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ABSTRACT. An unpredictable solution is found for a quasilinear differential equation with generalized piece-
wise constant argument (EPCAG). Sufficient conditions are provided for the existence, uniqueness and exponen-
tial stability of the unpredictable solution. The theoretical results are confirmed by examples and illustrated by
simulations.

1. INTRODUCTION

It is worth noting that numerous results, which include the most effective methods and
important applications, are obtained for periodic, quasi-periodic and almost periodic so-
lutions in the theory of differential equations [27, 31, 33, 34, 35, 36, 37, 38, 39, 40]. On the
other hand, Poisson stable solutions are also crucial for the theory of differential equa-
tions [45]. In our research [12, 13], we have developed the recurrence in functional spaces
to a more refined level, where the Poisson stable functions are assigned the unpredictabil-
ity. Our proposal can revive interests of mathematicians in sophisticated oscillations for
two reasons. The first one is related to the verification of the unpredictability, which re-
quires a more developed technique than that for other oscillations. Thus, the problem of
the existence of unpredictable solutions is a challenging one. In paper [46], a method of
comparability of functions by the character of their recurrence was suggested, which is
suitable for applications in the theory of differential equations. In particular, it is useful
for Poisson stable solutions [30, 46]. In our papers [14, 15, 16], we have applied a new
approach, which is different from the one used in [30, 46] to prove the Poisson stabil-
ity. It can be utilized for various types of dynamical equations in the future. Moreover,
we introduced and developed an entirely new method that shows how to verify the un-
predictability property for solutions of differential equations and oscillations in neural
networks [9, 17, 18, 19, 20, 21, 22, 23]. It promises to be universal and can be applied for
various types of differential equations. Partial differential equations, evolution equations,
impulsive systems and hybrid systems are among them. Another reason to consider our
proposals is the phenomenon of chaos, for which the unpredictability is a criterion [12, 13].
In other words, the proof of unpredictability simultaneously verifies the Poincaré chaos of
the Bebutov dynamics in the functional space with the topology of uniform convergence
on compact sets of the real axis. This opens new prospects for control and synchronization
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of chaos in differential equations. This time, we proceed the initial steps of constructing
the basics of the theory and prove the existence of the unpredictable solution for a spe-
cial type of hybrid systems, where discontinuities appear in the time-argument of the
solution of a differential equation. Differential equations with generalized piecewise con-
stant functions as arguments (EPCAG) have been introduced and developed in papers
[1, 2, 3, 4, 5, 6, 10]. The ideas suggested in these papers became very useful not only in
modeling but also in methodological sense, since the construction of equivalent integral
equations for EPCAG has opened the research gate for methods of operator theory and
functional analysis [7, 9, 24, 26, 28, 29, 32, 43, 48, 49, 50, 52, 53]. This was also confirmed
with applications in neuroscience [8, 9, 11, 25, 41, 42, 44, 47, 50, 51]. In the present research,
we have joined the chaos concept with the most flexible and convenient functional differ-
ential equations for applications. It should be emphasized that the models under research
are suitable for adaptation of methods and tools of discrete dynamics, which are still the
main source of sophisticated motions.

2. PRELIMINARIES

Denote by N,R,Z the set of all natural numbers, real numbers and integers, respec-
tively. Introduce a norm for the vector x = (x1, · · · , xm), xi ∈ R, i = 1, · · · ,m, as

||x||1 = max
1≤i≤m

|xi|, where | · | is the absolute value. Let ∥A∥ = max
1≤i≤m

m∑
j=1

|aij | denote

the norm for a square matrix A = (aij)m×m. Fix two real valued sequences θi, ξi, i ∈ Z,
such that θi < θi+1, θi ≤ ξi ≤ θi+1 for all i ∈ Z, |θi| → ∞ as |i| → ∞.

We will consider the following quasilinear system with generalized piecewise constant
argument of mixed type

(2.1) x′(t) = Ax(t) + f(x(t)) + g(x(γ(t))) + h(t),

where t ∈ R, x ∈ Rm for a fixed m ∈ N, A ∈ Rm×m is a constant matrix and γ(t) = ξi if
θi ≤ t < θi+1, i ∈ Z. Throughout this paper, we assume that the functions f, g : D → Rm

are continuous on a bounded domain D = {x ∈ Rm : ∥x∥ < H}, where H is a positive
constant. h : R → Rm is a uniformly continuous and bounded function. Moreover, it is
assumed that all eigenvalues of the matrix A have negative real parts and ∥A∥ = λ. In
this case, it can be concluded that there exist real numbers σ ≥ 1 and λ > 0 such that
∥eAt∥ ≤ σe−λt for all t ≥ 0.

Definition 2.1. [13] A uniformly continuous and bounded function v : R → Rm is unpredictable
if there exist positive numbers ϵ0, δ and sequences tn, un both of which diverge to infinity such that
v(t+ tn) → v(t) as n → ∞ uniformly on compact subsets of R and ∥v(t+ tn)− v(t)∥ ≥ ϵ0 for
each t ∈ [un − δ, un + δ] and n ∈ N.

The following conditions will be required in the present paper:
(C1) functions f and g satisfy a Lipschitz condition with constants Lf , Lg : ∥f(u1) −

f(u2)∥ ≤ Lf∥u1 − u2∥ and ∥g(u1)− g(u2)∥ ≤ Lg∥u1 − u2∥ for all u1, u2 ∈ D;
(C2) ∃mf > 0, mg > 0 such that sup

∥x∥<H

∥f(x)∥ ≤ mf and sup
∥x∥<H

∥g(x)∥ ≤ mg ;

(C3) ∃mh > 0 such that sup
t∈R

∥h(t)∥ ≤ mh;

(C4)
σ

λ
(mf +mg +mh) < H;

(C5)
σ

λ
(Lf + Lg) < 1;

(C6) ∃ θ > 0 such that θi+1 − θi ≤ θ for all i ∈ Z.
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In what follows we will use the following notation

B =

(
1− θ[(λ+ Lf )(1 + Lgθ)e

(λ+Lf )θ + Lg]

)−1

.

(C7) −λ+ σ(Lf +BLg) < 0;
(C8) θ[(λ+ Lf )(1 + Lgθ)e

(λ+Lf )θ + Lg] < 1;
(C9) ∃ {ηn} with ηn → ∞ as n→ ∞ such that

θi−ηn + tn − θi → 0 and ξi−ηn + tn − ξi → 0

as n → ∞ on each finite interval of integers, where tn is the sequence defined in
Definition 2.1.

3. MAIN RESULT

Let P be defined as the space of m-dimensional vector-functions ϕ : R → Rm, ϕ =
(ϕ1, ϕ2, ..., ϕm) with ∥ϕ∥1 = sup

t∈R
∥ϕ(t)∥ . A function ϕ that belongs to the space P has the

following properties:
(P1) it is uniformly continuous;
(P2) ∥ϕ∥1 < H ;
(P3) ∃ {tn}, tn → ∞ as n→ ∞ such that ϕ(t+ tn) → ϕ(t) uniformly on each closed and

bounded interval of the real axis.
It is well known by the theory of differential equations that [37], a function x(t) which

is bounded on the whole real axis is a solution of system (2.1) if and only if it satisfies the
following integral equation

(3.2) x(t) =

t∫
−∞

eA(t−s) [f(x(s)) + g(x(γ(s))) + h(s)] ds.

Define an operator Π on P as follows

Πϕ(t) =

t∫
−∞

eA(t−s) [f(ϕ(s)) + g(ϕ(γ(s))) + h(s)] ds.

Lemma 3.1. The operator Π is invariant in P .

Proof. We need to show that ΠP ⊆ P. First, we differentiate Πϕ(t) with respect to t as
follows:

dΠϕ(t)

dt
= f(ϕ(t)) + g(ϕ(γ(t))) + h(t) +A

t∫
−∞

eA(t−s) [f(ϕ(s)) + g(ϕ(γ(s))) + h(s)] ds.

From this we can find for all t ∈ R that∥∥∥∥dΠϕ(t)dt

∥∥∥∥ ≤ ∥f(ϕ(t))∥+ ∥g(ϕ(γ(t)))∥+ ∥h(t)∥

+ λ

t∫
−∞

σe−λ(t−s) (∥f(ϕ(t))∥+ ∥g(ϕ(γ(t)))∥+ ∥h(t)∥) ds

≤ mf +mg +mh +
σλ

λ
(mf +mg +mh) = (1 +

σλ

λ
) (mf +mg +mh) .
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Thus, we see that the derivative
dΠϕ(t)

dt
is bounded and hence Πϕ is uniformly continu-

ous. As a result of this discussion, it is seen that Πϕ satisfies the property (P1).
Additionally, we can find for ϕ ∈ P that

∥Πϕ(t)∥ =
∥∥∥ t∫
−∞

eA(t−s) (f(ϕ(s)) + g(ϕ(γ(s))) + h(s)) ds
∥∥∥

≤
t∫

−∞

σe−λ(t−s) (∥f(ϕ(s))∥+ ∥g(ϕ(γ(s)))∥+ ∥h(s)∥) ds

≤
t∫

−∞

σe−λ(t−s) (mf +mg +mh) ds =
σ

λ
(mf +mg +mh) .

It follows from the last inequality and condition (C4) that ||Πϕ||1 < H. Therefore, Πϕ
satisfies the property (P2).

We are now in a position to prove the last property (P3).That is to say, we need to
show that there exists a sequence tn which diverges to infinity such that for each Πϕ ∈ P,
Πϕ(t + tn) → Πϕ(t) uniformly on each closed and bounded interval of the real axis. For
this aim, we fix an arbitrary positive number ε and a closed interval [a, b], where a, b ∈ R
with a < b. It is enough to show that ||Πϕ(t+ tn)−Πϕ(t)|| < ε for sufficiently large n and
t ∈ [a, b]. Let us take two numbers c < a and ϵ > 0 such that

2σ

λ
(LfH + LgH +mh) e

−λ(a−c) <
ε

4
,(3.3)

σϵ

λ
(1 + Lf ) <

ε

4
.(3.4)

We choose n large enough such that ∥ϕ(t + tn) − ϕ(t)∥ < ϵ and ∥h(t + tn) − h(t)∥ < ϵ
on [c, b], and θj−ηn + tn − θj < ϵ for θj ∈ [c, b], j ∈ Z. Then, we can write the following
inequality

∥Πϕ(t+ tn)−Πϕ(t)∥ =
∥∥∥ t+tn∫
−∞

eA(t+tn−s) [f(ϕ(s)) + g(ϕ(γ(s))) + h(s)] ds

−
t∫

−∞

eA(t−s) (f(ϕ(s)) + g(ϕ(γ(s))) + h(s)) ds
∥∥∥

=
∥∥∥ t∫
−∞

eA(t−s)([f(ϕ(s+ tn))− f(ϕ(s))]

+ [g(ϕ(γ(s+ tn)))− g(ϕ(γ(s)))] + h(s+ tn)− h(s))ds
∥∥∥

≤
t∫

−∞

σ e−λ(t−s)(Lf∥ϕ(s+ tn)− ϕ(s)∥

+ Lg∥ϕ(γ(s+ tn))− ϕ(γ(s))∥+ ∥h(s+ tn)− h(s)∥)ds.
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Now, let us rewrite the last integral as a sum of two integrals. We obtain that

∥Πϕ(t+ tn)−Πϕ(t)∥ ≤
c∫

−∞

σe−λ(t−s)(Lf∥ϕ(s+ tn)− ϕ(s)∥

+ Lg∥ϕ(γ(s+ tn))− ϕ(γ(s))∥+ ∥h(s+ tn)− h(s)∥)ds

+

t∫
c

σe−λ(t−s)(Lf∥ϕ(s+ tn)− ϕ(s)∥

+ Lg∥ϕ(γ(s+ tn))− ϕ(γ(s))∥+ ∥h(s+ tn)− h(s)∥)ds

≤ 2σ

λ
(LfH + LgH +mh) e

−λ(a−c) +

t∫
c

σe−λ(t−s)(1 + Lf )ϵds

+

t∫
c

σe−λ(t−s)Lg∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

≤ 2σ

λ
(LfH + LgH +mh) e

−λ(a−c) +
σ

λ
(1 + Lf )ϵ

+ σLg

t∫
c

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds.

For a fixed t ∈ [a, b], we assume without loss of generality that θk ≤ θk−ηn
+ tn and

θk ≤ θk−ηn
+ tn = c < θk+1 < θk+2 < · · · < θk+p ≤ θk+p−ηn

+ tn ≤ t < θk+p+1 so that
there exist exactly p discontinuity moments in the interval [c, t].

Let the following inequalities

σLg
2pH

λ
(eλϵ − 1) <

ε

4
,(3.5)

σLg
2(p+ 1)ϵ

λ
(1− e−λθ) <

ε

4
.(3.6)

be satisfied for the given ϵ > 0.
We aim to obtain an upper bound for the last integral which will be denoted by

I =

t∫
c

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds.
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We evaluate I by considering it on finite number of subintervals as described below:

I =

θk+1∫
c

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

+

θk+1−ηn+tn∫
θk+1

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

+

θk+2∫
θk+1−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

+

θk+2−ηn+tn∫
θk+2

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

+

θk+3∫
θk+2−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

...

+

t∫
θk+p−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

=

k+p−1∑
i=k

θi+1∫
θi−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

+

k+p−1∑
i=k

θi+1−ηn+tn∫
θi+1

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

+

t∫
θk+p−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds.

Let us define the integrals in the above expression as

Ai =

θi+1∫
θi−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds

and

Bi =

θi+1−ηn+tn∫
θi+1

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds,

for i = k, k + 1, · · · , k + p− 1.
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Using the notations Ai and Bi, we can write

I =

k+p−1∑
i=k

Ai +

k+p−1∑
i=k

Bi +

t∫
θk+p−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ds.

For t ∈ [θi−ηn+tn, θi+1), i ∈ Z, it is clear that γ(t) = ξi and it follows from the condition
(C9) that γ(t+ tn) = ξi+ηn . Using this result, we reach the following estimation:

Ai =

θi+1∫
θi−ηn+tn

e−λ(t−s)∥ϕ(ξi+ηn)− ϕ(ξi)∥ds

=

θi+1∫
θi−ηn+tn

e−λ(t−s)∥ϕ(ξi + tn + o(1))− ϕ(ξi)∥ds

=

θi+1∫
θi−ηn+tn

e−λ(t−s)∥ϕ(ξi + tn)− ϕ(ξi) + ϕ(ξi + tn + o(1))− ϕ(ξi + tn)∥ds

≤
θi+1∫

θi−ηn+tn

e−λ(t−s)
[
∥ϕ(ξi + tn)− ϕ(ξi)∥+ ∥ϕ(ξi + tn + o(1))− ϕ(ξi + tn)∥

]
ds

≤
θi+1∫

θi−ηn+tn

e−λ(t−s)
[
ϵ+ ∥ϕ(ξi + tn + o(1))− ϕ(ξi + tn)∥

]
ds.

We already know that ϕ is a uniformly continuous function. Thus, for ϵ > 0 and suf-
ficiently large n we can find a ρ > 0 such that ∥ϕ(ξi + tn + o(1)) − ϕ(ξi + tn)∥ < ϵ if
|ξi+ηn

− ξi − tn| < ρ. This implies in turn that

Ai ≤ 2ϵ

θi+1∫
θi−ηn+tn

e−λ(t−s)ds ≤ 2ϵ

λ
(1− e−λθ).

On the other hand, condition (C9) gives us that

Bi ≤ 2H

θi+1−ηn+tn∫
θi+1

e−λ(t−s)ds ≤ 2H

λ
(eλϵ − 1).

If we use a similar approach used for the estimation of the integral Ai, then it follows that

t∫
θk+p−ηn+tn

e−λ(t−s)∥ϕ(γ(s+ tn))− ϕ(γ(s))∥ ≤ 2ϵ

λ
(1− e−λθ).

Therefore, it can be seen that

I ≤ 2(p+ 1)ϵ

λ
(1− e−λθ) +

2pH

λ
(eλϵ − 1).
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As a result of these computations, we get

∥Πϕ(t+ tn)−Πϕ(t)∥ ≤ 2σ

λ
(LfH + LgH +mh) e

−λ(a−c) +
σϵ

λ
(1 + Lf )

+ σLg
2(p+ 1)ϵ

λ
(1− e−λθ) + σLg

2pH

λ
(eλϵ − 1)

for all t ∈ [a, b]. In consequence, the inequalities (3.3) -(3.6) give that

||Πϕ(t+ tn)−Πϕ(t)|| < ε

for t ∈ [a, b]. Thus, the function Πϕ satisfies the property (P3). Finally, it turns out that the
operator Π is invariant in P . □

Lemma 3.2. The operator Π is contractive on the space P.

Proof. Let the functions ϕ1 and ϕ2 lie in P. For all t ∈ R, we have

∥Πϕ1(t)−Πϕ2(t)∥ =
∥∥∥ t∫
−∞

eA(t−s)
[
[f(ϕ1(s))− f(ϕ2(s))] + [g(ϕ1(γ(s))− g(ϕ2(γ(s))]

]
ds
∥∥∥

≤
t∫

−∞

σe−λ(t−s)
[
Lf∥ϕ1(s)− ϕ2(s)∥+ Lg∥ϕ1(γ(s))− ϕ2(γ(s))∥

]
ds

≤
t∫

−∞

σe−λ(t−s)
[
Lf∥ϕ1(s)− ϕ2(s)∥1 + Lg∥ϕ1(s)− ϕ2(s)∥1

]
ds

≤ σ

λ
(Lf + Lg) ∥ϕ1(t)− ϕ2(t)∥1.

Then,

∥Πϕ1 −Πϕ2∥1 ≤ σ

λ
(Lf + Lg) ∥ϕ1 − ϕ2∥1

holds true for all t ∈ R. In conclusion, the condition (C5) implies that the Π : P → P is a
contraction operator. □

The following result will be useful in the proof of the stability of the solution.

Lemma 3.3. [6] Assume that the conditions (C1),(C6),(C8) hold true and y(t) is a continuous
function with ∥y(t)∥1 < H . If v(t) is a solution of the following differential equation with piece-
wise constant argument of generalized type

v′(t) = Av(t) + f(v(t) + y(t))− f(y(t)) + g(v(γ(t)) + y(γ(t)))− g(y(γ(t))),(3.7)

then the inequality given by

||v(γ(t))|| ≤ B||v(t)||(3.8)

is satisfied for all t ∈ R.

Proof. Fix i ∈ Z such that t ∈ [θi, θi+1), and consider the cases:
(a) θi ≤ ξi ≤ t < θi+1 and (b) θi ≤ t < ξi < θi+1.
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(a) For the case t ≥ ξi, we can write that

||v(t)|| ≤ ||v(ξi)||+
t∫

ξi

(||A||||v(s)||+ Lf ||v(s)||+ Lg||v(ξi)||) ds

≤ ||v(ξi)||+
t∫

ξi

(
λ||v(s)||+ Lf ||v(s)||+ Lg||v(ξi)||

)
ds

≤ ||v(ξi)||(1 + Lgθ) +

t∫
ξi

(
λ+ Lf

)
||v(s)||ds.

If we use the Gronwall-Bellman Lemma [37], we get

||v(t)|| ≤ ||v(ξi)||(1 + Lgθ)e
(λ+Lf )θ.

In other respects, we have that

||v(ξi)|| ≤ ||v(t)||+
t∫

ξi

[||A||||v(s)||+ Lf ||v(s)||+ Lg||v(ξi)||] ds

≤ ||v(t)||+
t∫

ξi

[(λ+ Lf )||v(s)||+ Lg||v(ξi)||]ds

≤ ||v(t)||+
t∫

ξi

[
(λ+ Lf )(1 + Lgθ)e

(λ+Lf )θ||v(ξi)||+ Lg||v(ξi)||
]
ds

≤ ||v(t)||+ θ
[
(λ+ Lf )(1 + Lgθ)e

(λ+Lf )θ + Lg

]
||v(ξi)||.

Therefore, condition (C8) yields that ∥v(ξi)∥ ≤ B∥v(t)∥, for t ∈ [θi, θi+1) , i ∈ Z. Hence,
(3.8) holds for all θi ≤ ξi ≤ t < θi+1, i ∈ Z. The second case (b) where θi ≤ t < ξi <
θi+1, i ∈ Z can be proved by using a similar approach.

Thus, the inequality (3.8) holds true for all t ∈ R. The lemma is proved. □

The next theorem states the most important result of the present paper.

Theorem 3.1. Assume that the conditions (C1)-(C9) are fulfilled. If the function h is unpre-
dictable, then the system (2.1) has a unique exponentially stable unpredictable solution.

Proof. First, we aim to show that the space P is complete. Let πk(t) be a Cauchy sequence
in P with πk(t) → π(t) on R as k → ∞. It is clear that the limit function π(t) is uniformly
continuous and bounded [37]. Thus, properties (P2) and (P3) are satisfied by π(t). We
need to show that property (P3) is also satisfied by π(t). Let I be a closed and bounded
interval on R. One can write

∥π(t+ tn)− π(t)∥ ≤ ∥π(t+ tn)− πk(t+ tn)∥+ ∥πk(t+ tn)− πk(t)∥+ ∥πk(t)− π(t)∥
by means of the triangle inequality.

If we take sufficiently large n and k such that each term on the right hand side of last
the inequality is less than ε

3 for sufficiently small ε > 0 and t ∈ I, then the inequality
∥π(t + tn) − π(t)∥ < ε is satisfied on I. This implies that the sequence of the functions
π(t + tn) converges to π(t) uniformly on I. Therefore, P is a complete space. We know
that the operator Π is invariant and contractive in P according to Lemma 3.1 and Lemma
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3.2, respectively. The contraction mapping theorem implies that the operator Π has a
unique fixed point y(t) ∈ P, which is the unique solution of the system (2.1). Hence,
the uniqueness of the solution is proved. We need to show that this unique solution is
unpredictable.

Let l, k ∈ N and κ be a positive number satisfying the following inequalities

κ < δ,(3.9)

κ

[
− (λ+ Lf )(

1

l
+

2

k
)− 2Lg +

1

2

]
≥ 4

3l
,(3.10)

and

∥y(t+ s)− y(t)∥ < ϵ0 min{1
k
,
1

3l
}, t ∈ R, |s| < κ.(3.11)

Assume that the numbers κ, l, k and n ∈ N are fixed. We will use the symbol ∆ to
denote the value ∥y(un+ tn)−y(un)∥, then consider the two cases (i) ∆ ≥ ϵ0

l
and (ii) ∆ <

ϵ0
l
.

(i) If ∆ ≥ ϵ0
l
, one can conclude that

∥y(t+ tn)− y(t)∥ ≥ ∥y(un + tn)− y(un)∥ − ∥y(un)− y(t)∥

− ∥y(t+ tn)− y(un + tn)∥ >
ϵ0
l
− ϵ0

3l
− ϵ0

3l
=

1

3l
ϵ0

for t ∈ [un − κ, un + κ], n ∈ N.
(ii) If ∆ <

ϵ0
l
, (3.11) gives that

∥y(t+ tn)− y(t)∥ ≤ ∥y(un + tn)− y(un)∥+ ∥y(un)− y(t)∥

+ ∥y(t+ tn)− y(un + tn)∥ <
ϵ0
l
+
ϵ0
k

+
ϵ0
k

= (
1

l
+

2

k
)ϵ0

for t ∈ [un, un + κ]. Take the following integral equations

y(t) = y(un) +

t∫
un

[
Ay(s) + f(y(s)) + g(y(γ(s))) + h(s)

]
ds

and

y(t+ tn) = y(un + tn) +

t∫
un

[
Ay(s+ tn) + f(y(s+ tn)) + g(y(γ(s+ tn))) + h(s+ tn)

]
ds
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into consideration. If we subtract the first equation from the second one, we get
y(t+ tn)− y(t) = y(un + tn)− y(un)

+

t∫
un

[
A[y(s+ tn)− y(s)] + [f(y(s+ tn))− f(y(s))]

+ [g(y(γ(s+ tn)))− g(y(γ(s)))] + [h(s+ tn)− h(s)]

]
ds

= y(un + tn)− y(un)−
t∫

un

A[y(s+ tn)− y(s)]ds

+

t∫
un

[f(y(s+ tn))− f(y(s))]ds

+

t∫
un

[g(y(γ(s+ tn)))− g(y(γ(s)))]ds+

t∫
un

[h(s+ tn)− h(s)]ds.

By taking the norm of both sides and using the triangle inequlity, it is seen that

∥y(t+ tn)− y(t)∥ ≥ −∥y(un + tn)− y(un)∥

−
t∫

un

λ∥y(s+ tn)− y(s)∥ds−
t∫

un

∥f(y(s+ tn))− f(y(s))∥ds

−
t∫

un

∥g(y(γ(s+ tn)))− g(y(γ(s)))∥ds+
t∫

un

∥h(s+ tn)− h(s)∥ds

≥ −ϵ0
l
− λκ(

1

l
+

2

k
)ϵ0 − Lfκ(

1

l
+

2

k
)ϵ0

− Lg

t∫
un

∥y(γ(s+ tn))− y(γ(s))∥ds+ κ

2
ϵ0

for t ∈ [un + κ
2 , un + κ].

Define the last integral above as

J =

t∫
un

∥y(γ(s+ tn))− y(γ(s))∥ds.

For a fixed t ∈ [un + κ
2 , un + κ], choose κ sufficiently small so that θi−ηn

+ tn ≤ un <
un+

κ
2 ≤ t ≤ un+κ < θi+1 for some i ∈ Z. Thus, we have γ(t) = ξi for t ∈ [un+

κ
2 , un+κ]

and γ(t+tn) = ξi+ηn
due to the condition (C9). Since y(t) ∈ P , it is a uniformly continuous

function. Hence, for ϵ0 > 0 and large n, we can find a ρ > 0 such that ∥y(ξi+ηn)− y(ξi)∥ ≤
∥y(ξi + tn)− y(ξi)∥+ ∥y(ξi + tn + o(1))− y(ξi + tn)∥ < 2ϵ0 if ∥ξi+ηn − ξi − tn∥ < ρ.

So, we have J ≤ 2κϵ0. As a result, inequality (3.10) implies that

∥y(t+ tn)− y(t)∥ ≥ −ϵ0
l
− λ(

1

l
+

2

k
)κϵ0 − Lf (

1

l
+

2

k
)κϵ0 − 2Lgκϵ0 +

κ

2
ϵ0

≥ −ϵ0
l
+

4ϵ0
3l

≥ ϵ0
3l
.
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Based on the inequalities obtained in cases (i) and (ii), we see that the solution y(t) is
unpredictable.

Lastly, let us give our attention to the stability analysis of the solution y(t). Denote
v(t) = y(t) − z(t), where z(t) is another solution of the system (2.1). Then v(t) will be a
solution of the system (3.7) and thus it is true that

||v(t)|| ≤ σe−λ(t−t0)∥v(t0)∥+
∫ t

t0

σe−λ(t−s)[Lf ||v(s)||+ Lg||v(γ(s))||]ds.(3.12)

Using Lemma 3.3 in (3.12), we obtain that

||v(t)|| ≤ σe−λ(t−t0)||v(t0)||+
∫ t

t0

σe−λ(t−s)(Lf +BLg)∥v(s)∥ds.

The last inequality leads to

eλt∥v(t)∥ ≤ σeλt0 ||v(t0)||+ σ(Lf +BLg)

∫ t

t0

eλs∥v(s)∥ds.

If the Gronwall-Bellman Lemma [37] is applied for the last inequality, it is seen that

||v(t)|| ≤ σ||v(t0)||e(−λ+σ(Lf+BLg))(t−t0).

This inequality means that

||y(t)− z(t)|| ≤ σ||y(t0)− z(t0)||e(−λ+σ(Lf+BLg))(t−t0).(3.13)

From the condition (C7), we reach the conclusion that the unpredictable solution y(t) of
(2.1) is uniformly exponentially stable. The theorem is proved. □

4. EXAMPLES AND NUMERICAL SIMULATIONS

We give examples with numerical simulations to illustrate the theoretical results of this
research. To investigate the presence of an unpredictable solution, we need to consider
the following logistic map [12]

λi+1 = µλi(1− λi),(4.14)

where i ∈ Z. By virtue of Theorem 4.1 [12], for each µ ∈ [3 + ( 23 )
1/2, 4], the system (4.14)

possesses an unpredictable solution. Let φi, t ∈ [i, i + 1), i ∈ Z, be an unpredictable
solution of (4.14) with µ = 3.92.

In what follows, we will utilize the unpredictable function

Θ(t) =

∫ t

−∞
e−3(t−s)Ω(s)ds, t ∈ R,

with Ω(t) = φi for t ∈ [i, i+ 1), i ∈ Z, which was introduced in the paper [18].
Furthermore, the argument function γ(t) = ξk is defined by the sequences θk = 3

4k,
ξk = θk+θk+1

2 + φk = 3(2k+1)
8 + φk, k ∈ Z.

Consider the following quasilinear system with the generalized piecewise constant ar-
gument of mixed type

x′(t) =

 0.1 −0.6 0
0.1 −0.4 0
0 0 −0.3

 x1(t)
x2(t)
x3(t)

+

 0.01 tanh(x1(t)
25 )

0.01 tanh(x2(t)
25 )

0.01 tanh(x3(t)
25 )

(4.15)

+

 0.01 tanh(x1(γ(t))
20 )

0.01 tanh(x2(γ(t))
20 )

0.01 tanh(x3(γ(t))
20 )

+

 −4Θ3(t) + 0.02
0.5Θ(t)− 0.03
3Θ3(t) + 0.01

 .
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Moreover, h1(t) = −4Θ3(t) + 0.02, h2(t) = 0.5Θ(t) − 0.03, h3(t) = 3Θ3(t) + 0.01 are
unpredictable functions in accordance with Lemmas 1.4 and 1.5 given in [16].

We can see that the conditions (C1)-(C9) are valid for the system (4.15) with λ = 0.1, λ̄ =
0.7, Lf = 0.0004, Lg = 0.0005, mf = mg = 0.01, and moreovermh = 0.19, σ = 20, H = 38.
Thus, by the Theorem 3.1, system (4.15) has a unique exponentially stable unpredictable
solution x(t).

To imagine the behavior of the unpredictable oscillation x(t), we consider the simula-
tion of another solutionψ(t), with initial valuesψ1(0) = −1.1951, ψ2(0) = −0.2828, ψ3(0) =
0.1587. Applying (3.13), one can obtain that

||ψ(t)− x(t)|| ≤ 20e−0.002t||ψ(0)− x(0)||, t ≥ 0.

The last inequality demonstrates that the difference ψ(t) − x(t) diminishes exponen-
tially. Consequently, the graph of the function ψ(t) approaches to the unpredictable solu-
tion x(t) of the system (4.15), as time increases. Thus, instead of the curve describing the
unpredictable solution, one can consider the graph of ψ(t).

The coordinates and trajectory of the solution ψ(t), which exponentially converges to
the unpredictable solution x(t), are shown in Figures 1 and 2, respectively. Moreover, in
Figure 1 you can see that the solution of system (4.15) is continuous function with discon-
tinuous derivatives, and it continuously differentiable within intervals [θk, θk+1), k ∈ Z.
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FIGURE 1. The coordinates of the function ψ(t).
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FIGURE 2. The trajectory of the function ψ(t).
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Acknowledgements. The authors wish to express their sincere gratitude to the referees
for the helpful criticism and valuable suggestions.

M. Tleubergenova and Z. Nugayeva are supported by the Science Committee of the
Ministry of Education and Science of the Republic of Kazakhstan (Grants No. AP09258737
and No. AP08856170). M. Akhmet is supported by 2247-A National Leading Researchers
Program of TUBITAK, Turkey, N 120C138.

REFERENCES

[1] Akhmet, M. U. On the integral manifolds of the differential equations with piecewise constant argument
of generalized type, Proceedings of the Conference on Differential and Difference Equations at the Florida
Institute of Technology, August 1-5, 2005, Melbourne, Florida, Editors: R.P. Agarval and K. Perera, Hindawi
Publishing Corporation, 2006, pp. 11-20.

[2] Akhmet, M. U. Integral manifolds of differential equations with piecewise constant argument of general-
ized type. Nonlinear Analysis 66 (2007), 367–383.

[3] Akhmet, M. U. On the reduction principle for differential equations with piecewise constant argument of
generalized type J. Math. Anal. Appl. 336 (2007), 646–663.

[4] Akhmet, M. U. Stability of differential equations with piecewise constant arguments of generalized type.
Nonlinear Analysis 68, (2008), 794–803.

[5] Akhmet, M. U. Almost periodic solutions of differential equations with piecewise constant argument of
generalized type. Nonlinear Analysis: Hybrid Systems 2 (2008), 456-467.

[6] Akhmet, M. Nonlinear Hybrid Continuous/Discrete-Time Models. Atlantis Press, Paris, 2011.
[7] Akhmet, M.U., Functional differential equations with piecewise constant arguments. In Regularity and

Stochasticity of Nonlinear Dynamical Systems (D. Volchenkov, X. Leoncini), Springer, Zug, London / Berlin,
2017, pp. 79-109.

[8] Akhmet, M. U. Almost periodicity, chaos, and asymptotic equivalence. Springer, New York, 2020.
[9] Akhmet, M. Domain structured dynamics: Unpredictability, chaos, randomness, fractals, differential equations and

neural networks. IOP Publishing, UK, 2021.
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