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Modified inertial Mann’s algorithm and inertial hybrid
algorithm for k-strict pseudo-contractive mappings

SUPARAT BAIYA1 and KASAMSUK UNGCHITTRAKOOL1,2,∗

ABSTRACT. In this work, we introduce and study the modified inertial Mann’s algorithm and inertial hy-
brid algorithm for approximating some fixed points of a k-strict pseudo-contractive mapping in Hilbert spaces.
Weak convergence to a solution of fixed-point problems for a k-strict pseudo-contractive mapping is obtained by
using the modified inertial Mann’s algorithm. In order to obtain strong convergence, we introduce an inertial hy-
brid algorithm by using the inertial extrapolation method mixed with the convex combination of three iterated
vectors and forcing for strong convergence by the hybrid projection method for a k-strict pseudo-contractive
mapping in Hilbert spaces. The strong convergence theorem of the proposed method is proved under mild
assumptions on the scalars. For illustrating the performance of the proposed algorithms, we provide some new
nonlinear k-strict pseudo-contractive mappings which are not nonexpansive to create some numerical experi-
ments to show the advantage of the two new inertial algorithms for a k-strict pseudo-contractive mapping.

1. INTRODUCTION

Let C be a nonempty closed convex subset of a real Hilbert space H with the inner
product ⟨·, ·⟩ and the norm ∥ · ∥. Throughout the paper, we let I be the identity mapping.
A mapping T : C → C is said to be a k-strict pseudo-contractive mapping if there exists a
constant k ∈ (−∞, 1) such that

(1.1) ∥Tx− Ty∥2 ≤ ∥x− y∥2 + k∥(I − T )x− (I − T )y∥2

for all x, y ∈ C; see [8–11, 13, 34] for more details. If k = −1, then T is said to be firmly
nonexpansive. If k = 0, then T is said to be nonexpansive. The set of all fixed points of T
is denoted by Fix(T ) = {x ∈ C : Tx = x}. On the other hand, a mapping U : C → H is
called α-inverse strongly monotone if there exists α > 0 such that

⟨x− y, Ux− Uy⟩ ≥ α∥Ux− Uy∥2

for all x, y ∈ C. The set of all zeros of U is denoted by U−1(0) = {x ∈ C : Ux = 0}. It is
clear that the class of firmly nonexpansive mappings and the class of nonexpansive map-
pings are strictly included in the class of k-strict pseudo-contractive mappings; see [33, 34]
for more details. k-strict pseudo-contractive mappings were first proposed by Browder
and Petryshyn [13] in 1967. It has been found in practice that k-strict pseudo-contractive
mappings play an important role and have more practical applications than firmly non-
expansive mappings and nonexpansive mappings do in solving inverse problems (see
Scherzer [30]). Indeed, if U is α-inverse strongly monotone operator, then T := I − U is
a (1− 2α)-strict pseudo-contractive mapping, and so we can translate a problem of zeros
for U in the form of fixed point problem for T , and vice versa (see e.g. [33, 34]).
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The fixed point problem is to find a point

(1.2) x ∈ C such that Tx = x.

There are several methods for solving (1.2). One of the most popular methods is Mann’s
algorithm [20] which was introduced in 1953. The form of Mann’s algorithm is as follows:

(1.3) xn+1 = αnxn + (1− αn)Txn

where {αn} ⊂ [0, 1] which satisfies some appropriate assumptions. Reich [29] proved the
fundamental results of convergence, that is, if sequence {αn} satisfies

∑∞
n=1 αn(1−αn) =

+∞ then the sequence {xn} generated by Mann’s algorithm (1.3) converges weakly to a
fixed point of a nonexpansive mapping T .

Later, Marino and Xu [21] developed the result of Reich [29] to the class of k-strict
pseudo-contractive mappings in the framework of real Hilbert space, that is, if the control
sequcnce {αn} is chosen so that k < αn < 1 for all n and

∑∞
n=1(αn − k)(1 − αn) = ∞

then the sequence {xn} converges weakly to a fixed point of a k-strict pseudo-contractive
mapping. Some important iterative methods for fixed point problems of nonexpansive
mappings and k-strict pseudo-contractive mappings have been collected in the literature
(see [8–11, 16, 20, 24, 27]).

Strong convergence is often much more desirable than weak convergence in many
problems that arise in infinite-dimensional spaces (see [6, 17, 19, 21, 25, 26, 34, 35] and
references therein). In 2003, Nakajo and Takahashi [24] introduced a hybrid algorithm for
Mann’s iteration as follows:

(1.4)


x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ∥yn − z∥ ≤ ∥xn − z∥},
Qn = {z ∈ C : ⟨x0 − xn, z − xn⟩ ≤ 0},
xn+1 = PCn∩Qnx0, n ∈ N ∪ {0},

where {αn} ⊂ [0, 1) and PK denotes the metric projection from H onto a closed convex
subset K of H .

In 2007, Marino and Xu [21] introduced a hybrid algorithm for a k-strict pseudo-contractive
mapping as follows:

(1.5)


x0 ∈ C chosen arbitrarily,
yn = αnxn + (1− αn)Txn,
Cn = {z ∈ C : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)(k − αn)∥xn − Txn∥2},
Qn = {z ∈ C : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qnx0, n ∈ N ∪ {0},

Polyak [28] introduced an inertial-type algorithm. He presents a two-step iterative
method in which the next iterate is defined by using the previous two iterates. It is an
acceleration process of incorporating an inertial term in an algorithm to speed up or accel-
erates the rate of convergence of the sequence generated by the algorithm. Consequently,
many researchers have adopted inertial-type algorithms to speed up the convergence pro-
cess, see for example [1–5, 12, 15] and the references therein.

In 2008, Mainge [18] introduced the following inertial Mann’s algorithm:{
wn = xn + θn(xn − xn−1),
xn+1 = wn + λn[T (wn)− wn)],

for each n ≥ 1 and showed that the iterative sequence {xn} converges weakly to a fixed
point of T under the following conditions:
(A1) θn ∈ [0, θ) for any θ ∈ [0, 1),



Modified inertial Mann’s algorithm and inertial hybrid algorithm for k-strict pseudo-contractive mappings 29

(A2)
∑∞

n=1 θn∥xn − xn−1∥ < +∞,
(A3) 0 < infn≥1 λn ≤ supn≥1 λn < 1.
To satisfy the condition (A2) of the sequence {xn}, one needs to calculate {θn} at each step
(see [23]).

Later, Bot and Csetnek [12] have revised the above conditions to simple to prove the
theorems as the following:
(B1) θn ∈ [0, θ) for all θ ∈ [0, 1), θ1 = 0 and {θn} is nondecreasing,
(B2) δ > θ2(1+θ)+θσ

1−θ2 and 0 < λ ≤ λn ≤ δ−θ[θ(1+θ)+θδ+σ]
δ[1+θ(1+θ)+θδ+σ] for each n ≥ 1, where λ, σ, δ > 0.

By using the concept of the inertial method, Shehu et al. [31] introduced an algorithm
by the technique of Halpern method and error terms for solving a fixed point of a nonex-
pansive mapping which was defined as follows: x0, x1 ∈ H,

wn = xn + θn(xn − xn−1),
xn+1 = αnx0 + βnwn + γnTwn + en,

for each n ≥ 1, where {θn} ⊂ [0, θ] with θ ∈ [0, 1), {αn}, {βn} and {γn} are sequences in
(0, 1] and {en} is a sequence in H .

In 2018, Dong et al. [15] introduced a modified inertial Mann’s algorithm by combining
the accelerated Mann’s algorithm and the inertial extrapolation. They proved the weak
convergence of the proposed algorithm for a nonexpansive mapping.
Algorithm (Modified inertial Mann’s algorithm).

Let T : H → H be a self mapping such that Fix(T ) ̸= ∅. Choose µ ∈ (0, 1], λ > 0 and
x0, x1 ∈ H arbitrarily and set d0 = (Tx0 − x0)/λ. Compute dn+1 and xn+1 as follows:

(1.6)


wn = xn + θn(xn − xn−1),

dn+1 =
1

λ
(Twn − wn) + βndn,

yn = wn + λdn+1,
xn+1 = µγnwn + (1− µγn)yn,

for each n ≥ 1, where {θn} ⊂ [0, θ] is nondecreasing with θ1 = 0 and 0 ≤ θ < 1, {γn}
satisfies
(D1) δ > θ2(1+θ)+θσ

1−θ2 and 0 < 1 − µγ ≤ 1 − µγn ≤ δ−θ[θ(1+θ)+θδ+σ]
δ[1+θ(1+θ)+θδ+σ] , where γ, σ, δ > 0 and

{βn} satisfies
(D2)

∑∞
n=1 βn < ∞.

Moreover, there are more some additional assumptions as follows:

Assumption 1.1. The sequence {wn} defined in (1.6) satisfies
(D3) {Twn − wn} is bounded;
(D4) {Twn − y} is bounded for any y ∈ Fix(T ).

Remark 1.1. If the considered mapping T is a k-strict pseudo-contractive mapping, then
it is not hard to verify that Assumption 1.1 is equivalent to {wn} is bounded.

Furthermore, they introduced an inertial CQ-algorithm for a nonexpansive mapping
by combining the CQ-algorithm (1.4) and the inertial extrapolation, and analyzed its
strong convergence. Set x0, x1 ∈ H arbitrarily. Define a sequence {xn} as following:

wn = xn + θn(xn − xn−1),
yn = (1− βn)wn + βnTwn,
Cn = {z ∈ H : ∥yn − z∥ ≤ ∥wn − z∥},
Qn = {z ∈ H : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qn

x0,
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for each n ≥ 0 where {θn} ⊂ [θ1, θ2], θ1 ∈ (−∞, 0], θ2 ∈ [0,∞), {βn} ⊂ [β, 1], β ∈ (0, 1].
Motivated by the research works as mentioned in the direction as above, it is the driv-

ing force for us to develop the modified inertial Mann’s algorithm based on Dong et al.
[15] in (1.6) and prove the weak convergence for a k-strict pseudo-contractive mapping
by using the conditions in Assumption 1.1. Moreover, the inertial extrapolation method
combined with the convex combination of three iterated vectors and forcing for strong
convergence by the hybrid projection method is provided to solve a fixed point problem
for a k-strict pseudo-contractive mapping in Hilbert spaces. The performance of these
two newly created algorithms demonstrates some numerical advantages which will be
illustrated in the last section.

2. PRELIMINARIES

We will use the following notation:
(1) ⇀ for weak convergence and → for strong convergence.
(2) ωw(xn) = {x : ∃xnj

⇀ x} denotes the weak ω-limit set of {xn}.
Now, we present some fact and tools in a real Hilbert space H which are listed as

lemmas below.

Lemma 2.1. Let H be a real Hilbert space. There hold the following identities which will be used
in the various places in the proofs of the results of this paper:
(1) ∥x− y∥2 = ∥x∥2 − ∥y∥2 − 2⟨x− y, y⟩, for all x, y ∈ H .
(2) ∥αx + βy + γz∥2 = α∥x∥2 + β∥y∥2 + γ∥z∥2 − αβ∥x − y∥2 − αγ∥x − z∥2 − βγ∥y − z∥2
for all α, β, γ ∈ [0, 1] with α+ β + γ = 1 and for all x, y, z ∈ H .

Lemma 2.2 ([7]). Let {Ψn}, {δn} and {θn} be the sequence in [0,+∞) such that Ψn+1 ≤ Ψn +
θn(Ψn − Ψn−1) + δn for all n ≥ 1,

∑∞
n=1 δn < +∞ and there exists a real number θ with

0 ≤ θn ≤ θ < 1 for all n ≥ 1. Then the following hold:
(1)

∑
n≥1[Ψn −Ψn−1]+ < +∞, where [t]+ = max{t, 0};

(2) there exists Ψ∗ ∈ [0,+∞) such that limn→+∞ Ψn = Ψ∗.

Lemma 2.3 ([7]). Let C be a nonempty set of a real Hilbert space H and {xn} be a sequence in H
such that the following two conditions hold:
(1) for any x ∈ C, limn→∞ ∥xn − x∥ exists;
(2) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Lemma 2.4 ([21]). Let T : C → C be a self-mapping.
(1) If T is a k-strict pseudo-contraction, then T satisfies the Lipschitz condition

∥Tx− Ty∥ ≤ 1 + k

1− k
∥x− y∥ for all x, y ∈ C.

(2) If T is a k-strict pseudo-contraction, then the mapping I − T is demiclosed at zero. That
is, if {xn} is a sequence in C such that xn → x∗ weakly and (I − T )xn → 0 strongly, then
(I − T )x∗ = 0.

Lemma 2.5 ([32]). Let C be a closed convex subset of a real Hilbert space H and let PC be the
(metric or nearest point) projection from H onto C (i.e., for x ∈ H,PCx is the only point in C
such that ∥x− PCx∥ = inf{∥x− z∥ : z ∈ C}). Given x ∈ H and z ∈ C. Then z = PCx if and
only if there holds the relation:

⟨x− z, y − z⟩ ≤ 0 for all y ∈ C.
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Lemma 2.6 ([22]). Let C be a closed convex subset of a real Hilbert space H . Let {xn} be a
sequence in H and u ∈ H . Let q = PCu. If {xn} is a sequence such that ωw(xn) ⊂ C and
satisfies the condition:

∥xn − u∥ ≤ ∥u− q∥ for all n.

Then xn → q as n → ∞.

3. A MODIFIED INERTIAL MANN’S ALGORITHM FOR k-STRICT PSEUDO-CONTRACTIVE
MAPPINGS

In this section, we study and prove the weak convergence of a modified inertial Mann’s
algorithm in (1.6) for a k-strict pseudo-contractive mapping under the Assumption 1.1
which was introduced by Dong et al. [15].

Theorem 3.1. Let T : H → H is a k-strict pseudo-contractive mapping for some 0 ≤ k < 1 and
k < µγn with Fix(T ) ̸= 0. Let {dn} and {xn} be the sequences generated by Algorithm (1.6)
and let Assumption 1.1 hold. Then the following hold:
1. {dn} is bounded;
2.

∑∞
n=1 ∥xn+1 − xn∥2 < ∞;

3. the sequence {xn} converges weakly to a point of Fix(T ).

Proof. 1. The proof follows from Theorem 3.1 in [15].
2. Note that wn = xn + θn(xn − xn−1) for each n ≥ 1. From (1.6), we get

xn+1 = µγnwn + (1− µγn)(Twn + λβndn)

= wn + (1− µγn)(Twn − wn + λβndn).(3.7)

Let arbitrarily y ∈ Fix(T ). Using Lemma 2.1 and T is a k-strict pseudo-contractive map-
ping, we get

∥xn+1 − y∥2

= µγn∥wn − y∥2 + (1− µγn)∥Twn − y + λβndn∥2 − µγn(1− µγn)∥Twn − wn + λβndn∥2

= µγn∥wn − y∥2 + (1− µγn)(∥Twn − y∥2 + 2λβn ⟨Twn − y, dn⟩+ λ2β2
n∥dn∥

2
)

− µγn(1− µγn)∥Twn − wn + λβndn∥2

≤ µγn∥wn − y∥2 + (1− µγn)(∥wn − y∥2 + k∥(I − T )wn − (I − T )y∥2)

+ (1− µγn)(2λβn ⟨Twn − y, dn⟩+ λ2β2
n∥dn∥

2
)− µγn(1− µγn)∥Twn − wn + λβndn∥2

= ∥wn − y∥2 + (1− µγn)k∥Twn − wn∥2 + (1− µγn)(2λβn ⟨Twn − y, dn⟩+ λ2β2
n∥dn∥

2
)

− µγn(1− µγn)∥Twn − wn + λβndn∥2

= ∥wn − y∥2 + (1− µγn)k∥(Twn − wn + λβndn)− λβndn∥2

+ (1− µγn)(2λβn ⟨Twn − y, dn⟩+ λ2β2
n∥dn∥

2
)− µγn(1− µγn)∥Twn − wn + λβndn∥2

= ∥wn − y∥2 + (1− µγn)k(∥Twn − wn + λβndn∥2 − 2 ⟨Twn − wn + λβndn, λβndn⟩

+ λ2β2
n∥dn∥

2
) + (1− µγn)(2λβn ⟨Twn − y, dn⟩+ λ2β2

n∥dn∥
2
)

− µγn(1− µγn)∥Twn − wn + λβndn∥2

= ∥wn − y∥2 + (1− µγn)k(∥Twn − wn + λβndn∥2 − 2λβn ⟨Twn − wn, dn⟩ − λ2β2
n∥dn∥

2
)

+ (1− µγn)(2λβn ⟨Twn − y, dn⟩+ λ2β2
n∥dn∥

2
)− µγn(1− µγn)∥Twn − wn + λβndn∥2

= ∥wn − y∥2 − (µγn − k)(1− µγn)∥Twn − wn + λβndn∥2
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+ (1− µγn)βn

(
2λ ⟨Twn − y, dn⟩ − 2λk ⟨Twn − wn, dn⟩+ (1− k)λ2βn∥dn∥2

)
= ∥wn − y∥2 − (µγn − k)(1− µγn)∥Twn − wn + λβndn∥2 + βnφn

(3.8)

where

φn = (1− µγn)
[
2λ⟨Twn − y, dn⟩ − 2λk⟨Twn − wn, dn⟩+ (1− k)λ2βn∥dn∥2

]
.

From (D1), (D3), (D4) and {dn} is bounded, it follows that {φn} is bounded. Then there
exists M1 > 0 such that φn ≤ M1 for all n ≥ 1. By Lemma 2.1, we get

∥wn − y∥2 = ∥(1 + θn)(xn − y)− θn(xn−1 − y)∥2

= (1 + θn)∥xn − y∥2 − θn∥xn−1 − y∥2 + θn(1 + θn)∥xn − xn−1∥2,

which with (3.8) implies

∥xn+1 − y∥2 − (1 + θn)∥xn − y∥2 + θn∥xn−1 − y∥2

≤ −(µγn − k)(1− µγn)∥Twn − wn + λβndn∥2 + θn(1 + θn)∥xn − xn−1∥2 + βnφn.(3.9)

From (1.6) and (3.7), we get

∥Twn − wn + λβndn∥2 =
∥∥∥xn+1 − wn

1− µγn

∥∥∥2 =
∥∥∥xn+1 − xn − θn(xn − xn−1)

1− µγn

∥∥∥2
=

∥xn+1 − xn∥2 + θ2n∥xn − xn−1∥2 − 2θn⟨xn+1 − xn, xn − xn−1⟩
(1− µγn)2

≥ 1

(1− µγn)2
[∥xn+1 − xn∥2 + θ2n∥xn − xn−1∥2

+ θn(−ρn∥xn+1 − xn∥2 −
1

ρn
∥xn − xn−1∥2)],

where we note ρn = 1/(θn + δ(1− µγn)). Thus

− (µγn − k)(1− µγn)∥Twn − wn + λβndn∥2

≤ − µγn
(1− µγn)

[
∥xn+1 − xn∥2 + θ2n∥xn − xn−1∥2(3.10)

+ θn
(
− ρn∥xn+1 − xn∥2 −

1

ρn
∥xn − xn−1∥2

)]
.

Replace (3.10) in the inequality (3.9), we get

∥xn+1 − y∥2 − (1 + θn)∥xn − y∥2 + θn∥xn−1 − y∥2

≤ − µγn
(1− µγn)

[
∥xn+1 − xn∥2 + θ2n∥xn − xn−1∥2

+ θn
(
− ρn∥xn+1 − xn∥2 −

1

ρn
∥xn − xn−1∥2

)]
+ θn(1 + θn)∥xn − xn−1∥2 + βnφn

≤ µγn(θnρn − 1)

(1− µγn)
∥xn+1 − xn∥2 +Θn∥xn − xn−1∥2 + βnφn,(3.11)

where

(3.12) Θn = θn(1 + θn) + θnµγn
1− ρnθn

ρn(1− µγn)
> 0
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since ρnθn < 1 and (1 − µγn) ∈ (0, 1). We choose δ = (1 − ρnθn)/ρn(1 − µγn) and from
(3.12), it follows

(3.13) Θn = θn(1 + θn) + θnµγnδ ≤ θ(1 + θ) + θδ.

We now apply some techniques from [1] adapted to our setting. Define the sequence {ϕn}
and {Ψn} by

ϕn = ∥xn − y∥2 and Ψn = ϕn − θnϕn−1 +Θn∥xn − xn−1∥2 + βnφn,

for all n ≥ 1. Using the monotonicity of {θn} and the fact that ϕn ≥ 0 for all n ∈ N, we
have

Ψn+1 −Ψn ≤ ϕn+1 − (1 + θn)ϕn + θnϕn−1 +Θn+1∥xn+1 − xn∥2

−Θn∥xn − xn−1∥2 + βn+1φn+1 − βnφn.

By (3.11), we obtain that

Ψn+1 −Ψn ≤ µγn(θnρn − 1)

1− µγn
∥xn+1 − xn∥2 +Θn+1∥xn+1 − xn∥2 + βn+1φn+1

=
(µγn(θnρn − 1)

1− µγn
+Θn+1

)
∥xn+1 − xn∥2 + βn+1φn+1.(3.14)

We now claim that

(3.15)
µγn(θnρn − 1)

1− µγn
+Θn+1 ≤ −σ.

Indeed, by the choice of ρn, we have

µγn(θnρn − 1)

1− µγn
+Θn+1 ≤ −σ ⇐⇒ (1− µγn)(Θn+1 + σ) + µγn(θnρn − 1) ≤ 0

⇐⇒ (1− µγn)(Θn+1 + σ)− δ(1− µγn)µγn
θn + δ(1− µγn)

≤ 0

⇐⇒ (θn + δ(1− µγn))(Θn+1 + σ) + δ(1− µγn) ≤ δ.

Employing (3.13), we have

(θn + δ(1− µγn))(Θn+1 + σ) + δ(1− µγn)

≤ (θ + δ(1− µγn))(θ(1 + θ) + θδ + σ) + δ(1− µγn) ≤ δ,

where the last inequality follows by using the upper bound for sequence {1 − µγn} in
(D1). Hence the claim in (3.15) is true. It follows from (3.14) and (3.15), we have

(3.16) Ψn+1 −Ψn ≤ −σ∥xn+1 − xn∥2 + βn+1φn+1 ≤ βn+1M2,

which implies
Ψn −Ψ1 ≤ M3,

where M3 = M2

∑∞
n=2 βn. The boundedness for {θn} delivers

−θϕn−1 ≤ ϕn − θϕn−1 ≤ Ψn ≤ Ψ1 +M3.

Thus we obtain

ϕn ≤ θnϕ0 + (Ψ1 +M3)

k−1∑
n=1

θn ≤ θnϕ0 +
1

1− θ
(Ψ1 +M3),
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where we notice that Ψ1 = φ1 ≥ 0 (due to the relation θ1 = 0). Using (3.16) and the
boundedness of {Ψn}, we obtain

σ

n∑
k=1

∥xk+1 − xk∥2 ≤ Ψ1 −Ψn+1 +M3 ≤ Ψ1 + θϕn +M3

≤ Ψ1 + θnϕ0 +
1

1− θ
(Ψ1 +M3) +M3,

which shows
∑∞

n=1 ∥xn+1 − xn∥2 < ∞.
3. We show this by using Lemma 2.3. For arbitrary y ∈ Fix(T ), by (3.11), (3.13) and
Lemma 2.2, we get the result that limn→∞ ∥xn − y∥ exists (we take into consideration also
that, in (3.11), θnρn < 1). On the other hand, we let x be a sequential weak cluster point
of {xn}, that is, there exists a subsequence {xnk

} which converge weakly to x. By part (2),
the definition of wn and {θn} ⊂ [0, 1), we get wnk

⇀ x as k → ∞. Furthermore, from (3.7),
we get

∥Twn − wn∥ =
∥∥∥xn+1 − wn

1− µγn
− λβndn

∥∥∥ =
∥∥∥xn+1 − xn − θn(xn − xn−1)

1− µγn
− λβndn

∥∥∥
≤ ∥xn+1 − xn∥+ θn∥xn − xn−1∥

1− µγn
+ λβn∥dn∥.

By (D2), (1.3) and (1.5), we obtain ∥Twnk
−wnk

∥ → 0 as k → ∞. Applying Lemma 2.4 for
the sequence {wnk

}, we conclude that x ∈ Fix(T ). This completes the proof. □

Since a nonexpansive mapping is a 0-strict pseudo-contractive mapping, we have the
following consequence of Theorem 3.1 which improves on the main result of Dong et al.
[15].

Corollary 3.1 ([15, Theorem 3.1]). Let T : H → H is a nonexpansive mapping with Fix(T ) ̸=
0. Let {dn} and {xn} be the sequences generated by Algorithm (1.6) and let Assumption 1.1 holds.
Then the following hold:
1. {dn} is bounded;
2.

∑∞
n=1 ∥xn+1 − xn∥2 < ∞;

3. the sequence {xn} converges weakly to a point of Fix(T ).

4. AN INERTIAL HYBRID ALGORITHM FOR k-STRICT PSEUDO-CONTRACTIVE MAPPINGS

In this section, we introduce an inertial hybrid algorithm by using the inertial extrapo-
lation method combined with the convex combination of three iterated vectors and forcing
for strong convergence by the hybrid projection method for a k-strict pseudo-contractive
mapping in Hilbert spaces. The strong convergence theorem is proved under mild as-
sumptions on the scalars.

Theorem 4.2. Let T : H → H be a k-strict pseudo-contractive mapping for some 0 ≤ k < 1
with Fix(T ) ̸= ∅ and let {θn} ⊂ [θ1, θ2], θ1 ∈ (−∞, 0], θ2 ∈ [0,∞). Set x0, x1 ∈ H arbitrarily.
Define a sequence {xn} by the following algorithm:
(4.17)

wn = xn + θn(xn − xn−1),
yn = αnxn + βnwn + γnTwn,
Cn = {z ∈ H : ∥yn − z∥2 ≤ ∥xn − z∥2 + 2(1− αn)θn⟨xn − z, xn − xn−1⟩+Φn},
Qn = {z ∈ H : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qn

x0,
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where Φn = θ2n(1−αn−αnβn)∥xn−xn−1∥2+γn(k−βn)∥wn−Twn∥2−αnγn∥xn−Twn∥2.
Assume that the control sequence {αn}, {βn} ⊂ [0, 1] and {γn} ⊂ (0, 1] such that αn+βn+γn =
1. Then the iterative sequence {xn} converges in norm to PFix(T )(x0).

Proof. We first to show that Fix(T ) ⊂ Cn for all n ≥ 0. Using Lemma 2.1 (2) and (1.1), we
get that for all z ∈ Fix(T ),

∥yn − z∥2 = ∥αn(xn − z) + βn(wn − z) + γn(Twn − z)∥2

= αn∥xn − z∥2 + βn∥wn − z∥2 + γn∥Twn − z∥2 − αnβn∥xn − wn∥2

− αnγn∥xn − Twn∥2 − βnγn∥wn − Twn∥2

≤ αn∥xn − z∥2 + βn∥wn − z∥2 + γn(∥wn − z∥2 + k∥wn − Twn∥2)
− αnβn∥xn − wn∥2 − αnγn∥xn − Twn∥2 − βnγn∥wn − Twn∥2

= αn∥xn − z∥2 + (1− αn)∥wn − z∥2 + γn(k − βn)∥wn − Twn∥2(4.18)

− αnβn∥xn − wn∥2 − αnγn∥xn − Twn∥2.

By the definition of wn in (4.17), we have
(4.19)
∥wn−z∥2 = ∥(xn−z)+θn(xn−xn−1)∥2 = ∥xn−z∥2+2θn⟨xn−z, xn−xn−1⟩+θ2n∥xn−xn−1∥2

and

(4.20) ∥xn − wn∥2 = ∥xn − (xn + θn(xn − xn−1))∥2 = θ2n∥xn − xn−1∥2.

Substitute (4.19) and (4.20) into (4.18) to get

∥yn − z∥2

≤ αn∥xn − z∥2 + (1− αn)
(
∥xn − z∥2 + 2θn⟨xn − z, xn − xn−1⟩+ θ2n∥xn − xn−1∥2

)
+ γn(k − βn)∥wn − Twn∥2 − αnβnθ

2
n∥xn − xn−1∥2 − αnγn∥xn − Twn∥2

= ∥xn − z∥2 + 2(1− αn)θn⟨xn − z, xn − xn−1⟩+Φn,

where Φn = θ2n(1−αn−αnβn)∥xn−xn−1∥2+γn(k−βn)∥wn−Twn∥2−αnγn∥xn−Twn∥2.
This implies that z ∈ Cn and hence Fix(T ) ⊂ Cn for all n ≥ 0. Since

Cn =
{
z ∈ H : ∥yn − z∥2 ≤ ∥xn − z∥2 + 2(1− αn)θn⟨xn − z, xn − xn−1⟩+Φn

}
=

{
z ∈ H : ∥yn∥2 − ∥xn∥2 ≤ ⟨2(yn − xn − (1− αn)θn(xn − xn−1)), z⟩+ a

}
,

where a = 2(1− αn)θn⟨xn − xn−1, xn⟩+Φn. So, Cn is closed and convex. Therefore {xn}
is well defined.

We next to show that Fix(T ) ⊂ Qn for all n ≥ 0 by induction. For n = 0, we have
Fix(T ) ⊂ H = Q0. Assume that Fix(T ) ⊂ Qn. Since xn+1 is the projection of x0 onto
Cn ∩Qn, by Lemma 2.5 we get

⟨xn+1 − z, xn+1 − x0⟩ ≤ 0 for all z ∈ Cn ∩Qn.

From Qn+1 = {z ∈ H : ⟨xn+1 − z, xn+1 − x0⟩ ≤ 0}, it follows Cn ∩ Qn ⊂ Qn+1. Since
Fix(T ) ⊂ Cn and the assumption that Fix(T ) ⊂ Qn, we have Fix(T ) ⊂ Cn ∩Qn. So, we
have Fix(T ) ⊂ Qn+1 implies that Fix(T ) ⊂ Qn for all n ≥ 0.

Since Fix(T ) is a nonempty closed convex subset of H , there exists a unique element
q ∈ Fix(T ) such that q = PFix(T )x0. From the definition of Qn actually implies xn =
PQn

(x0). This together with that fact that Fix(T ) ⊂ Qn further implies ∥xn − x0∥ ≤
∥p− x0∥ for all p ∈ Fix(T ). Due to q = PFix(T ) ∈ Fix(T ), we get

(4.21) ∥xn − x0∥ ≤ ∥q − x0∥,
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which implies that {xn} bounded.
The fact that xn+1 ∈ Qn implies that ⟨xn+1 − xn, xn − x0⟩ ≥ 0. From Lemma 2.1 (1)

implies that

∥xn+1 − xn∥2 = ∥(xn+1 − x0)− (xn − x0)∥2

= ∥xn+1 − x0∥2 − ∥xn − x0∥2 − 2⟨xn+1 − xn, xn − x0⟩
≤ ∥xn+1 − x0∥2 − ∥xn − x0∥2.(4.22)

From (4.21) and (4.22), we obtain that
N∑

n=1

∥xn+1 − xn∥2 ≤
N∑

n=1

(∥xn+1 − x0∥2 − ∥xn − x0∥2) = ∥xN+1 − x0∥2 − ∥x1 − x0∥2

≤ ∥q − x0∥2 − ∥x1 − x0∥2.

So, it follows that the series
∑∞

n=1 ∥xn+1 − xn∥2 is convergent and thus

(4.23) ∥xn+1 − xn∥ → 0 as n → ∞.

From (4.20), we get

(4.24) ∥wn − xn∥ → 0 as n → ∞.

Since

∥wn − xn+1∥2 = ∥(xn − xn+1) + θn(xn − xn−1)∥2

= ∥xn − xn+1∥2 + 2θn⟨xn − xn+1, xn − xn−1⟩+ θ2n∥xn − xn−1∥2(4.25)
→ 0 as n → ∞.

From the fact xn+1 ∈ Cn, we get

(4.26) ∥yn − xn+1∥2 ≤ ∥xn − xn+1∥2 + 2(1− αn)θn⟨xn − xn+1, xn − xn−1⟩+Φn,

where Φn = θ2n(1−αn−αnβn)∥xn−xn−1∥2+γn(k−βn)∥wn−Twn∥2−αnγn∥xn−Twn∥2.
Since yn = αnxn + βnwn + γnTwn and using Lemma 2.1 (2), this implies that

∥yn − xn+1∥2 = ∥αn(xn − xn+1) + βn(wn − xn+1) + γn(Twn − xn+1)∥2

= αn∥xn − xn+1∥2 + βn∥wn − xn+1∥2 + γn∥Twn − xn+1∥2

− αnβn∥xn − wn∥2 − αnγn∥xn − Twn∥2 − βnγn∥wn − Twn∥2.(4.27)

Substituting (4.26) with (4.27), we get that

γn∥Twn − xn+1∥2 ≤ (1− αn)∥xn − xn+1∥2 + 2(1− αn)θn⟨xn − xn+1, xn − xn−1⟩
+ θ2n(1− αn − αnβn)∥xn − xn−1∥2 + kγn∥wn − Twn∥2

− βn∥wn − xn+1∥2 + αnβn∥xn − wn∥2,(4.28)

Consider,

∥Twn − xn+1∥2 = ∥(Twn − wn)− (xn+1 − wn)∥2

= ∥Twn − wn∥2 − 2⟨Twn − wn, xn+1 − wn⟩+ ∥xn+1 − wn∥2.(4.29)

Combining (4.28) and (4.29) with 0 ≤ k < 1 and {γn} ⊂ (0, 1] for all n, we obtain that

∥Twn − wn∥2 ≤ 1

γn(1− k)

(
(1− αn)∥xn − xn+1∥2 + 2(1− αn)θn⟨xn − xn+1, xn − xn−1⟩

+ θ2n(1− αn − αnβn)∥xn − xn−1∥2 − (βn + γn)∥wn − xn+1∥2

+ αnβn∥xn − wn∥2 + 2γn⟨Twn − wn, xn+1 − wn⟩
)
.
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By (4.23), (4.24) and (4.25), it can be concluded that

(4.30) ∥Twn − wn∥ → 0 as n → ∞.

By subtracting and adding, and using the triangle inequality, we get that

∥Txn − xn∥ ≤ ∥Txn − Twn∥+ ∥Twn − wn∥+ ∥wn − xn∥.
By Lemma 2.4, we have

(4.31) ∥Txn − xn∥ ≤ 1 + k

1− k
∥xn − wn∥+ ∥Twn − wn∥+ ∥wn − xn∥.

From (4.24), (4.30) and let n → ∞ in (4.31). Thus we have

(4.32) ∥Txn − xn∥ → 0 as n → ∞.

From (4.32) and Lemma 2.4 guarantee that every weak limit point of {xn} is a fixed point
of T . That is ωw(xn) ⊂ Fix(T ). This fact, the inequality (4.21) and Lemma 2.6 ensure
strong convergence of {xn} to PFix(T )x0. This completes the proof. □

Corollary 4.2 ([21, Theorem 4.1]). Let T : H → H be a k-strict pseudo-contractive mapping for
some 0 ≤ k < 1 with Fix(T ) ̸= ∅. Assume that the control sequence {αn} ⊂ [0, 1). Set x0 ∈ H
chosen arbitrarily. Define a sequence {xn} by the following:

yn = αnxn + (1− αn)Txn,
Cn = {z ∈ H : ∥yn − z∥2 ≤ ∥xn − z∥2 + (1− αn)(k − αn)∥xn − Txn∥2},
Qn = {z ∈ H : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = PCn∩Qn

x0, n ≥ 1.

Then the iterative sequence {xn} converges strongly to PFix(T )x0.

Proof. If θn = 0 and βn = 0 for all n ∈ N ∪ {0} in Theorem 4.2 then wn = xn and
γn = (1−αn), respectively. Therefore, we obtain the result of Marino and Xu [21, Theorem
4.1]. □

5. NUMERICAL EXPERIMENTS

In this section, two examples of k-strict pseudo-contractive mappings are introduced
and studied. In order to illustrate the development of the theory that plays an important
role in numerical results in this research, we have compared the numerical results between
our algorithms for k-strict pseudo-contractive mappings and the previous existing results.

Firstly, some examples for k-strict pseudo-contractive mappings are provided on real
Euclidean space R and Euclidean space R2, respectively.

Example 5.1. Let C = H = R and T : R → R be defined by

Tx = −
(
tan−1(x) +

sin(x) + cos(x)

4

)
for all x ∈ R. Then, T is a k-strict pseudo-contractive mapping with k = 5

9 which is not
nonexpansive.

Example 5.2. Let C = H = R2 and T : R2 → R2 be defined by

T

[
x
y

]
=

[
−2 tan−1(x)
2 cot−1(y)

]
for all

[
x
y

]
∈ R2. Then, T is a k-strict pseudo-contractive mapping with k = 3

4 which is

not nonexpansive.
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Because Example 5.1 and example 5.2 are very basic and are not difficult to prove and
calculate, the details of proof and calculations are therefore not provided.

We next to show that a numerical example for supporting Theorem 3.1 which compare
Mann’s algorithm, that is, Algorithm (1.3) and a modified inertial Mann’s algorithm, that
is, Algorithm (1.6) with a k-strict pseudo-contractive mapping T defined in Example 5.1
and Example 5.2. First of all, in the Table, ‘Iter.’ and ‘Sec.’ denote the number of iterations
and the cpu time in seconds, respectively. For Example 5.1, we set αn = 0.9 in Algorithm
(1.3) and set different initial values x0 ̸= x1, λ = 0.9, µ = 0.8, θ1 = 0, θn = 1/(n+ 1)2, γn =
0.9, βn = 1/(n + 1) in Algorithm (1.6). For Example 5.2, we set αn = 0.9 in Algorithm
(1.3) and set different initial values x0 = x1, λ = 0.5, µ = 0.9, θ1 = 0, θn = 1/(n+ 1), γn =
0.8, βn = 1/(n+ 1)2 in Algorithm (1.6).

TABLE 1. Comparison of Algorithm (1.3) and Algorithm (1.6) for Exam-
ple 5.1.

inertial Algorithm (1.3) Algorithm (1.6)
x0 x1 Iter. Sec. Iter. Sec.
15 23 43 0.004780 12 0.007699
29 −26 49 0.002477 14 0.006077
−17 22 43 0.002214 13 0.004657
−47 −35 52 0.002403 15 0.004109

TABLE 2. Comparison of Algorithm (1.3) and Algorithm (1.6) for Exam-
ple 5.2.

Algorithm (1.3) Algorithm (1.6)
x0 = x1 Iter. Sec. Iter. Sec.

(12,3) 35 0.003009 13 0.006721
(20,-30) 57 0.003302 16 0.007122
(-15,15) 50 0.003240 14 0.008172
(-99,-55) 63 0.003745 16 0.014179
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(A) Case: x0 = 15 and x1 = 23.
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(B) Case: x0 = 29 and x1 = −26.
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(C) Case: x0 = −17 and x1 = 22.

0 10 20 30 40 50 60

number of iterations

0

2

4

6

8

10

12

14

16

18

20

||
x

n
-x

n
-1

||

Algorithm (1.3)

Algorithm (1.7)

(D) Case: x0 = −47 and x1 = −35.

FIGURE 1. The results computed by Algorithm (1.3) and Algorithm (1.6)
for Example 5.1.
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(A) Case: x0 = x1 = (12, 3).
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(B) Case: x0 = x1 = (20,−30).
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(C) Case: x0 = x1 = (−15, 15).
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(D) Case: x0 = x1 = (−99,−55).

FIGURE 2. The results computed by Algorithm (1.3) and Algorithm (1.6)
for Example 5.2.

We next design a new algorithm which equivalent to Algorithm (4.17), by using the
concept of Dong and Lu [14], we obtain the specific expression of PCn∩Qn

x0 of Algorithm
(4.17) as following:

x0, x1 ∈ H chosen arbitrarily,
wn = xn + θn(xn − xn−1),
yn = αnxn + βnwn + γnTwn,
un = wn − yn − αnθn(xn − xn−1),

vn =
1

2

(
∥xn∥2 + 2(1− αn)θn⟨xn, xn − xn−1⟩+ θn

2(1− αn − αnβn)∥xn − xn−1∥2

+γn(k − βn)∥wn − Twn∥2 − αnγn∥xn − Twn∥2 − ∥yn∥2
)
,

Cn = {z ∈ H : ⟨un, z⟩ ≤ vn},
Qn = {z ∈ H : ⟨xn − z, xn − x0⟩ ≤ 0},
xn+1 = pn, if pn ∈ Qn,
xn+1 = qn, if pn /∈ Qn.

where

pn = x0 −
⟨un, x0⟩ − vn

∥un∥2
un, zn = xn − ⟨un, xn⟩ − vn

∥un∥2
un,

qn =
(
1− ⟨x0 − xn, xn − pn⟩

⟨x0 − xn, zn − pn⟩

)
pn +

⟨x0 − xn, xn − pn⟩
⟨x0 − xn, zn − pn⟩

zn,

Now, we use this iteration algorithm to create a numerical example for supporting
Theorem 4.2 and provide a comparison among Algorithm (1.5) and Algorithm (4.17) with
a k-strict pseudo-contractive mapping T defined in Example 5.1 and Example 5.2. For
Example 5.1, we set αn = 0.6 in Algorithm (1.5) and set different initial values x0 ̸=
x1, θn = 0.4, αn = 0.3, βn = 0.3 and γn = 0.4 in Algorithm (4.17). For Example 5.2, we
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set different initial values x0 = x1 and set the parametors correspond to the Example 5.2.
Denote E(x) = ∥xn − xn−1∥. We take E(x) < ε as the stopping criterion and ε = 10−4.

TABLE 3. Comparison of Algorithm (1.5) and Algorithm (4.17) for Exam-
ple 5.1.

inertial Algorithm (1.5) Algorithm (4.17)
x0 x1 Iter. Sec. Iter. Sec.
9 7 17 0.022053 5 0.011346
19 18 20 0.020251 6 0.007112
−9 −7 16 0.015129 5 0.012575
−45 −41 23 0.020495 6 0.006705

TABLE 4. Comparison of Algorithms (1.5) and Algorithm (4.17) for Ex-
ample 5.2.

Algorithm (1.5) Algorithm (4.17)
x0 = x1 Iter. Sec. Iter. Sec.

(5,9) 712 0.054894 15 0.009313
(11,-15) 1566 0.101804 21 0.009859
(-18,35) 1778 0.116099 16 0.009950
(-9,-8) 699 0.060291 19 0.012281
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(A) Case: x0 = 9, x1 = 7.
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(B) Case: x0 = 19, x1 = 18.
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(C) Case: x0 = −9, x1 = −7.
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(D) Case: x0 = −45, x1 = −41.

FIGURE 3. The results computed by Algorithm (1.5) and Algorithm (4.17)
for Example 5.1.
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(A) Case: x0 = x1 = (5, 9).
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(B) Case: x0 = x1 = (11,−15).
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(C) Case: x0 = x1 = (−18, 35).
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(D) Case: x0 = x1 = (−9,−8).

FIGURE 4. The results computed by Algorithm (1.5) and Algorithm (4.17)
for Example 5.2.

6. CONCLUSION

In this paper, we proposed weak and strong convergence theorems for fixed points
of k-strict pseudo-contractive mappings by using a modified inertial Mann’s algorithm
(1.6) and an inertial hybrid algorithm (4.17), respectively. We also provided some new
examples as appeared in Example 5.1 and Example 5.2 for k-strict pseudo-contractive
mappings on the real space R and the Euclidean space R2, respectively. The results ob-
tained from numerical experiments using these samples showed that the modified inertial
Mann’s algorithm (1.6) and the inertial hybrid algorithm (4.17) represent more numerical
advantages than the Mann’s algorithm (1.3) and the hybrid algorithm (1.5) as shown in
Table 1, Table 2, Table 3, Table 4, Figure 1, Figure 2 Figure 3 and Figure 4, respectively.
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