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Inertial Iteration Scheme for Approximating Fixed Points of
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O. OSILIKE

ABSTRACT. We study a perturbed inertial Krasnoselskii-Mann-type algorithm and prove that the algorithm
is an approximate fixed point sequence for Lipschitz pseudocontractive maps in arbitrary real Banach spaces.
Strong convergence results are then established for our inertial iteration scheme for approximation of fixed
points of Lipschitz pseudocontractive maps and solutions of certain important accretive-type operator equations
in certain real Banach spaces. Implementation of our algorithm is illustrated using numerical examples in both
finite and infinite dimensional Banach spaces. Our results improve rate of convergence and extend several
related recent results.

1. INTRODUCTION

Let X be a real Banach with dual X∗. Let J : X → X∗ denote the normalized duality
mapping given by

Jx := {f∗ ∈ X∗ : ⟨x, f∗⟩ = ∥x∥2 = ∥f∗∥2},
where ⟨., .⟩ denotes the generalized duality pairing (see for example [10]). J is single-
valued ifX∗ is strictly convex (see for example [10]) and in what follows we denote single-
valued normalized duality mapping by j. A mapping T : D(T ) ⊆ X → R(T ) ⊆ X is said
to be L-Lipschitzian(see for example [10]) if there exists L ≥ 0 such that

(1.1) ||Tx− Ty|| ≤ L||x− y||, ∀x, y ∈ D(T ).

T is said to be a contraction if L ∈ [0, 1) and T is said to be nonexpansive if L = 1 (see for
example [3, 6, 10, 28]). T is said to be pseudocontractive (see for example [10]) if

(1.2) ∥x− y∥ ≤ ∥x− y + λ((x− Tx)− (y − Ty))∥, ∀x, y ∈ D(T ), λ > 0.

An operator A : D(T ) ⊆ X → R(T ) ⊆ X is said to be accretive (see for example [10]) if for
all t > 0 and every x, y ∈ D(A) we have

(1.3) ∥x− y∥ ≤ ∥x− y + t(Ax−Ay)∥.

It follows from Lemma 1.1 of Kato [15] that T is pseudocontractive if and only if for all
x, y ∈ D(T ) there exists j(x− y) ∈ J(x− y) such

(1.4) ⟨(I − T )x− (I − T )y, j(x− y)⟩ ≥ 0.
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Furthermore, A is accretive if and only if for each x, y ∈ D(A), there exists j(x − y) ∈
J(x− y) such that

(1.5) ⟨Ax−Ay, j(x− y)⟩ ≥ 0.

An accretive operator A is said to be m-accretive (see for example [10]) if R(I + λA) =
X, ∀λ > 0, where R(I + λA) is the range of (I + λA). The class of nonexpansive maps
is a proper subclass of the class of pseudocontractive maps and T is pseudocontractive if
and only if (I − T ) is accretive. Other important subclasses of pseudocontractive maps
are the class of strictly pseudocontractive operators and the class of strongly pseudocontractive
operators. T is strictly pseudocontractive if ∀x, y ∈ D(T ) and for some k ∈ [0, 1), we have

(1.6) ⟨(I − T )x− (I − T )y, j(x− y)⟩ ≥ k∥(I − T )x− (I − T )y∥2,

and T is strongly pseudocontractive if

(1.7) ⟨(I − T )x− (I − T )y, j(x− y)⟩ ≥ k∥x− y∥2, ∀x, y ∈ D(T ) and for some k ∈ [0, 1),

(see for example [10]). The classes of strictly pseudocontractions and strongly pseudo-
contractions are independent and every strictly pseudocontraction is Lipschitz (see for
example [3, 10]).

In the iterative approximation of fixed points of nonexpansive maps, strictly pseudo-
contractive maps and strongly pseudocontractive maps, the iterative scheme of Mann
[22]:

(1.8) xn+1 = (1− αn)xn + αnTxn, n ≥ 1;

where {αn}∞n=1 is a suitable sequence in [0, 1] have played pivotal role. In [8] Chidume
and Mutangadura showed with an example in the 2-dimensional Euclidean plane that the
original Mann iteration may fail to converge to a fixed point of a Lipschitz pseudocontrac-
tive selfmap T defined on a nonempty compact subset. For the class of pseudocontractive
maps T , the Ishikawa iteration [14]:

(1.9) xn+1 = (1− αn)xn + αnT [(1− βn)xn + βnTxn], n ≥ 1,

and its modifications have played very important role in the iterative approximation of
fixed points of T when F (T ) ̸= ∅. However, the Ishikawa iteration scheme for Lip-
schitz pseudocontractions yield only weak convergence usually obtained mostly from
lim

n→∞
∥xn − Txn∥ = 0; and require “compactness” assumption either on the operator or

the domain of the operator or even both to yield strong convergence. Most of the related
results are also confined to Hilbert spaces. Often, very strong conditions are imposed on
the fixed-point set, F (T ) to obtain strong convergence using the usual Ishikawa iteration
process (see for example [3, 10, 30, 36]). For instance in [30], the author required that F (T )
is finite where T is a continuous pseudocontractive-type self-mapping of a nonempty con-
vex compact of a Hilbert space, and in [36] the authors required that the interior of F (T ) is
nonempty where T is a Lipschitz pseudocontractive self-mapping of a nonempty closed
convex subset of a Hilbert space. Thus many other schemes have been recently studied
by several authors to achieve relatively fast strong convergence with mild assumptions
on the operator, its domain, its set of fixed points and other necessary components (see
for example [1, 2, 3, 7, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23, 26, 27, 29, 31, 34, 35] ). The
Krasnoselskii-Mann and certain modifications and other prominent algorithms like the
Halpern-type algorithms had been used to obtain weak and strong convergence results.
In [9] the authors studied the following algorithm in arbitrary real Banach spaces:
Algorithm CZ ([9]). Let X be a real Banach space, K a nonempty closed convex subset
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of X and T : K → K a given operator. Then for arbitrary x1 ∈ K the sequence {xn} is
generated by

(1.10) xn+1 = (1− λn)xn + λnTxn − λnθn(xn − x1), n ≥ 1,

where {λn} and {θn} are real sequences in (0, 1) such that: (i) λn(1+θn) < 1, (ii) lim
n→∞

θn =

0, (iii)
∑∞

n=1 λnθn = ∞, (iv) lim
n→∞

λn

θn
= 0, (v) lim

n→∞
θn−1−θn

λnθ2
n

= 0. They proved that the

sequence {xn} is an approximate fixed point sequence for Lipschhitz pseudocontractive
maps, T , in arbitrary real Banach spaces (i.e., lim

n→∞
∥xn−Txn∥ = 0). They further obtained

strong convergence of the sequence to p ∈ F (T ) when F (T ) ̸= ∅ in certain real Banach
spaces much more general than Hilbert spaces. The algorithm has been studied exten-
sively in recent years by various authors; it appears simpler than the Ishikawa iteration
scheme and the results are proved in general Banach spaces. However, the implementa-
tion of the algorithm shows it as being very slow and hence there is a need to accelerate
the scheme to achieve relatively fast convergence rate.
It is our purpose in this paper to introduce appropriate inertial term in Algorithm CZ to
accelerate the convergence. We consider the following:
Algorithm 1.1. For arbitrary x0, x1 ∈ X , the sequence {xn} is generated by

(1.11)
{
wn = xn + θn(xn − xn−1), n ≥ 1
xn+1 = (1− λn)wn + λnTwn − λnσn(wn − x0), n ≥ 1,

where {λn} and {σn} are suitable sequences in (0, 1); for some suitable θ ∈ (0, 1), 0 ≤ θn ≤
θ̄n, where

θ̄n =

{
min{θ, ϵn

∥xn−xn−1∥}, xn ̸= xn−1

θ, otherwise,

and {ϵn} ⊆ R+ is a suitable sequence such that
∑∞

n=1 en < ∞. We prove that under suit-
able conditions on {λn}, {σn}, {θn}, {ϵn} and appropriate θ, the perturbed inertial Mann
algorithm (1.11) is an approximate fixed point sequence for Lipschitz pseudocontractive
maps in arbitrary real Banach spaces.

Interesting fast strong convergence results which generalize and improve several re-
lated recent results are proved. Implementation of the algorithm is demonstrated in finite
and infinite dimensional Banach spaces with comparison with Algorithm CZ, the scheme
without inertial term.

2. PRELIMINARIES

We shall need the following results:

Lemma 2.1. ([15]) Let X be an arbitrary Banach space, X∗ the dual of X and let x, y ∈ X be
arbitrary. Then ∥x∥ ≤ ∥x + λy∥, ∀λ > 0 if and only if there exists j(x) ∈ J(x) such that
Re⟨y, j(x) ≥ 0.

Lemma 2.2. ([24]) Let {an}∞n=1, {αn}∞n=1 and {bn}∞n=1 be sequences of nonnegative real num-
bers and let ψ : [0,∞) → [0,∞) be a strictly increasing continuous function with ψ(0) = 0,
ψ(t) > 0, t ∈ (0,∞). Let
(i) lim

n→∞
αn = 0,

(ii)
∑∞

n=1 αn = ∞,

(iii) lim
n→∞

bn
αn

= 0,

(iv) a2n+1 ≤ a2n − αnψ(an+1) + bn.
Then lim

n→∞
an = 0.
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Lemma 2.3. ([25]) Let X be a Banach space, K a nonempty closed convex subset of X and
T : K → X a continuous pseudocontractive mapping satisfying the weakly inward condition.
Then for each x0 ∈ K, there exists a unique path

(2.12) t→ yt ∈ K; t ∈ [0, 1), satisfying yt = tTyt + (1− t)x0.

Remark 2.1. If in Lemma 2.3 F (T ) ̸= ∅, then {yt} is bounded. Furthermore, if either
(i) X has a uniformly Gâteaux differentialble norm and is such that every closed convex
bounded subset of K has the fixed point property (FPP) for nonexpansive self-mappings,
or
(ii) X is a reflexive and strictly convex Banach space with a uniformly Gâteaux differen-
tiable norm, then as t→ 1, the path converges strongly to a fixed point of T (see [25, 9]).

3. MAIN RESULTS

We now prove the following results:

Theorem 3.1. Let X be an arbitrary real Banach space and let T : X → X be an L-Lipschitzian
pseudocontractive mapping with F (T ) ̸= ∅. Let {λn} and {σn} be real sequence in (0, 1) such
that (i) λn(1 + σn) < 1, (ii) lim

n→∞
σn = 0, (iii)

∑∞
n=1 λnσn = ∞, (iv)

∑∞
n=1 λ

2
n < ∞;

(v) lim
n→∞

|σn−σn−1|
λnσ2

n
= 0., (vi) lim

n→∞
λn

σn
= 0. Let {ϵn} ⊆ R+ be such that

∑∞
n=1 ϵn < ∞,

lim
n→∞

ϵn
λnσn

= 0, and let θ ∈ [0, 1). For arbitrary x0, x1 ∈ X , let {xn} be the sequence generated
by (1.11): {

wn = xn + θn(xn − xn−1), n ≥ 1
xn+1 = (1− λn)wn + λnTwn − λnσn(wn − x0), n ≥ 1,

where θ ∈ [0, 1), 0 ≤ θn ≤ θ̄n and

(3.13) θ̄n =

{
min{θ, ϵn

∥xn−xn−1∥}, xn ̸= xn−1

θ, otherwise.

Then lim
n→∞

∥xn − Txn∥ = 0.

Proof. We divide the proof as follows:
Claim 1: The sequences {xn}∞n=1, {wn}∞n=1, {Txn}∞n=1 and {Twn}∞n=1 are bounded.
Let p ∈ F (T ) be arbitrary and define Gn : X → X by
Gnx := Tx− σnx+ σnx0, n ≥ 1. Then Gnp = (1− σn)p+ σnx0 and

(3.14) ⟨(I −Gn)x− (I −Gn)y, j(x− y)⟩ ≥ σn∥x− y∥2, ∀x, y ∈ X, n ≥ 1.

From (3.14) we obtain

(3.15) ⟨(I −Gn − σnI)x− (I −Gn − σnI)y, j(x− y)⟩ ≥ 0, ∀x, y ∈ X, n ≥ 1,

and it follows from Lemma 2.1 that ∀x, y ∈ X, n ≥ 1 we have

(3.16) ∥x− y∥ ≤ ∥x− y + λ[(I −Gn − σnI)x− (I −Gn − σnI)y]∥.

From (1.11) we obtain

wn = (1 + λn + λnσn)xn+1 + λn(I −Gn − σnI)xn+1 − λnwn(3.17)
+λn(Gnxn+1 −Gnwn) + 2λ2n(wn −Gnwn)

Furthermore,

(3.18) p = (1 + λn + λnσn)p+ λn(I −Gn − σnI)p− λnp− λnσn(p− x0).
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Thus from (3.17) and (3.18) we obtain

∥wn − p∥ = ∥(1 + λn + λnσn)(xn+1 − p) + λn[(I −Gn − σnI)xn+1

−(I −Gn − σnI)p]− λn(wn − p) + λn(Gxn+1 −Gnwn)

+2λ2n(wn −Gnwn) + λnσn(p− x0)∥
≥ (1 + λn + λnσn)∥xn+1 − p∥ − λn∥wn − p∥ − λn∥Gxn+1 −Gnwn∥
−2λ2n∥wn −Gnwn∥ − λnσn∥p− x0∥.

Hence

∥xn+1−p∥ ≤ (1+λn)

(1 +λn+λnσn)
∥wn− p∥+ 1

(1+λn + λnσn)

[
λn∥Gnxn+1−Gnwn∥(3.19)

+2λ2n∥wn −Gnwn∥+ λnσn∥p− x0∥
]

≤ (1 + λn)[1− λn(1 + σn) + λ2n(1 + σn)
2]∥xn − p∥

+(1 + λn)θn∥xn − xn−1∥

+
1

(1 + λn + λnσn)

[
λ2n(2 + L+ σn)∥wn −Gnwn∥

+λnσn∥p− x0∥
]

≤ (1 + λn)[1− λn(1 + σn) + λ2n(1 + σn)
2]∥xn − p∥

+(1 + λn)θn∥xn − xn−1∥

+
1

(1 + λn + λnσn)

[
λ2n(2 + L+ σn)[(1 + L+ σn)(∥xn − p∥

+θn∥xn − xn−1∥) + σn∥p− x0∥] + λnσn∥p− x0∥
]

≤
[
1− λnσn + λ2n[(1 + σn)(σn + λn(1 + σn))

+(2 + L+ σn)(1 + L+ σn)]
]
∥xn − p∥

+
[
1 + λn + λ2n(2 + L+ σn)

]
θn∥xn − xn−1∥

+λ2nσn(2 + L+ σn)∥p− x0∥+ λnσn∥p− x0∥
= [1− λnσn + an]∥xn − p∥+ bn + λnσn∥p− x0∥,

where
an = λ2n[(1 + σn)(σn + λn(1 + σn)) + (2 + L+ σn)(1 + L+ σn)],

and

bn = [1 + λn + λ2n(2 + L+ σn)
]
θn∥xn − xn−1∥+ λ2nσn(2 + L+ σn)∥p− x0∥.

From (3.19) we obtain

∥xn+1 − p∥ ≤ [1− λnσn + an] max{∥xn − p∥, ∥p− x0∥}+ bn

+λnσn max{∥xn − p∥, ∥p− x0∥}
≤ [1 + an] max{∥xn − p∥, ∥p− x0∥}+ bn
...

≤
n∏

j=1

(1 + aj)∥p− x0∥+
n∑

j=1

bj <∞.

Thus {xn}∞n=1, {wn}∞n=1, {Txn}∞n=1 and {Twn}∞n=1 are bounded.
Claim 2: The sequences {yn}∞n=1 and {Tyn}∞n=1, where tn := 1

1+σn
, and yn ≡ ytn =

tnTyn + (1− tn)x0 are bounded.
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Observe that lim
n→∞

tn = 1 and since F (T ) ̸= ∅, it follows from Proposition 2 of [25] that

{yn} is bounded. Since T is Lipschitz pseudocontractive, we have also that {Tyn} is
bounded.
Claim 3: lim

n→∞
∥xn − yn∥ = 0.

∥xn+1−yn∥2 ≤ ∥xn−yn+θn(xn − xn−1)−λn(wn − Twn)− λnσn(wn − x0)∥2(3.20)
≤ ∥xn − yn∥2 + 2⟨θn(xn − xn−1)− λn(wn − Twn)

−λnσn(wn − x0), j(xn+1 − yn)⟩
≤ ∥xn − yn∥2 − 2⟨λn(wn − Twn) + λnσn(wn − x0), j(xn+1 − yn)⟩

+2θn∥xn − xn−1∥∥xn+1 − yn∥
= ∥xn − yn∥2 − 2λnσn∥xn+1 − yn∥2

+2λn⟨σn(xn+1 − yn)− (wn − Twn)− σn(wn − x0), j(xn+1 − yn)⟩
+2θn∥xn − xn−1∥∥xn+1 − yn∥

= ∥xn − yn∥2 − 2λnσn∥xn+1 − yn∥2

+2λn⟨σn(xn+1 − wn) + σn(x0 − yn)− (wn − Twn), j(xn+1 − yn)⟩
+2θn∥xn − xn−1∥∥xn+1 − yn∥

= ∥xn − yn∥2 − 2λnσn∥xn+1 − yn∥2

+2λn⟨σn(xn+1 − wn) + σn(x0 − yn)− (yn − Tyn)

−(xn+1 − Txn+1 − (yn − Tyn)) + xn+1 − Txn+1

−(wn − Twn), j(xn+1 − yn)⟩+ 2θn∥xn − xn−1∥∥xn+1 − yn∥

Observe that σn(x0 − yn) − (yn − Tyn) = 0, and the pseudocontractive property of T
implies that ⟨xn+1 − Txn+1 − (yn − Tyn), j(xn+1 − yn)⟩ ≥ 0. Thus it follows from (3.20)
that

∥xn+1 − yn∥2 ≤ ∥xn−yn∥2 − 2λnσn∥xn+1 − yn∥2(3.21)
+2λnσn∥xn+1 − wn∥∥xn+1 − yn∥
+2λn∥xn+1 − wn − (Txn+1 − Twn)∥∥xn+1 − yn∥
+2θn∥xn − xn−1∥∥xn+1 − yn∥

≤ ∥xn − yn∥2 − 2λnσn∥xn+1 − yn∥2

+[2λnσn + 2λn(1 + L)]∥xn+1 − wn∥∥xn+1 − yn∥
+2θn∥xn − xn−1∥∥xn+1 − yn∥

≤ ∥xn − yn−1∥2 + 2∥yn−1 − yn∥∥xn − yn∥ − 2λnσn∥xn+1 − yn∥2

+λn[2λn(σn + 1 + L)∥wn −Gnwn∥

+2
θn
λn

∥xn − xn−1∥]∥xn+1 − yn∥

Since T is pseudocontractive, then ⟨(I − T )x− (I − T )y, j(x− y)⟩ ≥ 0 and hence

∥x− y∥ ≤ ∥x− y + λ((I − T )x− (I − T )y)∥, ∀x, y ∈ X, λ > 0.
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Thus

∥yn − yn−1∥ ≤ ∥yn − yn−1 +
1

σn
[(I − T )yn − (I − T )yn−1]∥(3.22)

=
1

σn
∥σn(yn − yn−1) + yn − Tyn − yn−1 + Tyn−1∥

=
1

σn
∥(1 + σn)yn − (1 + σn)yn−1 − Tyn + Tyn−1∥

=
1

σn
∥Tyn +

(1− tn)

tn
x0 − (1 + σn−1)yn−1

+(1 + σn−1)yn−1 − (1 + σn)yn−1 − Tyn + Tyn−1∥

=
1

σn
∥σnx0 − σn−1x0 − (σn − σn−1)yn−1∥

=
1

σn
|σn − σn−1|∥x0 − yn−1∥

≤ 1

σn
|σn − σn−1|[∥x0∥+ ∥yn−1∥].

Using (3.22) in (3.21) yields

∥xn+1 − yn∥2 ≤ ∥xn − yn−1∥2 − 2λnσn∥xn+1 − yn∥2(3.23)

+2λnσn
[ 1

λnσ2
n

|σn − σn−1|(∥x0∥+ ∥yn−1∥)∥xn − yn∥

+[
λn
σn

(σn + 1 + L)∥wn −Gnwn∥

+
θn
λnσn

∥xn − xn−1∥]∥xn+1 − yn∥
]

Since {xn}, {yn}, {wn}, {Twn}, {Gnwn} and {σn} are bounded, it follows from the con-
ditions on {λn}, {σn}, {θn} and {ϵn} and Lemma 2.2 that lim

n→∞
∥xn − yn−1∥ = 0. Thus

lim
n→∞

∥xn − yn∥ = 0. Finally we proof

Claim 4: lim
n→∞

∥xn − Txn∥ = 0.

Since 0 ≤ ∥yn − Tyn∥ = (1− tn)∥x0 − Tyn∥ → 0 as n→ ∞, we obtain that

0 ≤ ∥xn − Txn∥ ≤ (1 + L)∥xn − yn∥+ ∥yn − Tyn∥ → 0 as n→ ∞.

□

Prototype for our iteration parameters are: λn = 1
(n+1)a ;σn = 1

(n+1)b
;

where 0 < b < a < 1; a+ b < 1; 2a > 1 (in particular λn = 1

2(n+1)
3
5
, σn = 1

(n+1)
1
5
);

ϵn = 1
(n+1)2 , and θ = 1

2 .

Theorem 3.2. Let X be a real Banach space with a uniformly Gâteaux differentiable norm, and
let T : X → X be an L-Lipschitzian pseudocontractive map with F (T ) ̸= ∅. Let every nonempty
closed convex and bounded subset C of X have the fixed point property (FPP) for nonexpansive
selfmaps and let {λn}, {σn}, {ϵn}, θ, {θn}, and {θ̄n} be as in Theorem 3.1. Then the sequence
{xn} generated from arbitrary x0, x1 ∈ X by (1.11) converges strongly to a fixed point of T .

Proof. It follows from Theorem 1 of [25] that {yn} converges to a fixed point p ∈ F (T ) and
since lim

n→∞
∥xn − yn∥ = 0, we obtain that {xn} converges strongly to p ∈ F (T ). □

Corollary 3.1. Let X be a real uniformly smooth Banach space and let T : X → X be an L-
Lipschitzian pseudocontractive map with F (T ) ̸= ∅. Let {λn}, {σn}, {ϵn}, θ, {θn}, and {θ̄n}
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be as in Theorem 3.1. Then the sequence {xn} generated from arbitrary x0, x1 ∈ X by (1.11)
converges strongly to a fixed point of T .

Proof. Every uniformly smooth Banach space has a Gâteaux differentiable norm and ev-
ery nonempty closed convex bounded subset C of X has the fixed point property for
nonexpansive selfmap (see for example [33]). □

Theorem 3.3. LetX be a real reflexive and strictly convex Banach space with a uniformly Gâteaux
differentiable norm, and let T : X → X be a nonexpansive map with F (T ) ̸= ∅. Let {λn},
{σn}, {ϵn}, θ, {θn}, and {θ̄n} be as in Theorem 3.1. Then the sequence {xn} generated from
arbitrary x0, x1 ∈ X by (1.11) converges strongly to a fixed point of T .

Proof. Follows as in the proof Theorem 3.2 using Theorem 2 of [25]. □

Corollary 3.2. Let X be a real Banach space with a uniformly Gâteaux differentiable norm and
such that every nonempty closed convex and bounded subset C of X have the fixed point property
(FPP) for nonexpansive selfmaps. Let A : X → X be an accretive operator with A−10 = N(A) =
{x ∈ X : Ax = 0} ̸= ∅ and let {λn}, {σn}, {ϵn}, θ, {θn}, and {θ̄n} be as in Theorem 3.1. For
arbitrary x0, x1 ∈ X , let {xn} be the sequence generated by

(3.24)
{
wn = xn + θn(xn − xn−1), n ≥ 1
xn+1 = wn − λnAwn − λnσn(wn − x0), n ≥ 1.

Then {xn} converges strongly to a point x∗ ∈ A−10.

Corollary 3.3. Let X be a real uniformly smooth Banach space Let A : X → X be an accretive
operator with A−10 = N(A) = {x ∈ X : Ax = 0} ̸= ∅ and let {λn}, {σn}, {ϵn}, θ, {θn}, and
{θ̄n} be as in Theorem 3.1. Then the sequence {xn} generated from arbitrary x0, x1 ∈ X by (3.12)
converges strongly to a point x∗ ∈ A−10.

Corollary 3.4. Let X be a real reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm. Let A : X → X be an accretive operator with A−10 = N(A) =
{x ∈ X : Ax = 0} ≠ ∅. and let {λn}, {σn}, {ϵn}, θ, {θn}, and {θ̄n} be as in Theorem 3.1. Then
the sequence {xn} generated from arbitrary x0, x1 ∈ X by (3.12) converges strongly to a point
x∗ ∈ A−10.

4. NUMERICAL EXAMPLES

In this section, numerical illustration of the convergence of the iterative scheme 1.11
and iterative scheme CZ discussed in this paper are presented. The setting for the numer-
ical example is that of a real Hilbert space. Using different examples, we show graphically
and with a table of numerical values the convergence results discussed in this paper.

All codes are written in MATLAB, and implemented using an HP Elitebook 6930p com-
puter with Pentium(R) DUAL-CORE CPU T4200 with 2.00Hz and 2GB RAM.

Example 4.1. Let R2 denote the 2-dimensional Euclidean plane. Define T : R2 → R2 by

Tx = T ((x1, x2)) = (x1, x2) + (x2,−x1) = (x1 + x2, x2 − x1),

for each x = (x1, x2) ∈ R2. Then T is 2-Lipschitz pseudocontractive.
Let x0 = (−0.01,−0.01);x1 = (1, 1); λn = 1

(n+3)0.501 , σn = 1
(n+3)0.2 ; ϵn = 1

(n+3)1.01 , and
θ = 0.5. Then algorithm (1.11) converges strongly to p = (0, 0) which is the only fixed
point of T . It is shown in [8] that the original Mann algorithm (1.8) [22] fails to converge to
the fixed point of T . Observe that algorithm (1.11) converges much faster than Algorithm
CZ (see Table 1 and Figure 1 below).
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FIGURE 1. Graph showing the convergence of iterative schemes

No.
of

iter. Iterative scheme 1.11 Iterative scheme CZ
n Time Sequence Sequence

(Secs.) xn = (x1
n, x

2
n) ∥xn+1 − xn∥ xn = (x1

n, x
2
n) ∥xn+1 − xn∥

1 0.181851 ( 1.214830, 0.129164) 0.896943 (1.499307, 0.500693) 0.706127
2 0.202965 ( 0.849417,-0.533430) 0.756676 (1.561283, -0.007158) 0.511619

592 1.300140 (-0.003305, 0.001887) 0.000001 (0.330551, -0.189437) 0.000124
593 1.304350 (-0.003304, 0.001886) 0.000001 (0.330432, -0.189404) 0.000124

2537 4.359200 (-0.002412, 0.001589) 0.000000 (0.241209, -0.159220) 0.000022
2538 4.361230 (-0.002412, 0.001589) 0.000000 (0.241188, -0.159211) 0.000022
4992 8.265880 (-0.002082, 0.001446) 0.000000 (0.208156, -0.144830) 0.000010
4993 8.267110 (-0.002082, 0.001446) 0.000000 (0.208147, -0.144826) 0.000010

TABLE 1. Table showing some terms of the sequence generated by iter-
ative scheme 1.11 and CZ, values of ∥xn+1 − xn∥ and CPU time for the
indicated values of n

Example 4.2. Let X = ℓ2(R) = {x = {xi}∞i=1 : xi ∈ R and
∑∞

i=1 |xi|2 < ∞}. Define
T : X → X by Tx = (0,−3x2,−3x3, . . .). Then T is 1

2− strictly pseudocontractive
and hence Lipschitz pseudocontractive. Let x0 = (−0.01,−0.01,−0.01, 0, 0, 0, . . .);x1 =
(1, 1, 1, 0, 0, 0, . . .),
λn = 1

(n+3)0.51 , σn = 1
(n+3)0.2 ; ϵn = 1

(n+3)1.01 , and θ = 0.1. Then algorithm (3.13) converges
strongly to p = (0, 0, 0 . . .) which is the only fixed point of T . Observe that algorithm (1.11)
converges much faster than Algorithm CZ (see Table 2 and Figure 2 below).
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FIGURE 2. Graph showing the convergence of iterative schemes

No.
of

iter. Iterative scheme 1.11 Iterative scheme CZ
n Time

(Secs.) ∥xn+1 − xn∥ ∥xn+1 − xn∥
1 0.006275 3.618540 2.832740
2 0.008063 4.572730 3.311260

548 0.679860 0.000001 0.000071
549 0.680848 0.000001 0.000071
1999 2.489850 0.000000 0.000016
2000 2.490580 0.000000 0.000016
3083 3.872630 0.000000 0.000010
3084 3.873390 0.000000 0.000010

TABLE 2. Table showing some terms of the sequence generated by iter-
ative scheme 1.11 and CZ, values of ∥xn+1 − xn∥ and CPU time for the
indicated values of n

In the two examples given above the stopping criteria is ∥xn+1 − xn∥ ≤ 10−7. This
implies that the error of approximating the fixed point of the given maps is negligible.
From Figure 1 and Table 1, it is clearly seen that as consecutive terms of the sequence
get close enough (as close as a difference of 10−7 ), the sequence generated is seen to
approach the fixed point of the map which is 0. A lower stopping will make no much
difference while a higher stopping criteria will truncate the computation too early which
might leads to higher computational error. Clearly, the error = ∥xn − 0∥ tends to 0 as n
tends to ∞ which shows that the convergence of the sequence generated by the algorithms
converges. The same holds for Figure 2 and Table 2.
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