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A parallel method for common variational inclusion and
common fixed point problems with applications

THANASAK MOUKTONGLANG1,2, KANYUTA POOCHINAPAN1,2 and RAWEEROTE
SUPARATULATORN2

ABSTRACT. In this paper, we construct a new parallel method to solve common variational inclusion and
common fixed point problems in a real Hilbert space. We obtain a weak convergence theorem by using this
method. Besides, numerical results on the signal recovery problem consisting of various blurred filters present
that our proposed method outperforms the two previous methods.

1. INTRODUCTION

Throughout this article, let H be a real Hilbert space equipped with their own inner
product ⟨·, ·⟩ and norm ∥ · ∥, and define K = {1, 2, . . . ,K}, where K is positive integer.
The problem of identifying a point x̄ ∈ H such that

(1.1) 0 ∈ (F +G)x̄

is called the variational inclusion problem, where F : H → H is a single valued map-
ping and G : H → 2H is a multivalued mapping. The solution set of the problem (1.1) is
represented as (F + G)−1(0). The problem (1.1) can be interpreted as a model of numer-
ous issues in different research fields, such as machine learning [8, 21], signal processing
[7, 26] and image recovery [17, 20]. Many splitting algorithms have been introduced and
improved to find a solution to the variational inclusion problem (1.1), one of the most
famous splitting algorithms is the forward-backward splitting algorithm, see in [12, 18]
for more details. In 2015, O’Donoghue and Candès [16] showed the forward-backward
splitting algorithm, which is reduced to the proximal gradient algorithm for convex opti-
mization problems. It is well known that the problem (1.1) is equivalent to the following
fixed point equation x = JG

γ (I−γF )x, where JG
γ is the resolvent operator of G defined by

JG
γ = (I + γG)−1 such that γ > 0. Before that in 1964, the inertial extrapolation technique

was proposed by Polyak [19] to speed up the convergence of iterative algorithms which
is called the heavy ball method. Moudafi and Oliny [15] in 2003 introduced the inertial
proximal algorithm to solve the problem (1.1), which was developed from the forward-
backward splitting algorithm with the inertial extrapolation technique. Some very recent
results on the modified forward-backward splitting method have also been in [1, 5, 6, 14].

Many real-world problems necessitate finding a solution that satisfies several con-
straints. These constraints can be reformulated using a nonlinear functional model. We
are motivated to study common variational inclusion and common fixed point problems
in this paper because the problem can be utilized to solve real-world problems such as
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signal recovery and image recovery problems with various blurred filters, see [23, 25].
We also show that our problem can be applied for solving signal recovery with various
blurred filters as shown in Section 4. This problem consists of finding a point x̄ ∈ H such
that

(1.2) 0 ∈ (Fi +Gi)x̄ and x̄ = Six̄,

where Fi, Si are single valued mappings on H and Gi : H → 2H is a multivalued mapping
for all i ∈ K. For finding a common fixed point of a finite family of G-nonexpansive
mappings {Si}i∈K, Suantai et al. [23] introduced Algorithm 1 in H with directed graphs.
This algorithm is defined as follows:

Algorithm 1 : Parallel monotone hybrid algorithm

Initialization: Select an arbitrary element v1 ∈ C1 ⊆ H and set k := 1.
Iterative Steps : Construct {vk} by using the following steps:
Step 1. For any i ∈ K, set ui

k = ρikvk + (1− ρik)Sivk, where {ρik} ⊂ [0, 1], and compute

ūk = argmax
{
∥ui

k − vk∥ : i ∈ K
}
.

Step 2. Compute

vk+1 = PCk+1
v1,

where Ck+1 = {c ∈ Ck : ∥c− ūk∥ ≤ ∥c− vk∥}.
Replace k by k + 1 and then repeat Step 1.

Suparatulatorn et al. [24] recently proposed Algorithm 2 to solve a common varia-
tional inclusion problem under Lipschitz continuity and monotonicity of Fi, and maximal
monotonicity of Gi, for all i ∈ K. This algorithm is defined as follows:

Algorithm 2 : Parallel inertial Tseng type algorithm

Initialization: Given λi ∈ (0, 1) and γi
1 > 0 for all i ∈ K. Select arbitrary elements

v0, v1 ∈ H and set k := 1.
Iterative Steps : Construct {vk} by using the following steps:
Step 1. Set rk = vk + ξk(vk − vk−1), where {ξk} ⊂ [0,∞), and compute, for all i ∈ K,

sik = JGi

γi
k

(I − γi
kFi)rk.

If rk = sik for all i ∈ K, then stop and rk ∈
⋂
i∈K

(Fi +Gi)
−1

(0). Otherwise

Step 2. Compute, for all i ∈ K,

tik = sik − γi
k(Fis

i
k − Firk) and t̄k = argmax

{
∥tik − rk∥ : i ∈ K

}
.

Step 3. Compute

vk+1 = akφ(vk) + (1− ak − bk)vk + bk t̄k,

where {ak}, {bk} ⊂ (0, 1), φ is a contractive on H, and update, for all i ∈ K,

γi
k+1 =

{
min

{
λi

∥rk−sik∥
∥Firk−Fisik∥

, γi
k

}
if Firk ̸= Fis

i
k;

γi
k otherwise.

Replace k by k + 1 and then repeat Step 1.

Furthermore, Suparatulatorn and Chaichana [25] studied an image recovery problem
in which several blurred filters are considered and the mathematical model used there is
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the common variational inclusion problem. Several interesting outcomes for the problem
(1.2) and related problems were published, see [9, 10, 22, 27].

Inspired by the previous works, we develop a novel parallel algorithm based on the
inertial Mann iteration process to prove a weak convergence result for solving the problem
(1.2) under some control conditions in H. Additionally, we compare our algorithm with
Algorithm 1 and Algorithm 2 in order to solve the signal recovery problem involving
multiple blurring filters.

2. PRELIMINARIES

In this section, we collect some necessary definitions and lemmas for proving our main
result. We denote ⇀ and → as weak and strong convergence, respectively. Denote the set
of the fixed point of the mapping S by Fix(S). For each x, y ∈ H, we have the following
facts:

∥x+ y∥2 = ∥x∥2 + 2⟨x, y⟩+ ∥y∥2(2.3)

and

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.(2.4)

Definition 2.1. A self-mapping S : H → H is said to be
(i) L-Lipschitz continuous if there is L > 0 such that for all x, y ∈ H,

∥Sx− Sy∥ ≤ L∥x− y∥,

(ii) nonexpansive if S is L-Lipschitz continuous when L = 1,
(iii) µ-demicontractive if Fix(S) ̸= ∅ and there is µ ∈ [0, 1) such that for all x ∈ H and

all p ∈ Fix(S),

∥Sx− p∥2 ≤ ∥x− p∥2 + µ∥x− Sx∥2,

this is equivalent to

⟨x− p, Sx− x⟩ ≤ µ− 1

2
∥x− Sx∥2

for all x ∈ H and all p ∈ Fix(S).

Definition 2.2. Let G : H → 2H be a multivalued mapping. Then G is said to be
(i) monotone if for all (x, u), (y, v) ∈ graph(G) (the graph of mapping G),

⟨u− v, x− y⟩ ≥ 0,

(ii) maximal monotone if for every (x, u) ∈ H × H, ⟨u − v, x − y⟩ ≥ 0 for all (y, v) ∈
graph(G) if and only if (x, u) ∈ graph(G).

Definition 2.3. [28]Assume that S : H → H is a mapping with Fix(S) ̸= ∅. Then, I − S is
said to be demiclosed at zero if for any {vk} ∈ H, the following implication holds:

vk ⇀ v and (I − S)vk → 0 =⇒ v ∈ Fix(S).

Lemma 2.1. [4] If G : H → 2H is a maximal monotone mapping and F : H → H is a Lipschitz
continuous and monotone mapping, then the mapping F +G is maximal monotone.

Lemma 2.2. [2] Let {ak} and {bk} be nonnegative sequences of real numbers satisfying
∞∑
k=1

bk <

∞ and ak+1 ≤ ak + bk. Then, {ak} is a convergent sequence.
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Lemma 2.3. [3, Opial] Let Φ be a nonempty set of H and {vk} be a sequence in H. Suppose the
following assertions hold.
(i) For every v ∈ Φ, the sequence {∥vk − v∥} converges.
(ii) Every weak sequential cluster point of {vk} belongs to Φ.
Then {vk} weakly converges to a point in Φ.

3. MAIN RESULTS

In this section, we propose a new method for solving the problem (1.2). For the con-
vergence analysis of the proposed method, we assume the following assumptions, for all
i ∈ K.
Assumption 1. H is a real Hilbert space, Fi : H → H is Li-Lipschitz continuous and
monotone mapping and Gi : H → 2H is maximal monotone operator.

Assumption 2.
{
pik
}
⊂ [0,∞),

{
qik
}
⊂ [1,∞) such that

∞∑
k=1

pk < ∞ and lim
k→∞

qk = 1.

Assumption 3. Si : H → H is µi-demicontractive mapping such that I − Si is demiclosed
at zero.
Assumption 4. {ξk} ⊂ [0, ξ), {αi

k} ⊂ (µi, ᾱi) ⊂ (0, 1), for some ξ, ᾱi > 0.

Assumption 5. Φ :=
⋂
i∈K

(Fi +Gi)
−1

(0) ∩
⋂
i∈K

Fix(Si) is nonempty.

Algorithm 3

Initialization: Given λi ∈ (0, 1) and γi
1 > 0 for all i ∈ K. Select arbitrary elements

v0, v1 ∈ H and set k := 1.
Iterative Steps : Construct {vk} by using the following steps:
Step 1. Set rk = vk + ξk(vk − vk−1) and compute, for all i ∈ K,

sik = JGi

γi
k

(I − γi
kFi)rk.

Step 2. Compute, for all i ∈ K,

tik = sik − γi
k(Fis

i
k − Firk) and ui

k = αi
kt

i
k + (1− αi

k)Sit
i
k.

Step 3. Compute

vk+1 = argmax
{
∥ui

k − rk∥ : i ∈ K
}

and update, for all i ∈ K,

γi
k+1 =

{
min

{
λiq

i
k∥rk−sik∥

∥Firk−Fisik∥
, γi

k + pik

}
if Firk ̸= Fis

i
k;

γi
k + pik otherwise.

Replace k by k + 1 and then repeat Step 1.

Lemma 3.4. Suppose that Assumptions 1-2 hold. Then the sequence
{
γi
k

}
generated by Algo-

rithm 3 is well defined and converges to γi ∈
[
min

{
γi
1,

λi

Li

}
, γi

1 + pi

]
, where pi =

∞∑
k=1

pik.

Proof. Since Fi is an Li-Lipschitz continuous mapping for all i ∈ K, if Fis
i
k ̸= Firk, then

λiq
i
k∥rk − sik∥

∥Firk − Fisik∥
≥ λiq

i
k∥rk − sik∥

Li∥rk − sik∥
=

λiq
i
k

Li
≥ λi

Li
.
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By using the same technique as in the proof of [13, Lemma 3.1], we obtain that lim
k→∞

γi
k =

γi ∈
[
min

{
γi
1,

λi

Li

}
, γi

1 + pi

]
. □

Lemma 3.5. Let v ∈ Φ. Then under Assumptions 1-5, we have, for all i ∈ K,

∥ui
k − v∥2 ≤ ∥rk − v∥2 −

[
1−

(
ϱik

)2] ∥rk − sik∥2 − (1− αi
k)(α

i
k − µi)∥Sit

i
k − tik∥2(3.5)

and

∥tik − rk∥ ≤
(
1 + ϱik

)
∥rk − sik∥,(3.6)

where ϱik = λiq
i
k

γi
k

γi
k+1

.

Proof. By the definitions of tik and γi
k, we obtain that for all i ∈ K,

∥tik − sik∥ = γi
k∥Fis

i
k − Firk∥ ≤ ϱik∥sik − rk∥,(3.7)

which together with (2.3) indicates that for all i ∈ K,

∥tik − v∥2 = ∥sik − v∥2 − 2γi
k⟨sik − v, Fis

i
k − Firk⟩+

(
γi
k

)2 ∥Fis
i
k − Firk∥2

= ∥rk − v∥2 + ∥sik − rk∥2 − 2⟨sik − rk, s
i
k − rk⟩+ 2⟨sik − rk, s

i
k − v⟩

− 2γi
k⟨sik − v, Fis

i
k − Firk⟩+

(
ϱik

)2 ∥sik − rk∥2

≤ ∥rk − v∥2 −
[
1−

(
ϱik

)2] ∥rk − sik∥2 − 2⟨sik − v, rk − sik − γi
k(Firk − Fis

i
k)⟩.(3.8)

From the definition of sik, we have that (I − γi
kFi)rk ∈ (I + γi

kGi)s
i
k for all i ∈ K. This

implies that there exists gik ∈ Gis
i
k such that gik = 1

γi
k

(
rk − sik − γi

kFirk
)

for all i ∈ K. Since

Fi+Gi is maximal monotone, we obtain that ⟨Fis
i
k+gik, s

i
k−v⟩ ≥ 0 for all i ∈ K, implying

that ⟨sik − v, rk − sik − γi
k(Firk − Fis

i
k)⟩ ≥ 0 for all i ∈ K. This combined with (3.8) yields

that ∥tik − v∥2 ≤ ∥rk − v∥2 −
[
1−

(
ϱik

)2] ∥rk − sik∥2 for all i ∈ K. This follows from the
equivalence of demicontractive mapping Si and (2.3) that for all i ∈ K,

∥ui
k − v∥2 = ∥αi

kt
i
k + (1− αi

k)Sit
i
k − v∥2

= ∥tik − v∥2 + (1− αi
k)

2∥Sit
i
k − tik∥2 + 2(1− αi

k)⟨tik − v, Sit
i
k − tik⟩

≤ ∥tik − v∥2 + (1− αi
k)

2∥Sit
i
k − tik∥2 + (1− αi

k)(µi − 1)∥Sit
i
k − tik∥2

≤ ∥rk − v∥2 −
[
1−

(
ϱik

)2] ∥rk − sik∥2 − (1− αi
k)(α

i
k − µi)∥Sit

i
k − tik∥2.

Further, using Cauchy-Schwarz and by (3.7), we obtain that the inequality (3.6) holds. □

Lemma 3.6. Suppose that lim
k→∞

∥rk − sik∥ = lim
k→∞

∥Sit
i
k − tik∥ = 0 for all i ∈ K. If there exists

a weakly convergent subsequence {rkj
} of {rk}, then under Assumptions 1-5, we have that the

weak limit of {rkj
} belongs to Φ.

Proof. Let r̄ ∈ H such that rkj ⇀ r̄. Since lim
k→∞

ϱik = λi > 0 and by (3.6), we have lim
k→∞

∥tik−

rk∥ = 0. It follows that tikj
⇀ r̄. This together with lim

k→∞
∥Sit

i
k−tik∥ = 0, by the demiclosed-

ness at zero of I − Si, r̄ ∈
⋂
i∈K

Fix(Si). Next, we show that r̄ ∈
⋂
i∈K

(Fi +Gi)
−1

(0). Let

(vi, ui) ∈ graph (Fi +Gi) for all i ∈ K, that is, ui − Fivi ∈ Givi for all i ∈ K. It implies by
the definition of sik that for all i ∈ K, 1

γi
kj

(
rkj

− sikj
− γi

kj
Firkj

)
∈ Gis

i
kj

. By the maximal
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monotonicity of Gi, we have that
〈
vi − sikj

, ui − Fivi − 1
γi
kj

(
rkj

− sikj
− γi

kj
Firkj

)〉
≥ 0

for all i ∈ K. Thus, for all i ∈ K,〈
vi − sikj

, ui

〉
≥

〈
vi − sikj

, Fivi +
1

γi
kj

(
rkj

− sikj
− γi

kj
Firkj

)〉
=

〈
vi − sikj

, Fivi − Fis
i
kj

〉
+

〈
vi − sikj

, Fis
i
kj

− Firkj

〉
+

1

γi
kj

〈
vi − sikj

, rkj − sikj

〉
≥

〈
vi − sikj

, Fis
i
kj

− Firkj

〉
+

1

γi
kj

〈
vi − sikj

, rkj
− sikj

〉
.

This follows from the Lipschitz continuity of Fi, lim
k→∞

∥rk − sik∥ = 0 and lim
k→∞

γi
k = γi > 0

that ⟨vi − r̄, ui⟩ = lim
j→∞

〈
vi − sikj

, ui

〉
≥ 0 for all i ∈ K, which, together with the max-

imal monotonicity of Fi + Gi, we get that 0 ∈ (Fi +Gi) r̄ for all i ∈ K, that is, r̄ ∈⋂
i∈K

(Fi +Gi)
−1

(0). Therefore, r̄ ∈ Φ. □

Theorem 3.1. Suppose that
∞∑
k=1

ξk∥vk − vk−1∥ < ∞, then under Assumptions 1-5, we have that

the sequence {vk} generated by Algorithm 3 weakly converges to a solution of Φ.

Proof. Let v ∈ Φ. Since lim
k→∞

[
1−

(
ϱik

)2]
= 1− λ2

i > 0, one can find mi ∈ N such that

1−
(
ϱik

)2
> 0 for all i ∈ K and all k ≥ k0, where k0 = max

i∈K
mi. From Assumption 4, by the

definition of rk and using (3.5), we have ∥ui
k − v∥ ≤ ∥rk − v∥ = ∥vk + ξk(vk − vk−1)− v∥ ≤

∥vk − v∥+ ξk∥vk − vk−1∥ for all i ∈ K and all k ≥ k0. It implies by the definition of i that
∥vk+1−v∥ ≤ ∥rk−v∥ ≤ ∥vk−v∥+ξk∥vk−vk−1∥ for all k ≥ k0. This follows that {∥vk − v∥}

is convergent because of using Lemma 2.2 and
∞∑
k=1

ξk∥vk − vk−1∥ < ∞. In particular, {vk}

is bounded and also {rk}. Next, applying (2.4) and (3.5), we have,

∥ui
k − v∥2 ≤ ∥vk − v∥2 + 2ξk⟨vk − vk−1, rk − v⟩

−
[
1−

(
ϱik

)2] ∥rk − sik∥2 − (1− αi
k)(α

i
k − µi)∥Sit

i
k − tik∥2

for all i ∈ K. It follows that there are ik ∈ K and M1 > 0 such that[
1−

(
ϱikk

)2] ∥rk − sikk ∥2 ≤ ∥vk − v∥2 − ∥vk+1 − v∥2 +M1ξk∥vk − vk−1∥

− (1− αik
k )(αik

k − µik)∥Sikt
ik
k − tikk ∥2.(3.9)

From Assumption 4, lim
k→∞

[
1−

(
ϱikk

)2]
> 0 and

∞∑
k=1

ξk∥vk−vk−1∥ < ∞, and using lim
k→∞

∥vk−

v∥ exists, we obtain

lim
k→∞

∥rk − sikk ∥ = 0(3.10)

and so

lim
k→∞

∥Sikt
ik
k − tikk ∥ = 0.(3.11)
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Indeed, using (3.6), (3.10) and (3.11), we deduce

∥vk+1 − rk∥ ≤ ∥vk+1 − tikk ∥+ ∥tikk − rk∥

= ∥αik
k tikk + (1− αik

k )Sikt
ik
k − tikk ∥+ ∥tikk − rk∥

≤ (1− αik
k )∥Sikt

ik
k − tikk ∥+

(
1 + ϱikk

)
∥rk − sikk ∥ → 0 as k → ∞.

This implies by the definition of vk+1 that

lim
k→∞

∥rk − ui
k∥ = 0(3.12)

for all i ∈ K. Again, applying (3.5), we have[
1−

(
ϱik

)2] ∥rk − sik∥2 + (1− αi
k)(α

i
k − µi)∥Sit

i
k − tik∥2 ≤ ∥rk − v∥2 − ∥ui

k − v∥2

≤ M2∥rk − ui
k∥

for all i ∈ K and for some M2 > 0. Combining this to (3.12) with Assumption 4 and
lim
k→∞

[
1−

(
ϱik

)2]
> 0, we obtain that for all i ∈ K,

lim
k→∞

∥rk − sik∥ = lim
k→∞

∥Sit
i
k − tik∥ = 0.(3.13)

Finally, let v̄ be a weak sequential cluster point of {vk}, that is, it has a subsequence {vkj
}

fulfilling vkj
⇀ v̄ as j → ∞. Since lim

k→∞
ξk∥vk − vk−1∥ = 0, we get rkj

⇀ v̄ as j → ∞.

Applying Lemma 3.6 to (3.13), we deduce that v̄ ∈ Φ. Using Opial’s lemma (Lemma 2.3),
we can conclude that {vk} weakly converges to an element in Φ. □

4. APPLICATION TO SIGNAL RECOVERY PROBLEM

The signal recovery problem consisting of various blurring filters can be expressed as:

bi = Aix+ εi,

where x ∈ RN is the original signal, bi ∈ RM is the observed signal with noise εi and
Ai ∈ RM×N (M < N ) is filter matrix for all i ∈ K. Then, we focus on the following
problem:

min
x∈RN

1

2
∥A1x− b1∥22 + η1∥x∥1,

min
x∈RN

1

2
∥A2x− b2∥22 + η2∥x∥1,

min
x∈RN

1

2
∥A3x− b3∥22 + η3∥x∥1,(4.14)

...

min
x∈RN

1

2
∥AKx− bK∥22 + ηK∥x∥1,

where ηi > 0 for all i ∈ K. By Proposition 3.1 (iii) of [7], this problem can be seen as
the problem (1.2) through the following settings: H = RN , Fi = ∇hi, Gi(·) = ∂ℓi(·) and
Si(·) = proxζiℓi(I − ζi∇hi)(·), where ζi > 0, hi(·) = 1

2∥Ai(·) − bi∥22 and ℓi(·) = ηi∥ · ∥1 for
all i ∈ K. It is known that the mapping Fi is monotone and ∥Ai∥22-Lipschitz continuous,
and Gi is maximal monotone mapping. Besides, the mapping Si is nonexpansive for
ζi ∈

(
0, 2

∥Ai∥2
2

)
and hence 0-demicontractive. Numerical experiments are performed by

Matlab R2021a and run on an iMac (Apple M1 chip with 16GB of RAM). Set the original
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signal x is generated by the uniform distribution in [−2, 2] with m nonzero elements. Let
Ai be the Gaussian matrix generated by command randn(M,N).

In the first part of the experiment, we investigate the behavior of our algorithm and
then compare it with Algorithm 1 of Suantai et al. [23] and Algorithm 2 of Suparatulatorn
et al. [24]. We select the signal size to be N = 4096 and M = 2048. Let the observation
bi be generated by white Gaussian noise with signal-to-noise ratio SNR=40, ηi = 1 and
ζi =

1
∥Ai∥2

2
for all i ∈ {1, 2, 3}. Let v0, v1 be the vectors generated randomly. For Algorithm

1, we set ρik = 3
4 for all k ∈ N and all i ∈ {1, 2, 3}. For Algorithm 2, let ak = 1

k+1

and bk = 99k
100(k+1) for all k ∈ N, and define φ(·) = cos(·)

10 . For Algorithm 3, let αi
k = 1

4 ,
pik = 1

(k+1)1.4 and qik = 1 + 1
k+1 for all k ∈ N and all i ∈ {1, 2, 3}. Further, for Algorithm 2

and Algorithm 3, we suppose λi =
95
100 , γi

1 = 1
100 and

ξk =

 min

{
1

(k+1)1.1 max{∥vk−vk−1∥2,∥vk−vk−1∥2
2}

, 1
4

}
if vk ̸= vk−1;

1
4 otherwise

for all k ∈ N and all i ∈ {1, 2, 3}. We use the mean-squared error to measure the restoration
accuracy defined as follows: MSEk = 1

N ∥vk − x∥22 < 5× 10−5. The results are presented
next.

m Nonzero Elements

m = 64 m = 128 m = 256 m = 512

Algorithm 1 Iter 2386 2461 2702 2867
CPU Time 20.4741 21.1546 23.2616 24.6196

Algorithm 2 Iter 749 950 1254 2449
CPU Time 12.2045 15.3795 21.4745 39.8037

Algorithm 3 Iter 215 230 232 251
CPU Time 5.1991 5.5572 5.8327 6.0672

TABLE 1. Numerical comparison of three algorithms.
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FIGURE 1. The original signal, the measurements and the reconstructed
signals by three algorithms for m = 512.
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FIGURE 2. Plots of MSEk over Iter when m = 512.

Based on Table 1, Algorithm 3 requires fewer iterations and takes less time than Algo-
rithm 1 and Algorithm 2.

The last part of the experiment considers Algorithm 3 for solving the problem (4.14)
with multiple inputs Ai. We select the signal size to be N = 1024 and M = 512. For
any i ∈ {1, 2, 3}, let the observation bi be generated by the white Gaussian noise εi of the
variance σ2

i . Set v0, v1, γi
1, λi, ηi, ζi, α

i
k, p

i
k, q

i
k and ξk are the same as in the first part of the

experiment for all k ∈ N and all i ∈ {1, 2, 3}. Further, we select σi =
i

100 for all i ∈ {1, 2, 3}.
The results are presented next.

Inputting m Nonzero Elements

m = 16 m = 32 m = 64 m = 128

A1
Iter 1085 1062 1463 2986

CPU Time 0.7912 0.7415 1.0678 2.1037

A2
Iter 1049 1027 1402 2460

CPU Time 0.8564 0.8177 0.9194 1.6673

A3
Iter 1088 1063 1506 2311

CPU Time 0.7830 0.7432 0.8780 1.5621

A1, A2
Iter 379 384 449 456

CPU Time 0.7045 0.5749 0.5747 0.7831

A1, A3
Iter 364 400 875 477

CPU Time 0.7210 0.5797 1.2161 0.7123

A2, A3
Iter 382 401 435 490

CPU Time 0.7831 0.6120 0.6199 0.6830

A1, A2, A3
Iter 125 125 123 126

CPU Time 0.4139 0.2938 0.2731 0.2618

TABLE 2. Numerical results of Algorithm 3.

From Table 2, we can observe that incorporating all 3 Gaussian matrices (A1, A2 and
A3) into Algorithm 3 is more effective with respect to time and number of iterations than
involving only one or two of them.
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FIGURE 3. The original signal, the measurements and the reconstructed
signals by using each input for m = 128.
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FIGURE 4. Plots of MSEk over Iter when m = 128.

5. NUMERICAL EXAMPLE

We utilize Algorithm 3 to solve the problem (1.2) with K = {1, 2} in the finite-dimensional
Hilbert space. Suppose that H = R2 with the the Euclidean norm. For any i ∈ {1, 2}, de-
fine Fiz = (x+y+sinx,−x+y+sin y)t for all z = (x, y)t ∈ H, and set Gi = ∂ιCi

, where ιCi

is the indicator function of Ci and Ci = [−i, i]2. It is not hard to show that the mapping Fi

is 3-Lipschitz continuous and monotone on H, and the mapping Gi is maximal monotone
for all i ∈ {1, 2}. For any z = (x, y)t ∈ H, define S1z = − 3

2z and S2z = ∥A∥−1Az, where

A =

(
1 0
0 2

)
. Then S1 is 1

5 -demicontractive and S2 is 0-demicontractive. Furthermore, Si

is continuous and so I − Si is demiclosed at zero for all i ∈ {1, 2}. The solution of our
main problem is x∗ = 0.

In this experiment, we compare Algorithm 3 with Algorithm 1 and Algorithm 2. Let
v0 = (105, 105)t and v1 = (104, 104)t. For Algorithm 1, we set ρik = 3

4 for all k ∈ N and
all i ∈ {1, 2}. For Algorithm 2, select ak and bk as in Section 4, and define φ(·) = 1

10 . For
Algorithm 3, let αi

k = 1
2 , pik = 1

(k+1)1.4 and qik = 1 + 1
k+1 for all k ∈ N and all i ∈ {1, 2}.

Further, for Algorithm 2 and Algorithm 3, we suppose λi =
95
100 and γi

1 = 7
100 for all i ∈
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{1, 2}, and we set ξk as in Section 4. We let the stopping criterion Ek := ∥vk − x∗∥ < 10−5.
The numerical result is presented in Figure 5.
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FIGURE 5. Plots of Ek over Iter.

From Figure 5, we can see that the number of iterations of Algorithm 1 is 63, the number
of iterations of Algorithm 2 is 58 and the number of iterations of Algorithm 3 is 19, that is,
the sequence generated by Algorithm 3 improves the number of iterations.
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