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Joint approximation of analytic functions by shifts of the
Riemann zeta-function twisted by the Gram function

MAXIM KOROLEV and ANTANAS LAURINČIKAS

ABSTRACT. In the paper, we consider the simultaneous approximation of a collection of analytic functions by
a collection of shifts of the Riemann zeta-function (ζ(s+ itα1

τ ), . . . , ζ(s+ itαr
τ )), where tτ is the Gram function

and α1, . . . , αr are different positive numbers. It is obtained that the set of such shifts has a positive lower
density.

1. INTRODUCTION

In this paper, we consider approximation property of the Riemann zeta-function ζ(s),
s = σ + it. The function ζ(s) is defined, for σ > 1, by

ζ(s) =

∞∑
m=1

1

ms
=
∏
p∈P

(
1− 1

ps

)−1

,

where P is the set of all prime numbers. Moreover, ζ(s) has analytic continuation to the
whole complex plane, except for a simple pole at the point s = 1 with residue 1.

Voronin in [20] discovered an interesting approximation property of the function ζ(s),
and called it the universality. More precisely, he proved that every analytic non-vanishing
function g(s) defined in the strip D = {s ∈ C : 1/2 < σ < 1} can be approximated
by shifts ζ(s + iτ), τ ∈ R. The Voronin theorem was observed by the number theorists,
and extended in various directions. We recall the last version of the Voronin theorem
developed in [3] and [1], see also [13] and [17], and a informative survey paper [15].

Denote by K the class of compact subsets of the strip D with connected complements,
and by H0(K) with K ∈ K the class of continuous non-vanishing functions on K that
are analytic in the interior of K. Let measA be the Lebesgue measure of a measurable set
A ⊂ R. Then the following statement is valid.

Theorem 1.1. Suppose that K ∈ K and f(s) ∈ H0(K). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

The Voronin universality theorem is a infinite-dimensional generalization of the Bohr-
Courant theorem on the denseness in C of the set {ζ(σ + it) : t ∈ R} for every fixed
1/2 < σ ⩽ 1.
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One of the way of extension of Theorem 1.1 is using of more general shifts than ζ(s+iτ).
Such a way was proposed in [16]. In this paper, we deal with shifts ζ(s+ itτ ), where tτ is
the Gram function.

It is well known that the function ζ(s) for all s ∈ C satisfies the functional equation

π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s),

where Γ(s) is the Euler gamma-function. The product π−s/2Γ(s/2) plays an important role
in the theory of the Riemann zeta-function, and this once more was confirmed by Gram
[4]. Denote by θ(t), t > 0, the increment of the argument of the function π−s/2Γ(s/2)
along the segment connecting the points s = 1/2 and s = 1/2 + it. The function θ(t) is
monotonically increasing and unbounded from above for t > t∗ = 6.2898 . . . , therefore
the equation

θ(t) = (n− 1)π, n ∈ N,
for t > t∗, has the unique solution tn. The latter equation was considered by Gram [4],
therefore, the numbers tn are now called the Gram points. Let γn denote the imaginary
part of the n-th non-trivial zero of the Riemann zeta-function. Then the Riemann-von
Mangoldt formula implies that tn ∼ γn as n → ∞. Gram calculated [4] the first points tn
and observed that each interval [tn−1, tn] with n = 1, . . . , 15 contains precisely one zero
γ̂n of the function ζ(1/2+ it). Moreover, he conjectured that this is not true for some large
n > 15. It turned out that his conjecture is true and it was confirmed by wider calculations,
and by a Titchmarsh result [18] that the sequence

γ̂n − tn
tn+1 − tn

is unbounded. The Gram points also were considered by Selberg for probabilistic aims.
Interesting results connected to Gram points were obtained in [19]. Systematically Gram
points were studied by the first author in the series of works [5]–[11]. A discrete univer-
sality theorem for the function ζ(s) on the approximation of analytic functions by shifts
ζ(s + itk) was obtained in [12]. Denote by #A the cardinality of the set A. Then the
following theorem is true.

Theorem 1.2. Let K ∈ K, f(s) ∈ H0(K) and h is an arbitrary fixed positive number. Then, for
every ε > 0,

lim inf
N→∞

1

N
#

{
1 ⩽ k ⩽ N : sup

s∈K
|ζ(s+ ihtk)− f(s)| < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.

Paralelly to the numbers tn, the Gram function tu of continuous variable u, u ⩾ 0,
which is a solution of the equation

(1.1) θ(t) = (u− 1)π,

can be considered, see [11]. This paper is devoted to a joint universality theorem for the
function ζ(s) with shifts involving powers of the Gram function tτ .

Theorem 1.3. Suppose that α1, . . . , αr are fixed different positive numbers. For j = 1, . . . , r, let
Kj ∈ K and fj(s) ∈ H0(Kj). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s+ itαj
τ )− fj(s)| < ε

}
> 0.

Moreover “lim inf” can be replaced by “lim” for all but at most countably many ε > 0.
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The proof of Theorem 1.3 is based on a probabilistic limit theorem in the space of ana-
lytic functions.

2. MEAN SQUARE ESTIMATES

It is well known, that, for fixed 1/2 < σ < 1,

(2.2)
∫ T

0

|ζ(σ + it)|2 dt ≪σ T.

For us, a more general result is needed. For this, the following lemma will be useful.

Lemma 2.1. Suppose that tτ , τ ⩾ 0, is the unique solution of the equation (1.1) satisfying θ(tτ ) >
0, and that τ → ∞. Then

tτ =
2πτ

log τ

(
1 +

log log τ

log τ
(1 + o(1))

)
and

t′τ =
2π

log τ

(
1 +

log log τ

log τ
(1 + o(1))

)
.

Proof of the lemma is given in [11].

Lemma 2.2. Suppose that 1/2 < σ < 1 and α > 0 are fixed. Then, for t ∈ R,∫ T

0

|ζ(σ + itατ + it)|2 dτ ≪σ T (1 + |t|).

Proof. Let X ⩾ log T . We have

Iσ(X, t)
def
=

∫ 2X

X

|ζ(σ + itατ + it)|2 dτ =

∫ 2X

X

1

(tατ )
′ |ζ(σ + itατ + it)|2 dtατ .

Therefore, Lemma 2.1 gives

Iσ(X, t) ≪ (logX)α

Xα−1

∫ 2X

X

d

(∫ tατ +t

X

|ζ(σ + iu)|2 du

)

≪ (logX)α

Xα−1

∫ tα2X+|t|

−tα2X−|t|
|ζ(σ + iu)|2 du.

Hence, in view of (2.2),

Iσ(X, t) ≪σ
(logX)α

Xα−1

(
Xα

(logX)α
+ |t|

)
≪σ X(1 + |t|).

Thus, ∫ T

log T

|ζ(σ + itατ + it)|2 dτ ≪σ T (1 + |t|).

Since the function tτ is increasing and ζ(σ + it) ≪σ 1 + |t|1/6, this proves the lemma. □

Define the set
Ω =

∏
p∈P

γp,

where γp = {s ∈ C : |s| = 1} for all p ∈ P. With the product topology and pointwise
multiplication, the torus Ω is a compact topological Abelian group. Therefore, denoting
by B(X) the Borel σ-field of the space X, we obtain that on (Ω,B(Ω)), the probability Haar
measure mH can be defined. This gives the probability space (Ω,B(Ω),mH). Denote by
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ω(p) the pth component of the element ω ∈ Ω, p ∈ P, and extend the function ω(p) to the
N by formula

ω(m) =
∏
pl|m

pl+1∤m

ωl(p), m ∈ N.

Let H(D) stand for the space of analytic functions on D endowed with the topology of
uniform convergence on compacta. Now, on the probability space (Ω,B(Ω),mH), define
the H(D)-valued random element ζ(s, ω) by

ζ(s, ω) =

∞∑
m=1

ω(m)

ms
=
∏
p∈P

(
1− ω(p)

ps

)−1

.

Note that the series and product are uniformly convergent on compact subsets of the strip
D, and the equality holds for almost all ω ∈ Ω, see, for example, [13].

To study the functions ζ(s) and ζ(s, ω), define the auxiliary functions. Let θ > 1/2 be
fixed, and, for m,n ∈ N,

vn(m) = exp

{
−
(m
n

)θ}
.

Define

ζn(s) =

∞∑
m=1

vn(m)

ms

and

ζn(s, ω) =

∞∑
m=1

vn(m)ω(m)

ms
.

The latter series are absolutely convergent in the half-plane σ > 1/2.
Recall the metric in the space H(D). There exists a sequence {Kl : l ∈ N} ⊂ D of

compact sets such that

D =

∞⋃
l=1

Kl,

Kl ⊂ Kl+1 for all l ∈ N, and if K ⊂ D is a compact set, then K ⊂ Kl for some l. For
g1, g2 ∈ H(D), define

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

.

Then ρ is a metric in H(D) that includes the topology of uniform convergence on com-
pacta.

Now we will consider the distance between ζ(s) and ζn(s).

Lemma 2.3. Suppose that α > 0 is fixed. Then

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ (ζ(s+ ihtατ ), ζn(s+ ihtατ )) dτ = 0.

Proof. By the definition of the metric ρ, it suffices to show that, for arbitrary compact set
K ⊂ D,

(2.3) lim
n→∞

lim sup
T→∞

1

T

∫ T

0

sup
s∈K

|ζ(s+ ihtατ )− ζn(s+ ihtατ )|dτ = 0.

Let θ be from the definition vn(m), Γ(s) denote the Euler gamma-function, and

ln(s) =
s

θ
Γ
(s
θ

)
ns.
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Then the Mellin formula implies the representation, see, for example, [13],

ζn(s) =
1

2πi

∫ θ+i∞

θ−i∞
ζ(s+ z)ln(z)

dz

z
.

Hence, with θ̂ > 0,

(2.4) ζn(s)− ζ(s) =
1

2πi

∫ θ̂+i∞

−θ̂−i∞
ζ(s+ z)ln(z)

dz

z
+

ln(1− s)

1− s
.

Let K be an arbitrary subset of the strip D. Then there exists ε > 0 such that, for all s ∈ K,
s = σ + it, we have 1/2 + 2ε < σ < 1− ε. Now choose

θ̂ = σ − 1

2
− ε, θ =

1

2
+ ε.

Then, in view of (2.3), for s ∈ K,

ζn(s+ itατ )− ζ(s+ itατ ) ≪
∫ ∞

−∞

∣∣∣∣ζ (1

2
+ ε+ itατ + iu

)∣∣∣∣ sup
s∈K

∣∣∣∣ ln(1/2 + ε− s+ iu)

1/2 + ε− s+ iu

∣∣∣∣ du
+

∣∣∣∣ ln(1− s− itατ )

1− s− itατ

∣∣∣∣ .
Therefore,

(2.5)
1

T

∫ T

0

sup
s∈K

|ζ(s+ itατ )− ζn(s+ itατ )| dτ ≪ I1 + I2,

where

I1 =

∫ ∞

−∞

(
1

T

∫ T

0

∣∣∣∣ζ (1

2
+ ε+ itατ + iu

)∣∣∣∣ dτ
)

sup
s∈K

∣∣∣∣ ln(1/2 + ε− s+ iu)

1/2 + ε− s+ iu

∣∣∣∣ du
and

I2 =
1

T

∫ T

0

sup
s∈K

∣∣∣∣ ln(1− s− itατ )

1− s− itατ

∣∣∣∣ dτ.
For the function Γ(s), the estimate

(2.6) Γ(σ + it) ≪ exp{−c|t|}, c > 0,

is valid uniformly in σ1 ⩽ σ ⩽ σ2 with arbitrary σ1 < σ2. Therefore,

ln(1/2 + ε− s+ iu)

1/2 + ε− s+ iu
≪ n1/2+ε−σ

θ
Γ

(
1/2 + ε− σ

θ
+

i(u− t)

θ

)
≪ε n

−ε exp
{
− c

θ
|u− t|

}
≪ε,K n−ε exp{−c1|u|}

with c1 > 0. Hence, in view of Lemma 2.2, we obtain

(2.7) I1 ≪ε,K n−ε

∫ ∞

−∞
(1 + |u|) exp{−c1|u|}du ≪ε,K n−ε.

Using (2.6), we find similarly as above that, for all s ∈ K,

ln(1− s− itατ )

1− s− itατ
≪ε n

1−σ exp{−c2|t+ tατ |} ≪ε,K n1/2−2ε exp{−c3t
α
τ }, c2 > 0, c3 > 0.
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Therefore,

I2 ≪ε,K
n1/2−2ε

T

(∫ log T

0

+

∫ T

log T

)
exp{−c4t

α
τ } dτ

≪ε,K
n1/2−2ε log T

T
+ n1/2−2ε exp{−c4t

α
log T }, c4 > 0.

By Lemma 2.1, tαlog T → ∞ as T → ∞. Thus, I2 = o(1) as T → ∞. This, (2.5) and (2.7)
prove equality (2.3). □

Now we generalize Lemma 2.3 for the r-dimensional space

Hr(D) = H(D)× · · · ×H(D)︸ ︷︷ ︸
r

.

For g
1
= (g11 . . . , g1r), g2 = (g21 . . . , g2r) ∈ Hr(D), define

ρ(g
1
, g

2
) = max

1⩽j⩽r
ρ(g1j , g2j).

Then ρ is a metric in Hr(D) inducing its product topology.
Let

Ωr = Ω1 × · · · × Ωr,

where Ωj = Ω for all j = 1, . . . , r. Then Ωr, as Ω, is a compact topological Abelian group,
therefore, on (Ωr,B(Ωr)) the probability Haar measure mH can be defined. This leads to
the probability space (Ωr,B(Ωr),mH). Define by ωj(p) the pth component of an element
ωj ∈ Ωj , j = 1, . . . , r, p ∈ P, and by ω = (ω1, · · · , ωr) the elements of Ωr. Let mjH be
the Haar measure on (Ωj ,B(Ωj)), j = 1, . . . , r. We note that mH is the product of the
measures m1H , . . . ,mrH .

Let, for brevity, α = (α1, . . . , αr), t
α
τ = (tα1

τ , . . . , tαr
τ ),

ζ(s+ itατ ) = (ζ(s+ itα1
τ ), . . . , ζ(s+ itαr

τ ))

and
ζ
n
(s+ itατ ) = (ζn(s+ itα1

τ ), . . . , ζn(s+ itαr
τ )) .

Lemma 2.4. Suppose that α1, . . . , αr are fixed positive numbers. Then

lim
n→∞

lim sup
T→∞

1

T

∫ T

0

ρ
(
ζ(s+ itατ ), ζn(s+ itατ )

)
dτ = 0.

Proof. The lemma follows from Lemma 2.3 and the definition of the metric ρ. □

3. THE MAIN LEMMA

For A ∈ B(Hr(D), define

PT,α(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ(s+ itατ ) ∈ A

}
.

Our aim is to prove a limit theorem on weak convergence of PT,α as T → ∞. We start the
proof of such a theorem with a limit measure on Ωr.

For A ∈ B(Ωr(D), define

QT,α(A) =
1

T
meas

{
τ ∈ [0, T ] :

((
p−itα1

τ : p ∈ P
)
, . . . ,

(
p−itαr

τ : p ∈ P
))

∈ A
}
.

Lemma 3.5. Suppose that α1, . . . , αr are fixed different positive numbers. Then QT,α converges
weakly to the Haar measure mH as T → ∞.
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Proof. Let gT,α(k1, . . . , kr), kj = (kjp : kjp ∈ Z, p ∈ P), j = 1, . . . , r, denote the Fourier
transform of QT,α, i. e.,

gT,α(k1, . . . , kr) =

∫
Ωr

r∏
j=1

∏
p∈P

′

ω
kjp

j (p) dQT,α,

where the sign “ ′ ” shows that only a finite number of integers kjp are distinct from zero.
Thus, by the definition of QT,α,

gT,α(k1, . . . , kr) =
1

T

∫ T

0

r∏
j=1

∏
p∈P

′

p−ikjpt
αj
τ dτ

=
1

T

∫ T

0

exp

−i
r∑

j=1

tαj
τ

∑
p∈P

′

kjp log p

 dτ.(3.8)

Clearly, we have

(3.9) gT,α(0, . . . , 0) = 1.

Now suppose that (k1, . . . , kr) ̸= (0, . . . , 0). Then we have

aj
def
=
∑
p∈P

′

kjp log p ̸= 0

for some j = {1, . . . , r}. Without loss a generality, we may suppose that α1 < α2 < · · · <
αr. Let j0 = max{j ⩽ r : aj ̸= 0}. Then

Aα(τ)
def
=

r∑
j=1

tαj
τ aj =

j0∑
j=1

tαj
τ aj

and hence

gT,α(k1, . . . , kr) =
1

T

∫ T

0

(
cosAα(τ)− i sinAα(τ)

)
dτ =

=
1

T

∫ T

log T

(
cosAα(τ)− i sinAα(τ)

)
dτ +O

(
log T

T

)
.

To estimate two last integrals (which we denote by j1 and j2, respectively), we note that

A′
α(τ) =

j0∑
j=1

αjajt
αj−1
τ t′τ = αj0aj0t

αj0−1
τ t′τ

(
1 +

j0−1∑
j=1

cjt
−βj
τ

)
,

where cj = αjaj/(αj0aj0) and βj = αj0 − αj > 0. In view of Lemma 2.1,

A′
α(τ) = αj0aj0

(
2π

log τ

)αj0

ταj0
−1
(
1 + o(1)

)
.

Hence, the function (A′
α(τ))

−1 is monotonic for τ ⩾ log T and for sufficiently large T .
Setting a = Aα(log T ), b = Aα(T ) and using the second mean value theorem, we get

j1 =

∫ b

a

cosu

A′
α(τ)

du =
1

A′
α(log T )

∫ ξ

a

cosudu+
1

A′
α(T )

∫ b

ξ

cosudu

for some ξ, a ⩽ ξ ⩽ b. Thus we find

|j1| ⩽ 2

(
1

|A′
α(log T )|

+
1

|A′
α(T )|

)
≪
(
log log T

log T

)αj0
−1

+

(
log T

T

)αj0
−1

.
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The same bound holds for j2. Obviously, |j1|, |j2| = o(T ) in both cases αj0 ⩾ 1 and
0 < αj0 < 1. Thus we obtain that

lim
T→∞

gT,α(k1, . . . , kr) = 0.

This together with (3.9) proves that

lim
T→∞

gT,α(k1, . . . , kr) =

{
1 if (k1, . . . , kr) = (0, . . . , 0),
0 if (k1, . . . , kr) ̸= (0, . . . , 0).

Since the right-hand side of the latter equality is the Fourier transform of the Haar mea-
sure mH , the lemma is proved. □

Lemma 3.5 is very important for probabilistic investigation of ζ(s+ it
α
τ ), it implies limit

lemmas in the space Hr(D) for ζ(s+ it
α
τ ) and ζ

n
(s+ it

α
τ ).

Define un : Ωr → Hr(D) by the formula

un(ω) = ζ
n
(s, ω),

where
ζ
n
(s, ω) = (ζn(s, ω1), . . . , ζn(s, ωr)) .

Since the series for ζn(s, ωj), j = 1, . . . , r, are absolutely convergent for σ > 1/2, the
mapping un is continuous. Moreover,

un

((
p−itα1

τ : p ∈ P
)
, . . . ,

(
p−itαr

τ : p ∈ P
))

= ζ
n
(s+ itατ ).

For A ∈ B(Hr(D)), define

PT,n,α(A) =
1

T
meas

{
τ ∈ [0, T ] : ζ

n
(s+ itατ ) ∈ A

}
,

and V n = mHu−1
n , where

V n(A) = mHu−1
n (A) = mH(u−1

n A).

Then the above remarks, Lemma 3.5, and the preservation of weak convergence under
continuous mappings (Theorem 5.1 of [2]) lead to the following lemma.

Lemma 3.6. Suppose that α1, . . . , αr are fixed different positive numbers. Then PT,n,α converges
weakly to the measure V n as T → ∞.

4. TIGHTNESS

We recall that a family of probability measures {P} on (X,B(X)) is called tight if, for
every ε > 0, there exists a compact set K = K(ε) ⊂ X such that

P (K) > 1− ε

for all P ∈ {P}.
For proving the weak convergence for PT,α, the tightness of the sequence {V n : n ∈ N}

is applied.

Lemma 4.7. The sequence {V n} is tight.

Proof. Define the function un : Ω → H(D) by un(ω) = ζ(s, ω), and put

Vn = mHu−1
n .
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It is well known, see, for example, [13], that the sequence {Vn : n ∈ N} is tight. Thus, for
j = 1, . . . , r, the sequence {Vjn : n ∈ N}, where Vjn = mjHu−1

jn , ujn(ωj) = ζ(s, ωj), is tight.
Hence, for every ε > 0, there exists compact sets Kj ⊂ H(D) such that

Vjn(Kj) > 1− ε

r
, j = 1, . . . , r,

for all n ∈ N. Let K = K1 × · · · × Kr, Then K is a compact set in the space Hr(D),
Moreover,

V n(H
r(D) \K) =

r∑
j=1

V n(H(D)× · · · ×H(D)︸ ︷︷ ︸
j−1

×(H(D) \Kj)×H(D)× · · · ×H(D))

=
r∑

j=1

mH(un(H(D)× · · · ×H(D)︸ ︷︷ ︸
j−1

×(H(D) \Kj)×H(D)× · · · ×H(D)))

=

r∑
j=1

mH(Ω1 × · · · × Ωj−1 × (u−1
jn (H(D) \Kj))× Ωj+1 × · · · × Ωr)

=

r∑
j=1

(m1H(Ω1) · · ·mj−1H(Ωj−1)mjHu−1
jn (Ωj \Kj)mj+1H(Ωj+1) · · ·mrH(Ωr))

=

r∑
j=1

Vjn(H(D) \Kj) ⩽
r∑

j=1

(
1− 1 +

ε

r

)
= ε

for all n ∈ N. Thus
V n(K) ⩾ 1− ε

for all n ∈ N, i. e., the sequence {V n} is tight. □

5. A LIMIT THEOREM

In this section we will apply Lemmas 3.6 and 4.7 to prove limit theorem for PT,α. Define
the Hr(D)-valued random element

ζ(s, ω) = (ζ(s, ω1), . . . , ζ(s, ωr)) ,

where

ζ(s, ωj) =
∏
p∈P

(
1− ωj(p)

ps

)−1

, j = 1, . . . , r,

and denote by Pζ its distribution.

Theorem 5.4. Suppose that α1, . . . , αr are fixed different positive numbers. Then PT,α converges
weakly to Pζ as T → ∞.

Proof. Suppose that θT is a random variable defined on a certain probability space with
measure µ and uniformly distributed on [0, T ]. Define the Hr(D)-valued random element

XT,n,α = XT,n,α(s) = ζ
n
(s+ it

α
θT
).

Then, denoting by D−→ the convergence in distribution, by Lemma 3.6 we have

(5.10) XT,n,α
D−−−−→

T→∞
Xn,

where Xn is the Hr(D)-valued random element with the distribution V n. Since, in view
of Lemma 4.7, the sequence {V n} is tight, by the classical Prokhorov theorem, see, for
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example, [2], it is relatively compact. Therefore, there exists a subsequence {Xnl
}, nl → ∞

as l → ∞, and a probability measure P on (Hr(D),B(Hr(D))) such that

(5.11) Xnl

D−−−→
l→∞

P.

Define
XT,α = XT,α(s) = ζ(s+ it

α
θT
).

Then Lemma 2.4 shows that

lim
n→∞

lim sup
T→∞

µ
{
ρ
(
XT,α, XT,n,α

)
⩾ ε
}

⩽ lim
n→∞

lim sup
T→∞

1

Tε

∫ T

0

ρ
(
ζ(s+ itατ ), ζn(s+ itατ )

)
dτ = 0.

This together with relations (5.10) and (5.11) allows to apply Theorem 4.2 of [2], thus we
have

(5.12) XT,α
D−−−−→

T→∞
P.

The latter relation also show that the measure P is independent of the sequence {Xnl
}.

Therefore, the relative compactness of {V n} implies the relation

(5.13) Xn
D−−−−→

n→∞
P.

Thus, by (5.12) we have that PT,α converges weakly to P .
It remains to identify the measure P . Usually, for this, arguments of the ergodic theory

are applied. However, in our case, such a method does not work. Therefore, we will
reduce the problem to a known case.

In [14], the joint approximation of analytic functions by shifts

(ζ(s+ ia1τ), . . . , ζ(s+ iarτ)) ,

where a1, . . . , ar are certain algebraic numbers, was consider. For this, the weak conver-
gence of

PT (A)
def
=

1

T
meas {τ ∈ [0, T ] : (ζ(s+ ia1τ), . . . , ζ(s+ iarτ)) ∈ A} , A ∈ B(Hr(D)),

as T → ∞ was investigated, and it was obtained that PT converges weakly to Pζ as
T → ∞. In the proof of the latter limit theorem, the mapping un and the measure V n

defined in Section 3 are also involved. Moreover, it was obtained that the limit measure
of PT as T → ∞ coincides with the limit measure of V n as n → ∞. Thus, we have that, in
view of (5.12) and (5.13), PT,α converges weakly to Pζ as T → ∞. □

6. SUPPORT

The proof of the Theorem 1.3 requires the explicit form of the support of the measure
Pζ . We recall that the support of Pζ is a minimal closed set Sζ ⊂ B(Hr(D)) such that
Pζ(Sζ) = 1. Let

S = {g ∈ H(D) : g(s) ̸= 0 or g(s) ≡ 0}.

Lemma 6.8. The support of the measure Pζ is the set Sr.

Proof. The space H(D) is separable. Therefore, see, for example, [2],

B(Hr(D)) = B(H(D))× · · · × B(H(D))︸ ︷︷ ︸
r

.
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From this, it follows that it is sufficient to consider the measure Pζ on rectangular sets

A = A1 × · · · ×Ar, A1, . . . , Ar ∈ B(H(D)).

It is well known that the support of the measures

(6.14) mjH{ωj ∈ Ωj : ζ(s, ωj) ∈ Aj}, Aj ∈ B(H(D)), j = 1, . . . , r,

is the set S. Since the measure mH is the product of mjH , we have

Pζ(A) = mH

{
ω ∈ Ωr : ζ(s, ω) ∈ A

}
= mH {ω1 ∈ Ω1, . . . , ωr ∈ Ωr : ζ(s, ω1) ∈ A1, . . . , ζ(s, ωr) ∈ Ar}
= m1H {ω1 ∈ Ω1 : ζ(s, ω1) ∈ A1} · · ·mrH {ωr ∈ Ωr : ζ(s, ωr) ∈ Ar} .

This equality, the minimality of the support and that the support of (6.14) is the set S
prove the lemma. □

7. PROOF OF THEOREM 1.3

Theorem 1.3 is a consequence of Theorem 5.4, Lemma 6.8 and the Mergelyan theorem
on an approximation of analytic functions on compact sets with connected complements
by polynomials.

Proof of Theorem 1.3. Let p1(s), . . . , pr(s) be polynomials and

Gε =

{
g ∈ H(D) : sup

1⩽j⩽r
sup
s∈Kj

∣∣∣gj(s)− epj(s)
∣∣∣ < ε

2

}
.

In view of Lemma 6.8, Gε is an open neighbourhood of an element
(
ep1(s), . . . , ep1(s)

)
of

the support of the measure Pζ . Therefore,

(7.15) Pζ(Gε) > 0.

Hence, Theorem 5.4 and the equivalent of weak convergence of probability measures in
terms of open sets imply

(7.16) lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

∣∣∣ζ(s+ itαj
τ )− epj(s)

∣∣∣ < ε

2

}
⩾ Pζ(Gε) > 0.

By the Mergelyan theorem, we may chose the polynomials p1(s), . . . , pr(s) such that

(7.17) sup
1⩽j⩽r

sup
s∈Kj

∣∣∣fj(s)− epj(s)
∣∣∣ < ε

2
.

This together with (7.16) prove the firs part of the theorem.
2. Define one more set

Ĝε =

{
g ∈ H(D) : sup

1⩽j⩽r
sup
s∈Kj

|gj(s)− fj(s)| < ε

}
.

We have that the boundaries ∂Ĝε1 and ∂Ĝε2 do not intersect for different positive ε1 and
ε2. Hence, the set Ĝε is a continuity set of the measure Pζ (Pζ(∂Ĝε) = 0) for all but at most
countably many ε > 0. Therefore, Theorem 5.4 and the equivalent of weak convergence
of probability measures in terms of continuity sets imply

(7.18) lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

1⩽j⩽r
sup
s∈Kj

|ζ(s+ itαj
τ )− fj(s)| < ε

}
= Pζ(Ĝε).
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In view of (7.17) and the definitions of the sets Gε and Ĝε, we have the inclusion Gε ⊂ Ĝε.
Therefore, by (7.15), the inequality Pζ(Ĝε) > 0 is true. This and (7.18) prove the second
part of the theorem. □

8. CONCLUDING REMARKS

A method of the paper of using different powers tαj
τ in shifts of ζ(s) for approximation

of collections of analytic functions is flexible, it can be applied for the investigation of
joint universality for Dirichlet L-functions L(s, χ) not only with non-equivalent Dirichlet
characters, for L-functions of modular forms, etc. An application of the paper method
for zeta-functions having no Euler’s product over primes, for example, for Hurwitz zeta-
functions, should give some new estimates involving the Gram function for the number
of zeros. It is well known that universality theorems are the main ingredients for the proof
of the functional independence of zeta-functions which comes back to Hilbert. We hope
that Theorem 1.3 can be applied to extend the results in the latter field. Also, Theorem 1.3
has generalizations for some compositions and approximation by absolutely convergent
Dirichlet series.
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