x∗∥, M1 + ∥Fx∗ − x∗∥
1− c

}, and hence {xn} is bounded. Fur-

thermore, from (3.9) and (3.10), we also obtain that {yn} and {zn} are bounded.
Next, we prove that {xn} converges strongly to x∗. The proof is divided into two cases.

Case 1: There exists N0 ∈ N such that ∥xn+1 − x∗∥ ≤ ∥xn − x∗∥, for all n ≥ N0. So
lim
n→∞

∥xn − x∗∥ = a, for some a ∈ R. By using (3.8), (3.9) and (3.14) we obtain following
inequality:

∥xn+1 − x∗∥ ≤ ∥zn − x∗∥ ≤ ∥zn − yn∥+ ∥yn − xn∥+ ∥xn − x∗∥,

we conclude that lim
n→∞

∥zn − x∗∥ = a. A boundedness of {zn} implies that there exists a

subsequence {znk
} of {zn} such that znk

⇀ w, for some w ∈ H, and

lim sup
n→∞

⟨Fx∗ − x∗, zn − x∗⟩ = lim
k→∞

⟨Fx∗ − x∗, znk
− x∗⟩ = ⟨Fx∗ − x∗, w − x∗⟩.

If w ∈ S∗, then lim sup
n→∞

⟨Fx∗ − x∗, zn − x∗⟩ ≤ 0. So, in the next step, we show that w ∈ S∗.

In order to prove this, we first show that lim
n→+∞

∥zn − wn∥ = 0.

If lim sup
n→+∞

αn = r < 1, then from (3.14), we obtain

lim sup
n→+∞

∥wn − x∗∥2 = lim sup
n→+∞

∥xn − x∗∥2 = lim sup
n→+∞

∥zn − x∗∥2 = a2.

So, it follows from (3.12) that lim
n→+∞

∥wn − zn∥ = 0.

If lim sup
n→+∞

αn = 1, then by (3.14), we get

lim sup
n→+∞

∥vn − x∗∥2 = lim sup
n→+∞

∥xn − x∗∥2 = lim sup
n→+∞

∥zn − x∗∥2 = a2.

Using (3.13), we have lim
n→+∞

∥wn − zn∥ = 0. Thus, we conclude that wnk
⇀ w. Since ▽f is

uniformly continuous, we have lim
k→+∞

∥▽f(znk
)− ▽f(wnk

)∥ = 0. From (2.5), we get

znk
− γnk

▽f(znk
)− wnk

γnk

∈ ∂g(wnk
), for all k ∈ N.

Hence,
znk

− wnk

γnk

− ▽f(znk
) + ▽f(wnk

) ∈ ∂g(wnk
) + ▽f(wnk

) = ∂(f + g)(wnk
), for all k ∈ N.

By letting k → +∞ in the above inequality and the fact that Gph(∂(f + g)) is demi-
closed, we obtain that 0 ∈ ∂(f + g)(w). Hence w ∈ S∗.
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From (3.11) and Lemma 2.3, we have

∥zn − x∗∥2 = ∥ζnFyn + (1− ζn)yn − x∗∥2,
= ∥ζn(Fyn − Fx∗) + ζn(Fx∗ − x∗) + (1− ζn)(yn − x∗)∥2,
≤ ∥ζn(Fyn − Fx∗) + (1− ζn)(yn − x∗)∥2 + 2ζn⟨Fx∗ − x∗, zn − x∗⟩,
≤ (1− (1− c)ζn)∥yn − x∗∥2 + 2ζn⟨Fx∗ − x∗, zn − x∗⟩,

≤ (1− (1− c)ζn)∥xn − x∗∥2 + βn

ζn
∥xn − xn−1∥(2ζn∥xn − x∗∥

+ ζnβn∥xn − xn−1∥) + 2ζn⟨Fx∗ − x∗, zn − x∗⟩,

≤ (1− (1− c)ζn)∥xn − x∗∥2 + (1− c)ζn(
βn

ζn
∥xn − xn−1∥

M2

1− c

+
2

1− c
⟨Fx∗ − x∗, zn − x∗⟩),

for some M2 ≥ 2∥xn − x∗∥+ βn∥xn − xn−1∥. Hence, from (3.14), we obtain
(3.15)

∥xn+1−x∗∥2 ≤ (1−(1−c)ζn)∥xn−x∗∥2+(1−c)ζn(
βn

ζn
∥xn−xn−1∥

M2

1− c
+

2

1− c
⟨Fx∗−x∗, zn−x∗⟩).

Since βn

ζn
∥xn − xn−1∥ M2

1−c → 0 and lim sup
n→∞

⟨Fx∗ − x∗, zn − x∗⟩ ≤ 0, We can invoke Lemma

2.5 to conclude that ∥xn − x∗∥2 → 0. That is {xn} converges strongly to x∗.
Case 2: Suppose that there exists a subsequence {xmj

} of {xn} such that ∥xmj
− x∗∥ <

∥xmj+1 − x∗∥, for all j ∈ N. As a consequence of Lemma 2.4, there exists a nondecreas-
ing sequence {nk} of N such that lim

k→+∞
nk = +∞ and the following is satisfied, for any

sufficiently large k ∈ N,

∥xnk
− x∗∥ ≤ ∥xnk+1 − x∗∥ and ∥xk − x∗∥ ≤ ∥xnk+1 − x∗∥.

From the definition of znk
and (3.11), we have, for all k ∈ N,

∥znk
− x∗∥2 ≤ ζnk

∥Fynk
− x∗∥2 + (1− ζnk

)∥ynk
− x∗∥2

≤ ζnk
∥Fynk

− x∗∥2 + ∥ynk
− x∗∥2

≤ ∥xnk
− x∗∥2 + ζnk

∥Fynk
− x∗∥2

+
βnk

ζnk

∥xnk
− xnk−1∥(2ζnk

∥xnk
− x∗∥+ ζnk

βnk
∥xnk

− xnk−1∥)

≤ ∥xnk
− x∗∥2 + ζnk

∥Fynk
− x∗∥2 + ζnk

(
βnk

ζnk

∥xnk
− xnk−1∥M3)

≤ ∥xnk+1 − x∗∥2 + ζnk
∥Fynk

− x∗∥2 + ζnk
(
βnk

ζnk

∥xnk
− xnk−1∥M3),(3.16)

for some M3 ≥ 2∥xnk
− x∗∥+ βnk

∥xnk
− xnk−1∥. So, it follows from (3.12) and (3.13) that

∥znk
−x∗∥2−∥xnk+1−x∗∥2 ≥ ∥znk

− x∗∥2 − (1− ζnk
)∥wnk

− x∗∥2 − ζnk
∥vnk

− x∗∥2

≥ (1− ζnk
)(1− 8δ)∥wnk

−znk
∥2+ζnk

(1− 8δ)∥wnk
−znk

∥2

= (1− 8δ)∥wnk
− znk

∥2(3.17)

By combining (3.16) and (3.17), we get

ζnk
∥Fynk

− x∗∥2 + ζnk
(
βnk

ζnk

∥xnk
− xnk−1∥M3) ≥ (1− 8δ)∥wnk

− znk
∥, for all k ∈ N.
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So, lim
k→+∞

∥wnk
− znk

∥ = 0. Again, the boundedness of {znk
} implies that there exists a

subsequence {znkj
} such that znkj

⇀ w, for some w ∈ H, and

lim sup
k→∞

⟨Fx∗ − x∗, znk
− x∗⟩ = lim

j→∞
⟨Fx∗ − x∗, znkj

− x∗⟩ = ⟨Fx∗ − x∗, w − x∗⟩.

By the same argument as in case 1, we conclude that w ∈ S∗ and

lim sup
k→∞

⟨Fx∗ − x∗, znk
− x∗⟩ = ⟨Fx∗ − x∗, w − x∗⟩ ≤ 0.

Moreover, it follows from (3.15) that

∥xnk+1−x∗∥2 ≤ (1− (1− c)ζnk
)∥xnk

− x∗∥2

+ (1− c)ζnk
(
βnk

ζnk

∥xnk
− xnk−1∥

M2

1− c
+

2

1− c
⟨Fx∗ − x∗, znk

− x∗⟩),

≤ (1− (1− c)ζnk
)∥xnk+1 − x∗∥2

+ (1− c)ζnk
(
βnk

ζnk

∥xnk
− xnk−1∥

M2

1− c
+

2

1− c
⟨Fx∗ − x∗, znk

− x∗⟩).

Consequently, ∥xnk+1 − x∗∥2 ≤ βnk

ζnk
∥xnk

− xnk−1∥ M2

1−c +
2

1−c ⟨Fx∗ − x∗, znk
− x∗⟩. Hence,

0 ≤ lim sup
k→∞

∥xk − x∗∥2 ≤ lim sup
k→∞

∥xnk+1 − x∗∥2 ≤ 0.

Thus, we conclude that {xn} converges strongly to x∗, and the proof is complete. □

We note that, the twice computations of proximal map per iterations in Algorithm 3
might be computationally expensive. However, in real world applications, the perfor-
mance of Algorithm 3 is better than the linesearch algorithms which use only one com-
putation of proximal map per iteration in term of accuracy as evidence by the numerical
experiments in Section 4. Moreover, the difference in the computational time is very small.

4. APPLICATIONS TO DATA CLASSIFICATION PROBLEMS

In this section, we apply Algorithm 1, 2 and 3 to solving some classification prob-
lems based on a learning technique called Extreme Learning Machine(ELM) introduced by
Huang et. al. [9]. It is defined as follows:

Let S := {(xk, tk) : xk ∈ Rn, tk ∈ Rm, k = 1, 2, ..., N} be a training set of N samples,
xk is an input and tk is a target. The output of ELM with M hidden nodes and activation
function G is defined by

oj =

M∑
i=1

ηiG(⟨wi, xj⟩+ bi),

where wi is the weight vector connecting the i-th hidden node and the input node, ηi is
the weight vector connecting the i-th hidden node and the output node and bi is bias. The
hidden layer output matrix H is defined as

H =

G(⟨w1, x1⟩+ b1) · · · G(⟨wM , x1⟩+ bM )
...

. . .
...

G(⟨w1, xN ⟩+ b1) · · · G(⟨wM , xN ⟩+ bM )

 .

The main objective of ELM is to calculate an optimal weight η = [ηT1 , ..., η
T
M ]T such that

Hη = T, where T = [tT1 , ..., t
T
N ]T is the training set. If Moore-Penrose generalized inverse

H† of H exists, then η = H†T is the solution. However, in general cases, H† may not



136 D. Chumpungam, P. Sarnmeta and S. Suantai

exist or difficult to obtain. Thus, in order to avoid such difficulties, we utilize the convex
minimization to find η without relying on H†.

In machine learning, a model can be overfit in the sense that it is very accurate on a
training set but inaccurate on testing sets. In other words, it can not be used to predict
unknown data. In order to prevent overfitting, the Least absolute shrinkage and selection
operator (LASSO) [21] is used. It can be formulated as follows:

(4.18) min
η

{∥Hη − T∥22 + λ∥η∥1},

where λ is a regularization parameter. If we set f(x) = ∥Hx−T∥22 and g(x) = λ∥x∥1, then
it is problem (1.1).

In our experiments, we classify four data sets from https://archive.ics.uci.edu namely
Iris [7], Heart disease [6], Breast cancer and Wine [8]. The detail of these data sets can be
seen in Table 1.

TABLE 1. Detail of data sets

Instances Attributes Classes
Iris 150 4 3
Heart disease 303 13 2
Breast cancer 569 30 2
Wine 178 13 3

We use sigmoid as an activation function with number of hidden nodes M = 30, We
use 10-fold cross validation and Average accuracy to evaluate the performance. It is define
as follows:

Average ACC =

N∑
i=1

xi

yi
× 100%/N,

where N is a number of sets considered during cross validation (N = 10), xi is a number
of correctly predicted data at fold i and yi is a number of all data at fold i. All parameters
of Algorithm 1, 2 and 3 are chosen as seen in Table 2.

TABLE 2. Chosen parameters of each algorithm

Algorithm 1 Algorithm 2 Algorithm 3
σ 0.49 0.124 0.124
δ 0.1 0.1 0.1
θ 0.1 0.1 0.1
ζn - - 1

100n
αn - - 1

2

The inertial parameters βn of Algorithm 3 is chosen as

βn =

min{0.95, 1030

n2∥xn−xn−1∥}, if xn ̸= xn−1,

0.95, otherwise,

and the contractive mapping F for Algorithm 3 is defined by F (x) = 0.99x. Regular-
ization parameters λ for each algorithm and data set are chosen using 10-fold cv. The
parameters λ can be seen in Table 3.
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TABLE 3. Chosen λ of each algorithm

Iris Heart disease Breast cancer Wine
Algorithm 1 0.001 0.003 0.2 0.02

Algorithm 2 0.01 0.03 0.9 0.006

Algorithm 3 0.01 0.03 0.07 0.0001

TABLE 4. Average accuracy of each algorithm at 300th iteration with 10-
fold cv.

Algorithm 1 Algorithm 2 Algorithm 3
train test time train test time train test time

Iris 92.37 90.67 0.095 94.37 94.00 0.105 98.59 98.67 0.102
Heart disease 81.85 80.52 0.119 83.53 81.84 0.148 84.31 82.85 0.139
Breast cancer 95.82 95.77 0.149 95.90 95.77 0.193 96.93 96.31 0.183
Wine 97.57 97.16 0.095 98.00 97.19 0.112 99.63 99.44 0.106

We measure the performance of each algorithm at 300th iteration with average accu-
racy. We also compare their computational time (in seconds) on training sets, and the
results can be seen in Table 4.

From Table 4, with our choice of regularization parameters, we see that all models are
not overfitting because the accuracy differences between training and testing set are small.
Moreover, Algorithm 3 obtains higher accuracy than other algorithms in both training
and testing sets for each data set. We also observe that the difference between the com-
putational time of each algorithm is very small. Based on these experiment, Algorithm 3
performs better than other linesearch algorithms.

5. CONCLUSIONS

In conclusion, in this work we introduced a new accelerated forward-backward al-
gorithm with a modified linesearch. A strong convergence to a solution of (1.1) of the
proposed algorithm is obtained without assuming ▽f to be L−Lipschitz continuity. Fur-
thermore, we apply our new algorithm to classification problems and evaluate its per-
formance and compare with other linesearch algorithm, namely Algorithm 1 and 2. We
observed from these experiments that the proposed algorithm performs better than Algo-
rithm 1 and 2. Our model and algorithm can also be applied to prediction and classifi-
cation of other data sets which will be useful for other real world applications in various
fields such as medical science, economics, engineering, and business.
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