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Alternated inertial simultaneous and semi-alternating
projection algorithms for solving the split equality problem

QIAO-L1 DONG and YU PENG

ABSTRACT. In this paper, we introduce the simultaneous and semi-alternating projection algorithms for solv-
ing the split equality problem by using a new choice of the step size and combining the alternated inertial tech-
nique. The weak convergence of the proposed algorithms is analyzed under standard conditions. Finally, a
numerical example is presented to illustrate the efficiency and advantage of the proposed algorithms by com-
paring with other methods..

1. INTRODUCTION

Let Hy, Hy and Hj be real Hilbert spaces, let C C H; and ) C H; be two nonempty
closed convex sets, and let A : Hy — Hjz and B : Hy — Hj be two bounded linear op-
erators. The split equality problem (SEP) introduced by Moudafi in [12] can be described
as

(1.1) Find ze€ Candye @, suchthat Az = By.

The split equality problem (1.1) plays an important role in phase restoration, signal restora-
tion, image reconstruction and medical fields. In addition, the split equality problem in-
cludes the convex feasibility problem and the split feasibility problem (see, e.g., [3]) as
special cases.

Denote by

r={zxeC,yeQ: Ax = By}

the solution of the SEP (1.1). Throughout this paper, we assume that the SEP (1.1) is
consistent, i.e., T' # 0.

To solve the SEP (1.1), Moudafi [12] firstly proposed an alternating CQ algorithm.
Considering that the projections onto C'and @) might be difficult to calculate, Moudafi [13]
proposed a relaxed alternating CQ algorithm which replaces the projections onto C and
() with those onto the half-spaces. The step sizes in these algorithms are fixed and depend
on the operator norms || A|| and || B|| which may be difficult or even impossible to obtain.
Even if we know the norms of A and B, the iterative algorithms with the fixed step size
are generally slow.

A number of literatures on algorithms for solving SEP have been published (see
[6,10,17-19]). For example, in [16], inspired by iterative algorithms for solving a vari-
ational inequality, Tian et al. proposed several two-step methods and relaxed two-step
methods. Moudafi [14] extended the alternating CQ algorithm to the nonconvex setting
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and introduced a generalized alternating CQ algorithm by using the linearization tech-
nique.

Recently by improving the step sizes in [4], the authors [8] introduced simultaneous
and semi-alternating projection algorithms which have the excellent numerical perfor-
mance comparing with those in [4]. Very recently, to accelerate the convergence of the
projection method in [7], the authors [9] proposed an alternated inertial projection al-
gorithm by using the alternated inertial extrapolation, whose inertial parameters don’t
involve the iterative sequence.

Motivated by above work, in this paper, we introduce the alternated inertial simul-
taneous and semi-alternating projection algorithms by using a self-adaptive step size and
applying the alternated inertia in algorithms. The structure of the paper is as follows. In
the next section, we present some concepts and lemmas which will be used in the main
results. In Section 3, we will present algorithms and give their weak convergence analy-
sis. In final section, some numerical results are provided, which show the advantages of
the proposed algorithms.

2. PRELIMINARIES
Let H be a real Hilbert space with the inner product (:,-) and the induced norm
|| - |- We write ¥ — z to indicate that the sequence {2"}, _ converges weakly to x and
a* — x to indicate that the sequence {z*}, - converges strongly to z. Given a sequence
{a*}, < denote by wi (7%) it’'s weak w-limit set, that is, for any = € w,, (2*) there exists a
subsequence {27} _ of {*}, _ which converges weakly to z.

In this paper, an important tool of our work is the projection. Let D be a nonempty,
closed and convex subset of H. Recall that the projection from H onto D, denoted by
Pp, is defined in such a way that, for each = € H, Pp(x) is the unique point in D such that

|z — Pp(x)|| = min{||z — z|| : z € D}.
The following identity will be used for the main results (see [1, Corollary 2.15]):
22 loa + (1 = a)yl* = allz|* + (1 = ) Jyll* — a1 = )|z — ],
forall« € Rand (z,y) € H x H.
Lemma 2.1. [1, Theorem 3.16] Given x € H and z € D. Then z = Pp(x) if and only if
(x—zy—2 <0, YyeD.
Lemma 2.2. [1, Propositions 4.2 and 4.16] For any x,y € H and z € D, it holds

(@) [|1Pp(z) = Pp)ll < [l —yl;
(ii) |Pp(x) = 2l|* < llo — 2| — [|Pp (=) — ]*.

Definition 2.1. [1, Definition 6.38] The normal cone of D atv € D, denote by Np (v)
is defined as
Np (v):={de H|(d,y—v) <0forally € D}.

Definition 2.2. [1, Definition 20.2] Let A : H — 2¥ be a point-to-set operator defined on
a real Hilbert space H. The operator A is called a maximal monotone operatorif A
is monotone, i.e.,

(u—v,z—y)>0forallu € A(z) and v € A(y),
and the graph G(A) of A,
G(A) :={(z,u) e Hx H|ue A(z)},

is not properly contained in the graph of any other monotone operator.
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It is clear ([15, Theorem 3]) that a monotone mapping A is maximal if and only if, for
any (z,u) € Hx H,if (u — v,z — y) > 0forall (v,y) € G(A), then it follows that v € A(x).

Lemma 2.3. [1, Lemma 2.47] Let (2*),en be a sequence in H and let D be a nonempty subset
of H. Suppose that, for every x € D, (||z* — x||)ren converges and that every weak sequential
cluster point of (x%) ey belongs to D. Then (z*)en converges weakly to a point in D.

3. MAIN RESULTS

In this section, we present two classes of projection algorithms and establish their
weak convergence analysis under standard conditions.

3.1. Simultaneous projection algorithms. Let S = C x Q € H := H; x H,. Define
K =[A,—B]: H; x Hy — Hy x Hs, and let K* be the adjoint operator of K, then the SEP
(1.1) can be rewritten as

(3.3) Find z=(z,y) €S suchthat Kz=0,

which is a split feasibility problem (see, e.g. [12]).
Note that if the solution set of (3.3) is nonempty, it equals to the following constrained
minimization problem

1 )
(3.4) ggg§llK(2)|| ,

which is a standard (and a simple) problem from the convex optimization point of view.
There are many methods for solving the problem (3.4), such as classical projection gradi-
ent method.

Inspired by the work in [8], we propose two alternated inertial simultaneous projec-
tion algorithms by combining the self-adaptive step size and the alternated inertia with
Algorithm 3.1 in [8].

Algorithm 3.1. Given constants p € (0,1), and let 2° = (2°,94°) € H = H; x H, be taken

arbitrarily.
Fork =0,1,2, ..., compute
P k = even
3.5 th =477 ’
5.5 {zk—i—ﬂk(zk — 2P 1) k= odd,
and
(3.6) wh = Ps(t" — BL.K K (t")),
and
min{ plt —wt] 5k} it | KK () — KK (wh)] # 0
B7) By = [K*K (") — K*K(w")||" ) ’
B, otherwise.
Calculate next iterates zFt! via
(3.8) g =1 —qprd(t*, wh),
or
(3.9) 2T = Pg(t* — 7 Brpr K* K (w*)),

where v € (0,2),
(3.10) d(th, wh) == (t* — wk) — BL(K* K (t*) — K* K (w")),
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and

(3.11) pr =

Set k = k + 1, and continue.

(t7 — wh, d(t", wh)) + B K (w*)||?
[d(t*, wh)|? '

Remark 3.1. Let z = (z, y). Then we have (see Section 4.4.1 in [2])
Ps(z) = (Pcl‘,PQy).

A*A —A*B\ [z A*(Axz — By)
KKz = = .
—B*A B'B (y) B*(By — Ax)
Define the function F' : H; x Hy — H; by
F(z,y) = A*(Ax — By),
and the function G : H; x Hy — Hs by
G(z,y) = B*(By — Ax).

By setting zF = (2%, %), t* = (p*,¢*) and w* = (u*,v*), and Algorithm 3.1 can be
rewritten as follow:
For k =0,1,2,..., compute

It is easy to see

(0", ¢") = (%, y"), k = even,
’ (@*,y") + O [(2", y*) — ("1 y* )], k= odd,
and
uk = Po(p* — BF (0", ¢")),
v* = Pol(d" = BG0", ¢")),
update
: p(llp* = u*[| + [|g* —vkll) }
min )
Bout = {llF(pk,qk)—F(uk,vk) +||G(p ¢ ) = Gu* ot &
A if F(p*,q*) — F(u*,0%) # 0 or G(p*, ¢*) — G(u*,0*) £ 0,
Bk, otherwise.

Compute next iterates z**! and y**! by

k+1 = pk - ’YPkaa
(3.12) L k
yI - ’kad )
or
(3.13) {xﬁﬂ Po(p® = vBrprn F(u*,0")),
it = Po(d" — vBkprG(uF, v%)),

where v € (0,2),

and |
P (pF — ¥, ¢¥) + (¢F — vF, dF) + Bi|| AuF — BoP||2
[[cF 12 + [|a¥]2
Set k = k + 1, and continue.




Alternated inertial simultaneous and semi-alternating... 143

For convenience, we denote the projection algorithms which use update forms (3.8)
(or (3.12)) and (3.9) (or (3.13)) by Algorithm 3.1 (I) and Algorithm 3.1 (II), respectively.
We suppose that the inertial parameter 6, in Algorithm 3.1 satisfies one of the following
conditions:

(A1) —1<0<6, <0< 22,
(A2) -1<0 <0, <0<0.

Remark 3.2. By the definition of d(t*,w*) in (3.10), (3.6) can be written as
wh = P(ut — (B K (wF) — (%, wb)),

So, from Lemma 2.1 we have

(3.14) (z —wh, B K* K (w®) — d(t*, w®)) > 0, Vz € S.

Lemma 3.4. [8, Lemma 3.3] Let {z*}yen and {w*} e be generated by Algorithm 3.1, and let
d(t®, w") be given by [8, (21)]. Then, for any z* € T, we have

(28 — 2 d(2F, W) > prlld(2F, W)

Employing arguments which are similar to those used in the proof of [8, Lemma 3.3],
we can obtain Lemma 3.5.

Lemma 3.5. Let {t"} ey and {w*}ren be generated by Algorithm 3.1, and let d(t*, w") be
given by (3.10). Then, for any z* € T', we have

(3.15) (t" = 2%, d(t*,w*)) > prlld(t*, w")|?.
Proof. 1t’s easy to see that

(th = 2%, d(t*, wb)) = (" —w", d(t*, w")) + (w" — 2%, d(t*, w")),
which together with Remark 3.2 and the definition of p;, implies

(t" — 2%, d(t", wh)) > (" —wb, d(t", W) + Bl K (W) = prlld(t", "),

O

Lemma 3.6. The search rule (3.7) is well defined. Besides, 3 < i < o, where

: 0

3.16 B = min{po, b

(3.16) = K2

Furthermore, lim (3, exists.

k—o0
. . kfwk
Proof. Obviously, Sr+1 < Br < Bo. Since ”K*KI(QE)?K*I”{W)” > HI?H"" From (3.7), we

obtain (3.16). Since {8k } ken is nonincreasing, it follows from (3.16) that klim B exists. [
—00

Lemma 3.7. Let {t*}cn and {w*},en be generated by Algorithm 3.1, and let d(t*, w") and py,
be given by (3.10) and (3.11), respectively. Then there exists a constant o1 € (u, 1) and a positive
integer K such that for any k > K,

1—(71

3.17 > .
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Proof. By Cauchy-Schwarz inequality, we have

(th — wk,d(tk,wk))

% = wb? — P g (b, KK () — KK ()

Br+1
> i b2 - P g KT () KK ()]
Br+1
Bk
> [tF = wh)? = = t* - w?
Br+1
Br
=(1- p)[[tF = w||?.
Br+1
Due to the existence of lim i, we have lim ﬂﬁ—’“ = 1. Therefore, there exist a constant
k—o0 k—oo Pk+1

Bk
ﬂk:Jrl

o1 € (1, 1) and a positive integer K; such that for any k£ > K;, we have < o1. So,
(3.18) (t* —w®, d(t*, w*)) > (1 — o) |t* — |

By using (¢ — wh, K*K(tF) — K*K (wk)) = (K (%) — K (w¥), K (%) — K (b)) = | K () -
K (wk)||?, we have

B * *
ld(*, w*)|* = [|1t* = w*|? + (ﬂTil)QﬂiﬂHK K(t*) = K"K (w")[?
— 2B, (t* — w* K* K (t*) — K* K (w"))
p
< |t* — W)+ (ﬁik)QMQIIt’“ —w||? = 28| K(¢7) — K (w")|?
k+1
< 1 G| 1 - o
Br+1
Similarly, we obtain
(3.19) ld(t", wh)|* < (1 + oD)[[t" —w®||?.
So, combining (3.18) and (3.19), we get (3.17). O

Lemma 3.8. Tuke k as even and any z* € T. Let {z*}en be generated by Algorithm 3.1 (I) and
the assumption (A1) hold. Then, we have

lof 2 = 2|12 <[l2% = 2|2 = (1 + Ops1)[2 = ¥ (1 + Oyl PR (", w®) |2
=72 = )Py A w2,

Proof. Then from (3.15), it follows
(3.20)
272 = 2712 = 15T = 2% )12 + 2o 1A w17 = 2y (5! — 2%, d(tF T W)

< =217 + 2 T w1 = 2907 4 (1A w1
= [[t5F = 22 = (2 = PR A w2
Similarly, we

(3.21) lor =212 < 1% = 2|2 = (2 = )k’ wb)] 1%
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Using (2.2) and (3.5), we obtain

[#541 — 22 =l 4 B (= ) — 2P
=[[(1 4 Or) (T = 2%) = O (2 — )P
=(L 4 Os) o™ = 27|17 = O [l 2F — 272

+ O (14 O |28 — 25|12

(3.22)

By 2* = t* and (3.8), we have
(3.23) 20 = 2817 = VP pp (e, wb) 2.
Combining (3.20)-(3.23), and using 2* = t* and assumption (A1), we get
202 = 2|2 <[l = 2*[17 = (2 = 1) (1 + Oy )i [l A", ) |12
+ Op 1 (1 + 1)y PR [ d (2", )]
=2 = Y)pE gl w2
=[2F = 2* ]2 = v (1 + O41)[2 = (1 + )] o | d(2*, ) |12
=2 = )P A w2,
The proof is completed. O

Theorem 3.1. Let {z*}yen be generated by Algorithm 3.1 (I) and the assumption (A1) hold.
Then {z*}xen converges weakly to a solution of the SEP (1.1).

Proof. Take arbitrarily z* € I". Since vy € (0, 2), and the assumption (A1) holds, Lemma 3.8
implies that the sequence {||22* — 2*||?}xen is nonincreasing and thus converges. More-
over, {2} ey is bounded. Using Lemma 3.8 again, we obtain

(3.24) lim p||d(t*,w")|? = 0.
k— o0
From the definition of py, (3.18), Lemmas 3.6 and 3.7, we have for any k£ > K;
pilld(t®, w*)|1? = pr((t* — w", d(t*, w*)) + Bil K (w*)]?)
> pr [(1 = o) [tF = w* | + Bi] K (w*)|1?]

1—0

T e Y Il
- 1+40? 1+o03=
Combining the above inequality and (3.24), we get
(3.25) lim ||t —w®|| =0,
k—o0
and
(3.26) lim ||K(w®)|| = 0.
k—o0

By (3.23) and (3.24), we know that
(3.27) lim ||225 — 225 = 0.
k— o0
Using (3.27) and the definition of ¢;, in (3.5), it holds
(3.28) lim [[t* — 2¥|| = 0.
k—o0
Combining (3.25) and (3.28), we have

lim [|2% —w"|| =0,
k— 00
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which with the boundedness of K and (3.26) yields

lim ||K(z*)] = 0.
k—o0

Employing arguments which are similar to those used in the proof of [8, Theorem 3.1],
we obtain that the whole sequence {z*},cn weakly converges to a solution of SEP (1.1),
which completes proof. O

Lemma 3.9. Take k as even and any z* € T. Let {z*}en be generated by Algorithm 3.1 (II).
And suppose the the assumption (A2) holds. Then, we have
(3.29)

o™ = 2112 <ll2* = 2112 = (1 + Orr) [v(2 = Mpilld(t", w) 1 + o+ = 2 ]

tk+17’wk+1)H2— HZ{HZ k+2||2.

—v(2 - 7>Pi+1 [l d( 211

Proof. Due to z* € T', we have K (z*) = 0. Using Lemma 2.2 (ii), we get
(3.30)

211
=[|Ps(t"" = Bhr1prp1 K* K (wF1)) — 2%
< B KK @) = 272 = [~ 3B KK () - 272 P

=[FH 22— 5 P = 2B a g (el — 2 KK (b)),

k+2 *”2

Similarly, it holds
@B31) e = 2P < P 1 P - 2Bk - 2t KK (wh)).
By setting z = 2572 in (3.14), we get

— 29 Bry1phrr (25T — WPt KK (wF )
(332) S _2’70k+1 <Z1k1+2 k+17 d(tk+1a wk+1)>

— _27pk+] <tk+1 _ wk}"rl’ d(tk+17wk+1)> _ 2’ka:+1< k+2 o tk+1 d(tk+1 k+1)>.
It holds
(3.33)
_2'7pk:+1<2ﬁ+2 tlc-i—l7 d(tk-l-l k+1)> ||tk+1 k+2 — Yt 1d(tk+1, wk+1)||2

+ [ - ZH+2||2 tE w2,

+ pk+1||d(

Substituting (3.33) in the right hand side of (3.32) and using t**1 — ypj ;1 d(tFH1, whtl) =
2F+2 we obtain

— 29 B 1 prg1 (25T — WP KK (b))
(3.34) < = 2ypppr (M — ML A M)

17 = A = 2R 420 (w1
Also

(3.35) —2YBrs1prrr (W — 2% K*K (wT)) = =291 41 pogr | K (0T ||
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So, adding (3.34) and (3.35) and using the definition of pj, we obtain
(3.36)

= 291 (= 2 KUK (W)
< _27Pk+1 Rtk—H _ wk+1,d(tk+1,’wk+l)> + ﬁkJrl”K(warl)Hﬂ

— R = R T = 2R e A ) )
[ A1 [ R B Era ] R (Al

L W2 - a2 = R e R,

= *2’7P%+1||d(
= (2 = 7)pjsa ]l
Similarly, we get

— 29Brpr (T — 27, KK (w?))
< =92 =Rl WP = [l = 2P (1 -
Therefore, by substituting (3.36) into (3.30), (3.37) into (3.31), respectively, we have
(338) |l = 2P <M = 2P = (2 = Mok AT PP = [l - 2R,
and
(3.39) i = 2117 <[lE* = 21 = v(2 = NARlld(E*, w*)|® = [+ — 2P

Combing (3.22), (3.38), (3.39), and taking into account of the facts
[2ptt — 2R || < yBkpr|| K* K (w*)||, 2 = t*, we obtain
sz+2 _ Z*”Q

(3.37)

S+ Oz = 27017 = O ll2® = 27017 + Opsr (1 + Orgn) |2 — 2712
— (2 = V) Pha I w2 — 20+ — 22
<28 = 2 = (14 Ors) [¥(2 = ARl 0™)|P + [ = 2]
+ O 1 (14 Or 27 Bipi | K K (w®) |2
=72 = NPl W P = a2 - 2%
Since the assumption (A2) holds and v € (0, 2), we obtain (3.29). O

Theorem 3.2. Let {2*}.cn be generated by Algorithm 3.1 (I) and the assumption (A2) hold.
Then {2*} pen converge weakly to a solution of the SEP (1.1).

Proof. Employing arguments which are similar to those used in the proof of Theorem 3.1,
we obtain that the whole sequence {z*} ;cn converge weakly to a solution of the SEP (1.1),
which completes proof. O

3.2. Semi-alternating projection algorithms. Based on Algorithm 3.1, we present two
semi-alternating projection algorithms, whose name comes from an alternating technique
taken in the second step.

Algorithm 3.2. Given constants p € (0,1) and let 2° € H; and y° € H, be taken arbitrary.
For k =0,1,2,..., compute Compute

koyk k = even

3.40 k’ ky (l’ Y )a )

G40 ) {u’n y) + Bul(a, %) — (1, gh ), k= odd,

and

k_ E_ E _k
(3.41) {u = Po(p* — BLF (5", ¢"),

vF = Po(q" — BrG(uF, ¢%))
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Update
i (IIp* — u* | + [|¢" — v"|]?) ;
_ mm {ﬂ(|F(pk,qk) - F(uk,vk)||2 + HG(uk,qk) _ G(uk,v’“)HQ) 3 Br ¢
Bry1 = it F(p*,q%) — F(ub,o%) # 0 or G(uF, ¢F) — G(uF, ) # 0,

Bk, otherwise.

Compute next iterates z* ! and y**! by

oyt = pP — yprex,
(3-42) R+l _ k
Yy =q —yprdr,
or
ziitt = Po(p® — vBepiF(uF, %)),
(343) k+1 _ k k k
yir = Po(q" — vBeprG(u”,v")),

where v € (0,2),

(3.44) {Ck = (p" —u*) = Be(F (0", ¢") — F(u",0")),

d* = (¢" — %) — Br(G(uF, ) — G(u",vF)),
and
(3.45) o i P08 )+ (gt — oF ) + Byl Aut — Bot|?

l[c* 12 + lld* ||
Set k = k + 1, and continue.

For convenience, we call the projection algorithms which use update forms (3.42) and
(3.43) Algorithm 3.2 (I) and Algorithm 3.2 (II), respectively.

Remark 3.3. By the definitions of ¢ and d* in (3.44), the projection equation (3.41) can be
written as

{Uk = Po(uf — (BeF(u¥, v*) — ),

So, from Lemma 2.1 we have
k ko k k
x—u®, B F(u”,v%) — %) >0, Vxel,
(3.46) ¢ i BrF( i k) k>
<y—v,BkG(u,v)—d>20, VyGQ

Lemma 3.10. [8, Lemma 3.6] Let (z*, y*) and (u*, v¥) be generated by Algorithm 3.2, and let
c* and d* be given by [8, (58)]. Then, for all (z*,y*) € T, we have

(@ —a*, ")+ (yF =y, db) = pr(l|eF)? + [1d¥)?).

Lemma 3.11. Let (2%, y*) and (u*,v*) be generated by Algorithm 3.2, and let c* and d* be
given by (3.44). Then, for all (x*,y*) € T, we have

(" =", )+ (¢" =y d") = ol + 1d°)1?).

Proof. Employing arguments which are similar to those used in the proof of [8, Lemma
3.6], we can obtain Lemma 3.11. O
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Lemma 3.12. The search rule f3y, is well defined. Besides, 5* < Bj, < (o, where

o 4 K ,
(3.47) R VT TV el eEn T

Furthermore, lim [y exists.
k—o0

Proof. Obviously, Br+1 < Bk < fo. In the latter case, we know
IF (", q") = F(u*,0") | + | G(u*, ¢) — Gu*,0")|?
=||A*(Ap" — Bq") — A*(Au* — BoM)|* + | B*(Bg" — Au") — B*(Bv* — Ad")|?
<||A|*(4p" — Au*|| + | Bg" — Bo*[)* + [|B]|*l¢" — v* |
<2[|AIP(IAIP (" = u* 1 + 1 BIPNa" = v* (%) + [|BII*llg" — "2
<2||A[I*lp" —u*|I* + [ BIP 2l A1 + | BII*)llg" — v*||?
< max{2[| A", | B[ AlI* + I BIIP)}lp* — u*[? + ll¢* — o*|%)
So, we get (3.47). Since {5 }ren is nonincreasing, it follows from (3.47) that lerx;O B exists.
([l

Lemma 3.13. Let (z*,y*) and (u*,v*) be generated by Algorithm 3.2, and let c* , d* and py,
be given by (3.44) and (3.45), respectively. Then there exists a constant oo € (u, 1) and a positive
integer K such that for any k > K,

1—(72
1+o03°

Pk =

Proof. By Cauchy-Schwarz inequality, we have
(0" = uF, k) 4 (g — o, ")

=llp" — u* + lg" = v*[1* = Bulp® — u*, F(p*, ¢") = F(u*, "))
(3.48) — Brlg" — ¥, G, ¢*) — G(uF,v"))

>[p* =+ [lg" = o)

= Brlllp® = w* 1", ¢") = F(u®, ") + [l¢* = "G (", ") = G(u*, oM)]).
For the term fy.(|[p* — u*[[[|F(p*, ¢") = F(u*, v*)[| + ll¢* = v*[|| G(u*, ¢") = G(u*,v")])) in
(3.48), using the inequality
(ab+ cd)? < (a® 4 &) (b* + d?),

we get
(3.49)
Brllp® = u* I E ", ¢*) — F(u® oM + [l¢* = v*[[|G(u*, ¢") = G(u",v")[1)?
<Bre(llp® —u®|1” + llg" = ") NE @, ") = F(u® o")|? + |G’ ¢") = Gu*,0")|?)
2
< f’“
P+
where the second inequality comes from the definition of 5. Combining (3.48) and (3.49),
we obtain

P2 (lp* = u"I* + llg® = vF|%)%,

Br

<pk o uk,Ck> + <qk o ’l}k,dk> 2 (1 o
Br+1

w(lp" = u®|* + lg" = o*]?).
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Due to the existence of hm B, we have hm ﬁf—’“ = 1. Therefore, there exist a constant
o9 € (u,1) and a posmve 1nteger K, such that for any k > Ko,
(3.50) (" =¥ )+ (" =" d) = (1= o) (|[p" —u®|* + lg" = o"|1?).
From the definitions of F, G and S, it follows
le* 1%+l

=[lp* — u*|* + llg" — v*|?
+ BRI F(p*, ¢*) — F(u*,v")|? + |G (¥, ¢") — G(u",07)|1?)
— 2B8,((p*F — ¥, F(p¥, ") — F(u",0")) + (¢" — %, G(u*, ¢F) — G(uF, "))

ﬂ2
B3 <t — )P+ " = oF P+ r{“ P2 (lp" = a®|? + llg* = ")
k+1

= 20[(A(" — u"), A" — u*) = B(¢" — ")) + (B(¢" — "), B(¢" —v"))]

Bi
o= 1?) (Ip* — )1 + llg" = v*)1?)
Bies1

= 26k [I| A" — uF)IIP — (AQ" —u*), B(¢" — ")) + |B(¢" —v")|?].

=(1+

Since
=26k (| A" — ") = (A(P* —u¥), B(¢" — ")) + | B(¢" —vM)[1?)
< =28, (A" — uF)|1> = A" — ") B(¢" = v")[| + |1B(¢" — o*)|1?)

< 2B IAGY — )2 = (IAGE = ) + IB(e* = H)IP) + 1B — M)
BlIAGE — )2+ 1B — o)),
by (3.51), we get
M2 + ¥
<+ éilf)(p’“ M gt — o) — BAGE — M) + B — )
<t B2k — b 1 gt — o).

Bt
Therefore, we have

(3.52) I® 12 + 1d*]1* < (14 a2?)([Ip" = u* 1> + |¢* = v*|%), VE > Ka.
Combining (3.50) and (3.52), we complete proof. ]

Lemma 3.14. Tuke k as even and any (z*,y*) € T. Let {(z*, y*) }ren be generated by Algorithm
3.2 (I). Then we have

272 = |17+ llyr 2 = 517 <lla® = 2|2 + lly* =y 112 = (2 = Dok (P + [l 1%)
= (2= (1 + 0s)) (1 + )y ([l + [1d"|1%).

Proof. From (3.42), we have

— a2 = [p" — o — 2|

= |lp"*!

k+2
||$1Jr

= 2P+ i 1P = 2o (0T — 2%, MY

)
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Similarly,

k+2

lyf 2 =y 1> = 1" = y* 1> + VP oig AP = 29ppga (@ =y, dF T,

Adding the above inequalities and using Lemma 3.11, we obtain

k+2 I*H2 + Hyk—i-2 _ y*||2

(|1 I
(353) =[Ip* =22+ 1 = o 1P+ o (TP + 1 H1%)

= 2yp 1 (P — 2%, ) — 2y (¢F T =y, AT

<IPE =212+ 15— oI = (2 = ek (1P + 1)
Similarly,
et — a2+ P
(3'54) k *(12 k ®1(|2 2 k|2 k|12
<[p* = 2*[IF +llg" = y*II” = (2 = V)i (I”]]” + 1d7]]7).

By (2.2) and (3.40), we get
(3.55)

1P = 22 = (1 + Oprr) (@F = a%) = O (2 — )|
=(L+ Oprn)l|2™H = 2% = O l|2® — &) 4+ Opr (14 O |2 — 2%,
which with ||z — 2%||2 = ||p¥ — yprc® — 2F||? and ¥ = p*, we have

(3.56)
It = 2| =(1 + Orpa) 2™ = 2P = Opgallz® — 2|1 + O (1 + Orsr)y i [l 1.

Similarly,

(3.57)

1" =y 112 =1+ O D[V = 7117 = O lY* — v 11° + Okr (1 + Oy )V 01 lly T — %12
(3.58)

Ig" =12 =1+ O ) 9" = 5117 = Orraly® — v 1 + O (1 + Oy oI 2.
Combining (3.53), (3.54), (3.56) and (3.58), and using z* = p*, y* = ¢*, we obtain
2 = 2| + llyr 2 — y*|I?
<l = 2P+ llg* =yl = (14 Ok10)(2 = Vo1 + [1d°])
+ 01 (L4 O )R (112 + 1dE (%) = (2 = 1)y (P + [l )?)
=[la® =22+ lly" =y l1* = 12 = 71+ )] (X + ) vk (1F I + 1| 1%)
= 2= NP ([ [l %).
The proof completes. O

Theorem 3.3. Let the assumption (A1) hold. Then the sequence {(x*,y"*)}ren be generated by
Algorithm 3.2 (I) converges weakly to a solution of the SEP (1.1).

Proof. Due to v € (0,2), Lemma 3.14 implies that the sequence {||z%* — x*||? + [|y?* —
y*||?}xen is nonincreasing for V (z*, y*) € I and thus converges. Moreover, {?*} <y and
{y**}ren are bounded. Lemma 3.14 implies that for Vk € N

(359) Tim g2 (k2 + 1d)?) = 0.
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From definition of py, (3.50), Lemmas 3.12 and 3.13, for any k£ > K5, we have
P ([1® 1 + [la*]%)
=pr((PF — u, ) + (g" = oF, d") + Brl| Ad* — Bu*|?)
>p (1= o) ([Ip" = u|* + [l¢" = v*|*) + Bel| Au® — Bo*||?]

(1_02)2 k k|2 Kk k|2 1 -0 k k|2
> =7 — — *IlAu® — B
> C I = w12 4 g = o) 4 A~ Bt
which together with (3.59), we get
(3.60) lim Hpk - ukH =0, lim ||qk - vk|| =0,
k— oo k—oco

and
lim ||Auf — Bv*|| = 0.
k—o00
Furthermore, we have
lim ||Ap* — B¢*|| =0, and lim |B¢* — Au®|| = 0.
k—o0 k—o00

Next, we show lim |Az* — By*|| = 0. Using the above equality and p?* = 2%*, ¢** =
oo
2%

Y=, we get
(3.61) lim ||Az** — By?*|| = 0.
k—o0

Using || — 22*|| = vpax||c?*|| and (3.59), we obtain

I 2k+1 _ 2k) _
(3.62) L[|y x| =0,
which together with || Az?F+1 — Az?*|| < || A ||a?*T! — 23¥| implies
(3.63) lim ||Az?*+ — A2?%|| = 0.

k—o0
Similarly, we know that
(3.64) lim{|yf** — || =0, lim [|By* ! — By**|| = 0.
k—o0 k—o0

Due to

(3.65) [ Azt — By < [|Axt T — Ax®*| + || By** ! — Byt + [ Azt — By*||.
So, from (3.61), (3.63), (3.64) and (3.65), we get
(3.66) |Az2F+L — By 1| = 0.

lim
k—o0
Combining (3.61) and (3.66), we have klim | Az* — By¥|| = 0.

—o0
Then we illustrate that lim ||z* — u*|| = 0,and lim ||y* — v*|| = 0. Using (3.60) and
k—o0 k—o00

%% = p?*, we know that

(3.67) lim [|z2* — u?*| = 0.
k—o00

By the second inequality of (3.40), we have

||xI2k+1 _ u2k+1” SHx%kJrl _ p2k+1H + ||p2k+1 _ u2k+1||

(3.68)
<Oopr |2 — 2R ||+ ||p?F T — wE

From (3.60), (3.62) and (3.68), we get

lim ||x%k+1 - u2k+1|| =0,
k—o0
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which with (3.67) shows

lim ||z — u*|| = 0.
k— o0

Similarly, we also obtain
lim [jy* —o*|| =0.
k—o0

Employing arguments which are similar to those used in the proof of [8, Theorem 3.3], we
obtain that the whole sequence {(z*, y*)}ren converges weakly to a solution of SEP (1.1),
which completes proof. O

Lemma 3.15. Take k as even and any (z*,y*) € T. Let {(z*, y*)} nen be generated by Algorithm
3.2 (I). Suppose that (A2) holds, then we have

L e
(3.69) <Jla® = a1+ ly* — y |

= (L4 Gkr1) [Y2 = AR+ 1d*)1%) + (lag ™ =™ 1P+ llyr ™ =y 1)

k k k k k k
=72 =Nk I+ 1P = (g™ = 27 + o™ = w2 I1P).

Proof. By Lemma 2.2(ii), we have

it — o2

§||Zjngrl - WﬂkﬂpkﬂF(ukH k+1) - $*||2 - H]DkJrl - 75k+1pk+1F(uk+17vk+1) - $§1+2||2
=[P = | = A = 2R 2B pn Gl — T, P o).
Similarly, we have

k+2 y*”2 < quJrl quJrl k+2||2

Y1 k+1)>-

(877 —y* - = 2Beiprar (i — " G v
Adding the above inequalities, we obtain

g™ = 21 + Iy = o)
B70) <[P =P+ g =y = I = et

= 2B ppr (237 — o™, (0" ) + (™ — ", G oM )).

By setting (z,y) = (z5:72,y5+2) in (3.46), we get

71
° —)QWﬁkHPkH(J?fIH — T P oM = 298k 1 (i — oM G oF )
< = 2ypppa (i — WML ) = 29 (y P — oM A
o dypan (PP — WL R (R i gy
— 2yppr ((@f = pMHL MY 4 (T2 — P dE ).
It holds
(3.72) = 2yppa (agit? = P )
—|lpFtt — k2 '7pk+1ck+1||2 + P = a2 PP A P
Similarly, we get
—2ypra(yt e — T A

(3.73)
- _ quJrl dk+1||2 + qu+1 y{c1+2||2 dk+1||2.

k
— i = Yokt + 7P |
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Substituting (3.72) and (3.73) in the right side of (3.71) and using p**! —ypj 1 cF ! = 22

and ¢*+1 — ypp.1d*t = yFT2, we obtain
(3.74)

— 29Brp1prrr (i — uF T P M) — 298k e (i — oM G oF )

< — 29 (PP — uF T R (P — R Rty

- foH - xﬁHHQ + It - xﬁHHQ + 72pi+1||ck+1||2
— Nyt =y PP+ 1 =y 4 e AT
Also
(3.75)

- 27,6k+1,0k+1<uk+1 — ", F(Uk+1> Uk+1)> - 275k+1pk+1<vk+1 -y, G(U]H_lv Uk+1)>
= — 29Bps1pp 1 [ AuT — B2
So, using (3.74), (3.75) and the definition of pj, we obtain
(3.76)
— 29Brs1prra (2 — 2, F(u* T 0" t) = 298k 1 piga (i — v, Gub T, o)
< —2%0k+1(<pk+1 _ uk+1’ck+1> + <qk+1 _ ,Uk+1’dk+1> +/8k+1HAU/k+1 _ ka+1”2)

— a2 R 4 T — 2R e R

L et | [ el [ oo Y [ o

=29p% 1 (I + 1™ 12) + 2ok (1P + (1))

k k k k k k k k
=Nt =2 PP = ™ = P+ I = 2 PP+ Nl = R

=72 = NPk ("2 + [l ?)
f+2 _ xic1+2||2 k+2 k+2H2 + Hpk+l k+2||2 + ||qk+1 _ yﬁ+2”2.

—|lz = lyr™" =y — 21

Adding (3.70) and (3.76), we obtain

k * k
g™ = 2*|” + [yt — y*1?
(3.77) <M =22+ 165 =y 1P = (2 = W) (1P + [ ?)

k k k k
I+2 _ xH-‘r2||2 +2 y11+2||2-

— | —llu

Using similar arguments in obtaining (3.77), one can show

g™ =21 + vt — )1
(3.78) <pF =2+ llg" = o117 =72 = e (17 + [14*]1%)
— [lef =2 = ot =y
Using (3.43) and 2% = p*, we know
(3.79) |zt — &) = | Po(p® = vBrprF (u*, 0%)) — a*|| < vBrpr || F (u, 7).

Similarly, we also have

(3.80) Iyt = v <vBrprl| G(uF, 7).
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So, by combining (3.55), (3.57), (3.77)-(3.80), and taking into account the facts z* = p*, y* =
q", we get
2t = 2|1 + it — )12

<[l#* —2*|* + ly* —y* |

= (L4 Ok )72 = Mo (1P + 1d41%) = (U4 O ) (2t = 2™ 12+ o ™ = v 1%)

+ 01 (1+ Ok )72 Brp (| F (uF, 0F) 12 + |G (¥, 0F) )

=2 = PR ([P + 15 P) = 242 = 221 = [y ™2 = 2
Using the assumption (A2), we obtain (3.69). This completes proof. d

Theorem 3.4. Suppose that (A2) is satisfied. Then the sequence {(x*,y"*)}ren be generated by
Algorithm 3.2 (II) converges weakly to a solution of the SEP (1.1).

Proof. Employing arguments which are similar to those used in the proof of Theorem 3.3,
we obtain that the whole sequence {(z*,y*)}ren weakly converges to a solution of the
SEP (1.1), which completes proof. O

4. NUMERICAL EXAMPLES

In this section, we use the numerical example in [5] to demonstrate the efficiency and
advantage of Algorithms 3.1 and 3.2 by comparing them with Algorithms 3.1, 3.2 in [8].

We denote the vector with all elements 0 by e, and the vector with all elements 1 by
e1 in what follows. In the numerical results listed in the following table, ‘Iter.” and ‘Sec.”
denote the number of iterations and the cpu time in seconds, respectively.

Example 4.1. The SEP with A = (aij)JxN, B = (bij)JXM, C = {JI S RNH”IH < 0.25},
Q= {y € RM|eg <y < u}, where a;; € [0,1], b;; € [0,1] and u € [eq, 2¢4] are all generated
uniform randomly.

In the implementations, we take |Az — By|| < ¢ = 107* as the stopping criterion.
Take the initial value o = 10e1, yo = —10e;.

We make comparison of Algorithms 3.1, 3.2 and 3.1, 3.2 in [8] with different ], N, M,
and report the results in Tables 1, 2, 3 and Figures 1-6. In Algorithms 3.1, and 3.2, we
choose p = 0.9,y = 1,80 = 0.8,0;, = 0.9 for Algorithms 3.1(I), u = 0.9,y = 1.1,8p =
0.7,6, = —0.1 for Algorithms 3.1(II), x = 0.9,y = 1,8y = 0.7,0;, = 0.9 for Algorithms
32(I1), p = 09,7 = 1.4, 59 = 0.4,0;, = —0.3 for Algorithms 3.2(II). We take v = 0.8,6 =
0.99,0 = 50, p = 0.1 and a = 0.1 for Algorithms 3.1, and 3.2 in [8].

(N,M)=(100,50)

—e—Alg 3.1(1)
—A— Alg 3.1(Il)
—=— Alg 3.2(1)
—— Alg 3.2(1l)
—+—Alg 3.1(1) in [12]
—h— Alg 3.1(1l) in [12]
—6— Alg 3.2(1) in [12]
—— Alg 3.2(11) in [12]

number of projections

FIGURE 1. Numbers of projections with (N, M) = (100, 50)
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number of matrix-vector evaluations

FIGURE 2. Numbers of matrix-vector evaluations with (N, M) = (100, 50)

number of projections

FIGURE 3. Numbers of projections with (N, M) = (150, 150)

number of matrix-vector evaluations

FIGURE 4. Numbers of matrix-vector evaluations with (N, M) = (150, 150)

Q. L. Dong and Y. Peng

10°

(N,M)=(100,50)

—6—Alg3.1(1)
—&— Alg 3.1(l)
—8—Alg 32()
—¥—Alg 3.2(1l)
——Alg3.4()in[12]
—k— Al 3.1(1l) in [12)
—9—Alg 3.2(l) in [12]
—— Alg 32(I)in[12]

10°

S
=

=)
%

=)
)
e

.

(N,M)=(150,150)

10"
50

100 150 200 250 300 350
J

(N,M)=(150,150)

10%F

3
%

10%

=)
R

—6—Alg 3.1()
—A— Alg 3.1(1l)
—8—Alg 3.2())
—¥—Alg 32(1)
——Alg 31() in[12]
—— Alg 3.1(1l) in [12]
—o—Alg 3.2(1) in [12]
—%—Alg 3.2(11)in[12]

400 450 500



FIGURE 5. Numbers of projections with (N, M) = (200, 250)
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number of matrix-vector evaluations

number of projections

. (N,M)=(200,250)
10° e~ Aig3.10) ' ' '
—A— Alg 3.1(1l)
—8— Alg 3.2())
5 | ¥ Alg 3.2(l)
10° | —— Alg 3.1() in [12]
—h— Alg 3.1(ll) in [12]
—9—Alg 3.2(1) in [12]
—&— Alg 3.2(Il) in [12]
104
T —
10°F ]
\ﬁﬁ
102
1o . . . . . . . .
50 100 150 200 250 300 350 400 450 500

(N,

J

M)=(200,250)

7
10 e agas
—A—plg 3.1

=)
>

—+—Aig 3.1
—— Alg 3.1

=)
]

—8—Alg 3.2
—#— Alg 3.2

—6—Alg 3.2
——Alg 3.2

)
()
)
)}

I)in[12]
1l in [12]
l)in[12]
1l)in [12]

=) o
% >

=
o
Ay

EX

1
50 100

1 1
150 200

1 1 1
250 300 350
J

1 1
400 450 500

FIGURE 6. Numbers of matrix-vector evaluations with (N, M) = (200, 250)

TABLE 1. Computational results for Example 4.1 with (IV, M) = (100, 50)

] 50 100 150 200 250
Alg 3.1(0) Tter. 60 585 2144 338 350
Sec. 0012 0394 1.125 0281  0.282
Alg 3.1(II) Iter. 45 412 1807 313 179
Sec.  0.009 0375 1.031 0281  0.094
Alg 3.2(I) Iter. 102 869 2656 478 394
Sec. 0011 0656 1969 0291  0.281
Alg 3.2(I1) Iter. 47 769 1296 213 145
Sec.  0.009 0469 0750  0.094  0.085
Alg32(I)in[12]  Iter. 119 1821 5830 1179 672
Inlt. 329 3054 8007 1365 792
Sec.  0.031 1.078 5156 1031  0.469
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] 50 100 150 200 250
Alg32(I)in [12]  Iter. 80 1101 4365 881 521
Inlt. 90 1179 4461 941 569
Sec.  0.013 0563 3281 0563  0.462
Alg33(I)in[12]  Iter. 200 2075 6584 1321 887
Inlt. 265 3252 8651 1543 1019
Sec. 0016 1313 4500 1422  0.750
Alg33(I)in[12]  Iter. 94 1509 3413 741 678
Inlt. 99 1641 3533 807 702
Sec. 0016 1.031 2906 0750  0.656

TABLE 2. Computational results for Example 4.1 with (V, M) = (150, 150)

] 50 100 150 200 250
Alg 3.1(D) Tter. 54 100 211 7686 5013
Sec.  0.006 0094 0109 6563 4219
Alg 3.1(II) Iter. 31 65 283 7059 4081
Sec. 0004 0.037 0203 5438  3.656
Alg 3.2(I) Iter. 52 154 566 7862 7558
Sec.  0.006 0094 0469 6094  6.938
Alg 3.2(II) Iter. 29 77 196 2508 2114
Sec.  0.002 0089  0.094 2438  2.063
Alg32(I)in[12]  Iter. 120 394 774 7523 4118
Inlt. 162 418 816 5613 4196
Sec. 0203 0313 0656 5969 4125
Alg33()in[12]  Iter. 125 385 1378 22734 11409
Inlt. 173 445 1516 25542 13197
Sec. 0289 0375 1594 23344  14.250
Alg33(I)in[12]  Iter. 87 217 936 6561 6200
Inlt. 135 223 966 6693 6272
Sec. 0016 0203 1234  7.406 7.594

TABLE 3. Computational results for Example 4.1 with (N, M) = (200, 250)

] 50 100 150 200 250
Alg 3.1(I) Iter. 48 62 104 213 1557
Sec. 0.094 0.098 0.103 0.281 1.500
Alg 3.1(1I) Iter. 31 49 96 225 1181
Sec. 0.056 0.078 0.094 0.281 1.406
Alg 3.2(I) Iter. 94 126 120 380 3136
Sec. 0.074 0.098 0.094 0.469 2.906
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J 50 100 150 200 250
Alg 3.2(I0) Tter. 29 44 63 198 880
Sec. 0.021 0.077 0.059 0.188 1.031
Alg 3.2(I) in [12] Iter. 209 214 318 1187 5987
Inlt. 227 268 378 9184 46324
Sec. 0.188 0.297 0.391 4.406 22.875
Alg 3.2(IT) in [12] Iter. 136 179 189 740 3710
Inlt. 160 191 207 5817 29392
Sec. 0.188 0.188 0.291 2.938 15.094
Alg 3.3(I) in [12] Iter. 161 187 627 380 2665
Inlt. 72 193 717 2353 3899
Sec. 0.094 0.203 0.688 2.328 4.125
Alg 3.3(IT) in [12] Iter. 68 303 218 616 1085
Inlt. 84 221 230 628 1136
Sec. 0.109 0.281 0.281 0.750 1.219

The numerical results are listed in Tables 1, 2, 3 and Figures 1-6, from which we can
get some conclusions:

(i) In the Figures 1-6, we see that the numbers of projections and matrix-vector eval-
uations that Algorithms 3.1 and 3.2 need are less than those of Algorithms 3.1 and
3.21in [8].

(if) In the Tables 1-3, it’s easy to observe that in the number and time of iterations,
Algorithms 3.1 and 3.2 are superior to Algorithms 3.1 and 3.2 in [8].
(iii) Among Algorithms 3.1 and 3.2, Algorithm 3.2(II) has better performance than Al-
gorithms 3.1 and 3.2(I) for most cases while Algorithm 3.1(I) behaves best for the
other few cases.
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