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Diophantine triples with distinct binary recurrences
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ABSTRACT. In this paper, we look at Diophantine triples with values in three different binary recurrence
sequences. These are the Fibonacci and Pell sequences and the sequence of one more of powers of a given prime
p. The novelty of the article is the appearance of three different sequences, as up to now the analogous problem
had been investigated only for one sequence.

1. INTRODUCTION

A Diophantine m-tuple is a set of {a1, . . . , am} of positive rational numbers, or integers,
such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m. Several variations of this problem
have been studied. The most common variation is to take m = 3 and replace the squares
by some other set of numbers with interesting arithmetic properties. For example, re-
placing the squares with the S-units, which are integers whose prime factors belong to a
fixed finite set S of primes, one gets the problem of studying triples of positive integers
{a1, a2, a3} such that all prime factors of (a1a2 + 1)(a2a3 + 1)(a3a1 + 1) are in S. In [8]
it was conjectured that given S there are only finitely many such triples (a1, a2, a3). This
was confirmed to be so in [7] in a stronger form and in [3] in a quantitative form. See
[9], [17], [21], [22], [23] for more results in this direction. A different popular variation is
when the squares are replaced by terms of a given binary recurrence. In the paper [13], the
authors characterized the non-degenerate binary recurrence sequences (un)n≥0 with pos-
itive discriminant for which there exist infinitely many 6-tuples of non-negative integers
(a, b, c;x, y, z) with 1 ≤ a < b < c such that

(1.1) ab+ 1 = ux, ac+ 1 = uy and bc+ 1 = uz.

There are some papers which compute all the solutions corresponding to equation (1.1)
when the recurrence is given. This was done for the Fibonacci sequence in [15], for the
sequence of Lucas numbers in [16], and for the sequence of balancing numbers in [1].
The papers [10], [11], [12] investigate the same problem with members of higher order
recurrence sequences.

In this paper, we look at the situation when the right-hand side of (1.1) consists of terms
from three distinct binary recurrences. Up to our knowledge, this is the first attempt to
handle such a composite problem. The recurrent sequences we consider are the sequence
of Fibonacci numbers, the sequence of Pell numbers, and the sequence (pn + 1)n≥0 where
p is a given prime of general term denoted Φn = pn + 1. The method which worked
in [15, 16, 1] cannot be applied here. On the other hand, in the present problem we can
exploit that if bc+ 1 = pn + 1, then b and c are powers of p.
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Note that (1.2) has two obvious solutions, namely (a, b, c, x, y, z) = (1, 1, 1, 3, 2, 0), and
(a, b, c, x, y, z) = (4, 1, 1, 5, 3, 0), independently of the prime p. These are called trivial.

Theorem 1.1. Assume that p < 20 is a prime. Then the non-trivial solutions to the system

(1.2) ab+ 1 = Fx, ac+ 1 = Py, bc+ 1 = Φz

in x, y ∈ N+ and z ∈ N are the following quadruples (p, x, y, z):

(2, 5, 3, 2), (2, 5, 3, 4), (2, 3, 3, 2), (2, 4, 3, 1), (2, 4, 3, 3), (2, 6, 5, 2), (2, 4, 2, 1), (2, 5, 2, 2),

(2, 11, 4, 3), (3, 7, 3, 1), (3, 9, 4, 1), (5, 8, 3, 1), (7, 5, 5, 1), (7, 8, 3, 1), (11, 3, 4, 1), (13, 12, 4, 1).

2. PRELIMINARIES

We let (Fn)n≥0 and (Pn)n≥0 be the sequences of Fibonacci and Pell numbers, respec-
tively, given by F0 = P0 = 0, F1 = P1 = 1, and by the recurrence relations

Fn+2 = Fn+1 + Fn and Pn+2 = 2Pn+1 + Pn for all n ≥ 0,

respectively. Putting α := (1+
√
5)/2, β := −α−1, γ := 1+

√
2, and δ := −γ−1 the formulae

of the general terms of these particular sequences are

(2.3) Fn =
αn − βn

α− β
and Pn =

γn − δn

γ − δ

for all n ≥ 0, respectively. The terms of their associate sequences are denoted by Ln and
Qn. They can be expressed by

(2.4) Ln = αn + βn and Qn = γn + δn

for all n ≥ 0. There are many identities and inequalities involving Fibonacci or Pell num-
bers and sometimes their associates. Some of them are well known, for instance

(2.5) αn−2 ≤ Fn ≤ αn−1 and γn−2 ≤ Pn ≤ γn−1 for all n ≥ 0,

so we refer to these only in the text of the paper. We remark that the same bounds can be
applied for Fn−1 and Pn−1 whenever n ≥ 6 and n ≥ 3, respectively. A few other results
are emphasized below. The following can be deduced from Theorem VII in [5].

Lemma 2.1. The following divisibility relation holds:

gcd(Fu, Lv) =

{
Lgcd(u,v), if u

gcd(u,v) ̸≡
v

gcd(u,v) ≡ 1 (mod 2);
1 or 2, otherwise.

Lemma 2.1 implies the following result.

Corollary 2.1. Assume that ε1 ∈ {±1,±2}, and ε2 ∈ {±1}. Then we have

gcd
(
Fn−ε1

2
, Ln+ε1

2

)
≤ 3, gcd

(
Pn−ε2

2
, Qn+ε2

2

)
≤ 2.

Lemma 2.2. The following formulae hold, where in the second case we assume that n is odd:

Fn − 1 = Fn−ε1
2

Ln+ε1
2

, with ε1 ∈ {±1,±2},

Pn − 1 = Pn−ε2
2

Qn+ε2
2

, with ε2 ∈ {±1}.

Let νp(n) denote the largest exponent ν such that pν | n. The result below is already
implicit in Lucas’ seminal paper [18] (see the Theorem on page 210 in [18]). It also appears
in Lengyel [14] for Fibonacci numbers, and Lucas numbers and Sanna [20] in general.
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Lemma 2.3. Let p ∈ {2, 3, 5, 7, 11, 13, 17, 19}. Then

(2.6) νp(un) ≤ νp(n) + 2

for un = Fn, Ln, Pn, and Qn.

In the proof of Theorem 1.1, the case when y is even causes the main difficulty because
of the lack of an algebraic factorization for Py − 1. We analyze this case separately.

Theorem 2.2. If y ≥ 2 is even, then
(i) νp(Py − 1) = 0 if p = 2, 7, 17, 19;

(ii) νp(Py − 1) ≤ 1 if p = 3, 5, 13.
(iii) For p = 11 we have νp(Py − 1) ≤ 614(log(1.05(y + 1)))2.

Proof. We deal with them one prime at a time.
Case p = 2. Py is even so Py − 1 is odd. Thus, ν2(Py − 1) = 0 for y even.
Case p = 3. We check that {P2m}m≥0 is periodic modulo 9 with period 12. Listing

P2m − 1 modulo 9 for m = 0, . . . , 11, we do not get a 0. Hence, ν3(Py − 1) ≤ 1.
Case p = 5, 7, 13, 17, 19. The treatment is similar to the previous two cases. Thus, we

have dealt with (i) and (ii), now we turn our attention to (iii).
Case p = 11. Here, we get some non-trivial divisibilities. For example, 115 | P200194−1.

We illustrate a general procedure which works in order to bound νp(Py−1) for every even
input y. Write

(2.7) Py − 1 =
γy − γ−y

2
√
2

− 1 =
γ−y

2
√
2
(γ2y − 2

√
2γy − 1) =

γ−y

2
√
2
(γy − ζ1)(γ

y − ζ2).

Here, ζ1,2 =
√
2 ±

√
3 are the roots of ζ2 − 2

√
2ζ − 1 = 0. Let K := Q(ζ1) = Q(

√
2,
√
3).

Its discriminant is divisible only by 2 and 3. All other primes p have the property that
p =

∏k
i=1 πi(p), where πi(p) are coprime distinct ideals and k ∈ {2, 4}. It is easy to decide

the value of k. If both 2, 3 are quadratic residues modulo p, then k = 4. Otherwise, k = 2.
Let π be any prime ideal dividing p ≥ 5. Let νπ be the normalised valuation of π. That

is, if pf = |OK/π|, and η is any non-zero element of K, then νπ(η) = (f/4)ordπ(η), where
ordπ(η) is the exponent of the ideal π in the factorisation of the principal ideal ηOK. In
particular,

ordp(Py − 1) = ordπ(Py − 1) = (4/f)νπ(Py − 1).

Thus, using (2.7), we get

ordp(Py − 1) = (4e/f)
(
νπ(δ

y − ζ1) + νπ(δ
y − ζ2)− νπ(2

√
2)
)

= (4/f)max{νπ(δy − ζi) : i = 1, 2}
+ (4/f)min{νπ(δy − ζi) : i = 1, 2} − (4/f)νπ(2

√
2)

≤ (4/f)max{νπ(δy − ζi : i = 1, 2}.(2.8)

The only step that needs justification is the last one. Well, if we put

t := min{νπ(αy − ζi), i = 1, 2},

it follows that π4t/f divides δy − ζ1 and δy − ζ2, so their difference which is ζ1 − ζ2 = 2
√
2.

Thus, min{νπ(δy − ζi : i = 1, 2} ≤ νπ(2
√
2), which implies the last inequality (2.8).

For νπ(δy − ζi), we use Théorème 3 of [2]. We take in the notation there

α1 := γ, α2 := ζi, b1 := y, b2 := 1.
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We put D := 4/f , and g for a common order of α1 and α2 modulo π. That is, the smallest
positive integer such that δg ≡ 1 (mod π) and ζgi ≡ 1 (mod π). We put

logAi ≥ max

{
h(αi),

log p

D

}
,

where h(η) is the Weil height of the algebraic number η. This is given by

h(η) :=
1

u

log a0 +

u∑
j=1

max{0, log |η(j)|}

 ,

where the minimal polynomial of η is f(X) = a0(X − η(1)) · · · (X − η(u)) ∈ Z[X] with
positive a0. The properties

(i) h(µ+ ν) ≤ h(µ) + h(ν) + log 2,
(ii) h(µν±1) ≤ h(µ) + h(ν),

(iii) h(µℓ) ≤ |ℓ|h(µ)
are valid for all algebraic numbers µ, ν, and integers ℓ.

For us, h(α1) = (1/2) log(1 +
√
2) = 0.4406 . . . and h(ζi) = 0.573108 . . .. It follows since

p ≥ 5, that f ≤ 2, so logAi = log p/D. Further, f = 1, 2 according to whether both 2, 3 are
quadratic residues modulo p or not. Then we put

b′ :=
y

D logA2
+

1

D logA1
.

Now Théorème 3 in [2] gives

νπ(δ
y − ζi) ≤

24pg

(p− 1) log p)4
D4 max

{
log b′ + log log p+ 0.4,

10 log p

D
, 10

}2

.

We need to check that α1 and α2 are multiplicatively independent. Well, if not there is
some relation αu

1α
v
2 = 1, where u, v are integers not both 0. We may assume they are both

even. Then αu
1 ∈ Q(

√
2) and

α−v
2 = (α2

2)
−v/2 = (5± 2

√
6)v/2 ∈ Q(

√
6).

Since αu
1 = α−v

2 and Q(
√
2) ∩ Q(

√
6) = Q, we get that αu

1 = α−v
2 ∈ Q. Since they are

also units (so algebraic integers whose reciprocal is an algebraic integer) it follows that
αu
1 = αv

2 = 1, which leads to u = v = 0, a contradiction.
This is in general. Let us apply the above scheme for p = 11. Since 2 is not a quadratic

residue modulo 11, it follows that f = 2. Let π be some prime ideal in OK dividing 11.
Since f = 2, we have D = 2. Further, we can take g = 24. Indeed

α11
1 = (1 +

√
2)11 ≡ 1 + 2(11−1)/2

√
2 ≡ 1−

√
2 (mod π).

Thus, α12
1 ≡ (1 +

√
2)(1−

√
2) ≡ −1 (mod π), and so α24

1 ≡ 1 (mod π). Further,

ζ111 ≡ (
√
2 +

√
3)11 ≡ 2(11−1)/2

√
2 + 3(11−1)/2

√
3 ≡ −

√
2 +

√
3 (mod π),

so ζ121 ≡ (
√
2 +

√
3)(−

√
2 +

√
3) ≡ 1 (mod π). The same argument works for ζ2. Next,

b′ =
y

log 11
+

1

log 11
<

y + 1

log 11
.
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We thus get

νπ(δ
y − ζi) ≤ 24× 11× 24

(11− 1)(log 11)4
× 24

× max

{
log

(
y + 1

log 11

)
+ log log 11 + 0.04,

10 log 3

2
, 10

}2

.

So, either the maximum is at 10, in which case y + 1 < e10−0.04 < 22, 000, or

(2.9) νπ(δ
y − ζi) < 307(log(1.05(y + 1)))2.

Together with (2.8), we get

(2.10) ord11(Py − 1) ≤ 614(log(1.05(y + 1)))2

for even y > 22, 000. We checked that ν11(Py−1) ≤ 4 for all even y ≤ 22, 000. In particular,
the inequality (2.10) holds for all y ≥ 2 even. This finishes the proof of (iii). □

The above proof used lower bound for p-adic linear forms in two logarithms. We also
need some results from the theory of lower bounds in non-zero linear forms in logarithms
of algebraic numbers. We start by recalling Theorem 9.4 of [4], which is a modified ver-
sion of a result of Matveev [19]. Let L be an algebraic number field of degree dL. Let
η1, η2, . . . , ηl ∈ L not 0 or 1 and d1, . . . , dl be non-zero integers. We put

Γ =

l∏
i=1

ηdi
i − 1, and D = max{|d1|, . . . , |dl|, 3}.

Let A1, . . . , Al be positive integers such that

Aj ≥ h′(ηj) := max{dLh(ηj), | log ηj |, 0.16}, for j = 1, . . . l.

The following consequence of Matveev’s theorem is Theorem 9.4 in [4].

Theorem 2.3. If Γ ̸= 0 and L ⊆ R, then

log |Γ| > −1.4 · 30l+3l4.5d2L(1 + log dL)(1 + logD)A1A2 · · ·Al.

3. THE PROOF OF THEOREM 1.1

In order to keep uniformity, we always take the worst case depending on the primes p.
Assume that a, b, c, x, y, z is a solution to (1.2). Suppose that x, y, z are large enough,

say that x ≥ 103 and y ≥ 9 · 105. Under these conditions, we present Theorem 3.4. We
notice that the third equation bc + 1 = pn + 1 of (1.2) implies that b = pb1 , c = pc1 , where
the exponents are non-negative integers. Let a = Apa1 such that p ∤ A. Thus, according to
Lemma 2.2,

Apa1+b1 = Fx − 1 = F x−ε1
2

L x+ε1
2

,

with ε1 ∈ {±1,±2}. Hence, Corollary 2.1, together with Lemma 2.3 provide

νp(Fx − 1) = νp

(
F x−ε1

2

)
+ νp

(
L x+ε1

2

)
≤ νp

(
x− ε1

2

)
+ 2 + 1

≤ logp

(
x+ 2

2

)
+ 3 ≤ 1.5 log

(x
2

)
+ 3.

In the last inequality we used that p ≥ 2 and x ≥ 100. Thus,

(3.11) b1 ≤ 1.5 log
(x
2

)
+ 3.
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This machinery also works for the Pell sequence if y is odd. We similarly write

Apa1+bc = Py − 1 = P y−ε2
2

Q y+ε2
2

,

where ε2 ∈ {±1}, and if y ≥ 100, then

νp(Py − 1) ≤ 1.5 log
(y
2

)
+ 3.

When y is even we need an other treatment. The situation here is described in Theorem
2.2. Combining this and the above observation, we obtain

(3.12) c1 ≤
{

1.5 log
(
y
2

)
+ 3, for y odd,

614(log(1.05(y + 1)))2, for y even. .

Now turn our attention to the first two equations of (1.2). Obviously,

(3.13)
Fx − 1

pb1
=

Py − 1

pc1
.

We distinguish two cases. First assume that b1 ≥ c1. Then the previous equation leads to

(3.14) Fx − 1 = pb1−c1(Py − 1).

Using the explicit formulae (2.3) we rewrite it as

αx − βx

√
5

− 1 = pb1−c1

(
γy − δy√

8
− 1

)
.

Thus, ∣∣∣∣ αx

√
5
− pb1−c1

γy

√
8

∣∣∣∣ = ∣∣∣∣ βx

√
5
+ 1− pb1−c1

(
δy√
8
+ 1

)∣∣∣∣ .
Dividing both sides of it by pb1−c1γy/

√
8, we obtain the expression

(3.15)

∣∣∣∣∣αx

γy

√
8√
5

1

pb1−c1
− 1

∣∣∣∣∣ ,
in the left-hand side, while for the right hand-side we get a bound of

√
8

pb1−c1γy

∣∣∣∣ βx

√
5
+ 1− pb1−c1

(
δy√
8
+ 1

)∣∣∣∣ ≤
√
8

γypb1−c1

(
|β|x√

5
+ 1

)
+

√
8

γy

(
|δ|y√
8
+ 1

)
<

8

γy
.(3.16)

Indeed, the above inequalities follow since max{|β|x, |δ|y, 1/pb1−c1} ≤ 1. Put

Γ1 :=
αx

γy

√
8√
5

1

pb1−c1
− 1.

This is non-zero, because otherwise αx/
√
5 = pb1−c1γy/

√
8 would hold. The left-hand

side is in Q(
√
5), while the right-hand side is in Q(

√
2). Consequently, both are in Q, a

contradiction. Now we apply Theorem 2.3 for (3.15) with the conditions

l := 4, L := Q(
√
2,
√
5), dL = 4,

and furthermore η1 := α, η2 := γ, η3 := p, η4 :=
√
8/5. Clearly, d1 = x, d2 = y, d3 = b1−c1,

d4 = 1. Since

b1 − c1 ≤ b1 ≤ 1.5 log
(y
2

)
+ 3 ≤ 614 log2(1.05(y + 1)) < y



Diophantine triples with distinct binary recurrences 261

if y ≥ 78713, together with Fx − 1 = pb1−c1(Py − 1), we see that the inequality x ≥ y holds
provided that y > 78713. Thus, D = x. We also need

A1 = 4h(α) = 2 log(α), A2 = 4h(γ) = 2 log(γ),

A3 = 4 log 19 ≥ 4h(p), A4 = 2h(
√

8/5) = 2 log 8.

Theorem 2.3 now yields
−2.5 · 1016(1 + log x) < log |Γ1|,

which together with inequality (3.16) provides

(3.17) y log γ < log 8 + 2.5 · 1016(1 + log x).

Now the relation Fx − 1 = pb1−c1(Py − 1) and (2.5) imply

(x− 2) logα < b1 log p+ (y − 1) log γ.

Combining the above inequality with (3.11), we get

(3.18) (x− 2) logα <
(
1.5 log

(x
2

)
+ 3
)
log p+ (y − 1) log γ,

and after some steps, using the fact that p ≤ 19, we conclude that x/2 < y for x ≥ 890.
This inequality together with (3.17) yield x ≤ 2.5 · 1018. Thus, y ≤ 2.5 · 1018 also holds.

The second option at (3.13) is that b1 ≤ c1. The treatment is analogous to the first case.
We obtain

(3.19) pc1−b1(Fx − 1) = Py − 1,

and then the explicit formulae, and natural upper bounds on the terms provide

(3.20)

∣∣∣∣∣ γy

αx

√
5√
8

1

pc1−b1
− 1

∣∣∣∣∣ < 8

αx
.

Obviously,

Γ2 =
γy

αx

√
5√
8

1

pc1−b1
− 1

is non-zero. Hence, we can apply Theorem 2.3 again. Now η4 :=
√
5/
√
8 and its loga-

rithmic height is also log(8)/2 (we have not changed η1, η2, and η3). We claim that D = x
again. To see this we assume y ≥ 9 · 105. Consider equation (3.19) and inequalities (2.5).
Combine them with (3.12). They provide

(3.21) (y − 2) log γ ≤ 614 log2(1.05(y + 1)) log(19) + x logα,

and then y < x for y ≥ 9 · 105. From Theorem 2.3 and (3.20), we conclude x < 2.3 · 1018.
Thus, y < 2.3 · 1018.

We summarise what we proved so far.

Theorem 3.4. If x, y satisfy (3.13), then x, y < 2.5 · 1018.

In the second part of the proof, we reduce the above bounds using the LLL algorithm.
The two cases above will be considered separately.

In the first case, we know that the expression appearing at (3.15) is smaller than 8/γy ,
which is smaller than 3/4 if y is not very small. Thus,

(3.22)

∣∣∣∣∣x logα− y log γ + log

(√
8√
5

)
− (b1 − c1) log p

∣∣∣∣∣ < 16

γy
.

This step is based on the fact that if real numbers x and K satisfy |ex− 1| < K < 3/4, then
|x| < 2K. We apply the LLL algorithm for each p ∈ {2, 3, 5, 7, 11, 13, 17, 19} separately
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with the initial bounds x, y, b1 − c1 < 2.5 · 1018. The computations are based on Chapters
2.3.3. and 2.3.4. of Cohen’s book [6]. The universal upper bound provided by the LLL
algorithm is y ≤ 173. This makes it possible to bound x by (3.18), which gives x ≤ 376.

For the second case, we start with (3.20). Then it follows that

(3.23)

∣∣∣∣∣y log γ − x logα+ log

(√
5√
8

)
− (c1 − b1) log p

∣∣∣∣∣ < 16

αy
.

Now the LLL algorithm gives x ≤ 316 valid for each prime p ≤ 19. Suppose that p ̸= 11
or y is odd. Then

(y − 2) log γ < c1 log p+ (x− 1) logα

≤
(
1.5 log

(y
2

)
+ 3
)
log p+ (x− 1) logα.

Using p ≤ 19, we get y ≤ 207. If p = 11 and y is even, then, since x ≤ 316, we get

(y − 2) log γ < 614 log2(1.05(y + 1)) log 11 + x logα,

which leads to y ≤ 262300. Of course this bound does not make it possible to check the
eligible cases by brute force. Therefore first we applied the LLL algorithm for (3.23), but
with x ≤ 316. This reduced the bound to x ≤ 89. Note that this new estimate does not
reduce essentially the upper bound on y. Then we checked the integers Pj − 1 for the
range 1 ≤ j ≤ 262300 modulo 11k. The largest value k for which 11k | Pj − 1 is k = 5,
which holds only for j = 200192. In the given range, there is no integer j with 116 | Pj − 1
(the first such index is j = 551576). Hence, in the equation

11c1−b1(Fx − 1) = Py − 1

we know 0 ≤ c1 − b1 ≤ 5, x ≤ 89, and y ≤ 262300. For each possible exponent c1 − b1, and
for each possible subscript x, we checked whether 11c1−b1(Fx − 1) + 1 is a Pell number or
not. The results are included in the statement of Theorem 1.1.

The proof was completed by a direct computer verification of (3.13) for the values x ≤
376, y ≤ 207, and for all the primes p ̸= 11. All the solutions found are listed in Theorem
1.1.

4. COMMENTS AND GENERALIZATIONS

In this concluding section, we illustrate the generality of our method and point out how
it compares to previous work on the topic. Let (Un)n≥0, (Vn)n≥0 be non-degenerate binary
recurrent sequences of integers whose characteristic roots are quadratic units. That is,
their characteristic polynomials are x2−ux−s, x2−vs−s1, respectively, with s, s1 ∈ {±1}
and ∆ := u2 + 4s > 0, ∆1 := v2 + 4s1 > 0. We assume that the characteristic roots of
(Un)n≥0 and (Vn)n≥0 are multiplicatively independent. This is equivalent to saying that
the real quadratic fields Q(

√
∆) and Q(

√
∆1) are distinct. Minor modifications of our

method gives the following.

Theorem 4.5. Let (Un)n≥0, (Vn)n≥0 be non-degenerate binary recurrent sequences of integers
satisfying the above conditions. Let d, d1 be integers and S be a finite set of primes. Then there are
only finitely many pairs of positive inetegers (m,n) with Um ̸= d, Vn ̸= d1 such that

(Um − d)(Vn − d1)

gcd(Um − d, Vn − d1)2
is an S − unit.
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To see the connection, write c := gcd(Um − d, Vn − d1). This is well-defined since the
numbers Um − d, Vn − d1 are non-zero. Write a := (Um − d)/c, b := (Vn − d1)/c. Then the
last condition becomes

ac+ d = Um, bc+ d1 = Vn, ab is an S − unit.

The present paper explicitly computed all the solutions of the above system for the choices
d = d1 = 1, (Un)n≥0 and (Vn)n≥0 are the sequences of Fibonacci and Pell numbers for
which u = 1, v = 2, s = s1 = 1 so ∆ = 5, ∆1 = 8, and S = {p} where p < 20 is a
prime. Thus, our problem is a hybrid between Diophantine 3-tuples with values in binary
recurrences and S-units and our method has the advantage of being completely explicit
which is rarely the case in general, as most of the available results in the literature on the
topic of Diophantine triples with S-units and/or linear recurrences are obtained using the
Subspace theorem and as such are not effective except in particular special cases like the
ones treated in [15] and [16].
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