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A hybrid scheme for fixed points of a countable family of
generalized nonexpansive-type maps and finite families of
variational inequality and equilibrium problems, with
applications

MARKJOE O. UBA, MARIA A. ONYIDO, CYRIL I. UDEANI and PETER U. NWOKORO

ABSTRACT. Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly convex
real Banach space E with dual space E∗. We present a novel hybrid method for finding a common solution
of a family of equilibrium problems, a common solution of a family of variational inequality problems and a
common element of fixed points of a family of a general class of nonlinear nonexpansive maps. The sequence
of this new method is proved to converge strongly to a common element of the families. Our theorem and its
applications complement, generalize, and extend various results in literature.

1. INTRODUCTION

Let E be a real Banach space with topological dual E∗. Let C ⊂ E be closed and convex
with JC also closed and convex, where J is the normalized duality map (see definition
2.1). The variational inequality problem, which has its origin in the 1964 result of Stampac-
chia [21], has engaged the interest of researchers in the recent past (see, e.g., [26, 27] and
many others). This is concerned with the following: For a monotone operator A : C → E,
find a point x∗ ∈ C such that

(1.1) ⟨y − x∗, Ax∗⟩ ≥ 0 for all y ∈ C.

The set of solutions of (1.1) is denoted by V I(C,A). This problem, which plays a crucial
role in nonlinear analysis, is also related to fixed point problems, zeros of nonlinear oper-
ators, complementarity problems, and convex minimization problems (see, for example,
[9, 20]).
A related problem is the equilibrium problem, which has been studied by several re-
searchers and is mostly applied in solving optimization problems (see [3]). For a map
f : C → E, the equilibrium problem is concerned with finding a point x∗ ∈ C such that

(1.2) f(x∗, y) ≥ 0 for all y ∈ C.

The set of solutions of (1.2) is denoted by EP (f). The variational inequality and equilib-
rium problems are special cases of the so-called generalized mixed equilibrium problem
(see [18]). Another related problem is the fixed point problem. For a map T : D(T ) ⊂
E → E, the fixed points of T are the points x∗ ∈ D(T ) such that Tx∗ = x∗. Recently,
owing to the need to develop methods for solving fixed points of problems for functions
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from a space to its dual, a new concept of fixed points for maps from a real normed space E to
its dual space E∗, called J−fixed point has been introduced and studied (see [5, 15, 25]).
With this evolving fixed point theory, we study the J−fixed points of certain maps and
the following equilibrium problem. Let f : JC×JC → R be a bifunction. The equilibrium
problem for f is finding

x∗ ∈ C such that f(Jx∗, Jy) ≥ 0,∀ y ∈ C.(1.3)

We denote the solution set of (1.3) by EP (f). Several problems in physics, optimization
and economics reduce to finding a solution of (1.3) (see, e.g., [8, 26] and the references
in them). Most of the equilibrium problems studied in the past two decades centered on
their existence and applications (see, e.g., [3, 8] ). However, recently, several researchers
have started working on finding approximate solutions of equilibrium problems and their
generalizations (see, e.g., [11, 27]). Not long ago, some researchers investigated the prob-
lem of establishing a common element in the solution set of an equilibrium problem, fixed
point of a family of nonexpansive maps and solution set of a variational inequality prob-
lem for different classes of maps (see [28] and references therein).

In this paper, inspired by the above results especially the works in [4, 24, 28], we present
an algorithm for finding a common element of the fixed point of an infinite family of gen-
eralized J∗−nonexpansive maps, the solution set of the variational inequality problem
of a finite family of continuous monotone maps and the solution set of the equilibrium
point of a finite family of bifunctions satisfying some given conditions. Our results com-
plement, generalize and extend results in [14, 19, 17, 28] (see the section on conclusion)
and other recent results in this direction. It is worth noting that very recently, the authors
in [4] introduced a new class of maps which they called relatively weak J−nonexpasive and
developed an algorithm for approximating a common element of the J−fixed point of a
countable family of such maps and zeros of some other class of maps in certain Banach
spaces. Previously, maps with similar requirements as these relatively weak J−nonexpasive
maps have also been studied in [6] where they were called quasi−ϕ − J−nonexpansive.
We observe that these two sets of maps (relatively weak J−nonexpasive and quasi −ϕ− J−
nonexpansive) coincide in definition with the J∗−nonexpansive maps in our results.

2. PRELIMINARIES

In this section, we present definitions and lemmas used in proving our main results.

Definition 2.1. (Normalized duality map) The map J : E → 2E
∗

defined by

Jx :=
{
x∗ ∈ E∗ :

〈
x, x∗〉 = ∥x∥.∥x∗∥, ∥x∥ = ∥x∗∥

}
is called the normalized duality map on E.

It is well known that if E is smooth, strictly convex and reflexive then J−1 exists (see e.g.,
[22]); J−1 : E∗ → E is the normalized duality mapping on E∗, and J−1 = J∗, JJ∗ = IE∗

and J∗J = IE , where IE and IE∗ are the identity maps on E and E∗, respectively. A well
known property of J is, see e.g., [7, 22], if E is uniformly smooth, then J is uniformly
continuous on bounded subsets of E.

Definition 2.2. (Lyapunov Functional) [1, 11] Let E be a smooth real Banach space with
dual E∗. The Lyapunov functional ϕ : E × E → R, is defined by

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, for x, y ∈ E,(2.4)
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where J is the normalized duality map. If E = H , a real Hilbert space, then equation (2.4)
reduces to ϕ(x, y) = ∥x− y∥2 for x, y ∈ H. Additionally,

(∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2 for x, y ∈ E.(2.5)

Definition 2.3. (Generalized nonexpansive) [12, 13] Let C be a nonempty closed and
convex subset of a real Banach space E and T be a map from C to E. The map T is called
generalized nonexpansive if F (T ) := {x ∈ C : Tx = x} ̸= ∅ and ϕ(Tx, p) ≤ ϕ(x, p) for all
x ∈ C, p ∈ F (T ).

Definition 2.4. (Retraction) [12, 13] A map R from E onto C is said to be a retraction if
R2 = R. The map R is said to be sunny if R(Rx+ t(x−Rx)) = Rx for all x ∈ E and t ≤ 0.

A nonempty closed subset C of a smooth Banach space E is said to be a sunny generalized
nonexpansive retract of E if there exists a sunny generalized nonexpansive retraction R
from E onto C.
NST-condition. Let C be a closed subset of a Banach space E. Let {Tn} and Γ be two
families of generalized nonexpansive maps of C into E such that ∩∞

n=1F (Tn) = F (Γ) ̸= ∅,
where F (Tn) is the set of fixed points of {Tn} and F (Γ) is the set of common fixed points
of Γ.

Definition 2.5. [12] The sequence {Tn} satisfies the NST-condition (see e.g., [16]) with Γ
if for each bounded sequence {xn} ⊂ C,

lim
n→∞

||xn − Tnxn|| = 0 ⇒ lim
n→∞

||xn − Txn|| = 0, for all T ∈ Γ.

Remark 2.1. If Γ = {T} a singleton, {Tn} satisfies the NST-condition with {T}. If Tn = T
for all n ≥ 1, then, {Tn} satisfies the NST-condition with {T}.

Let C be a nonempty closed and convex subset of a uniformly smooth and uniformly
convex real Banach space E with dual space E∗. Let J be the normalized duality map
on E and J∗ be the normalized duality map on E∗. Observe that under this setting, J−1

exists and J−1 = J∗. With these notations, we have the following definitions.

Definition 2.6. (Closed map) [24] A map T : C → E∗ is called J∗−closed if (J∗ ◦ T ) : C →
E is a closed map, i.e., if {xn} is a sequence in C such that xn → x and (J∗ ◦ T )xn → y,
then (J∗ ◦ T )x = y.

Definition 2.7. (J−fixed Point) [5] A point x∗ ∈ C is called a J−fixed point of T if Tx∗ =
Jx∗. The set of J−fixed points of T will be denoted by FJ(T ).

Definition 2.8. (Generalized J∗ nonexpansive) [24] A map T : C → E∗ will be called
generalized J∗−nonexpansive if FJ(T ) ̸= ∅, and ϕ(p, (J∗ ◦ T )x) ≤ ϕ(p, x) for all x ∈ C and
for all p ∈ FJ(T ).

Remark 2.2. Exampes of generalized J∗−nonexpansive maps in Hilbert and more general
Banach spaces were given in [4, 24].

Let C be a nonempty closed subset of a smooth, strictly convex and reflexive Banach space
E such that JC is closed and convex. For solving the equilibrium problem, let us assume
that a bifunction f : JC × JC → R satisfies the following conditions:

(A1) f(x∗, x∗) = 0 for all x∗ ∈ JC;
(A2) f is monotone, i.e. f(x∗, y∗) + f(y∗, x∗) ≤ 0 for all x∗, y∗ ∈ JC;
(A3) for all x∗, y∗, z∗ ∈ JC, lim supt↓0 f(tz

∗ + (1− t)x∗, y∗) ≤ f(x∗, y∗);
(A4) for all x∗ ∈ JC, f(x∗, ·) is convex and lower semicontinuous.

With the above definitions, we now provide the lemmas we shall use.
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Lemma 2.1. [29] Let E be a uniformly convex Banach space, r > 0 be a positive number,
and Br(0) be a closed ball of E. For any given points {x1, x2, · · · , xN} ⊂ Br(0) and any
given positive numbers {λ1, λ2, · · · , λN} with

∑N
n=1 λn = 1, there exists a continuous

strictly increasing and convex function g : [0, 2r) → [0,∞) with g(0) = 0 such that, for any
i, j ∈ {1, 2, · · ·N}, i < j,

(2.6) ∥
N∑

n=1

λnxn∥2 ≤
N∑

n=1

λn∥xn∥2 − λiλjg(∥xi − xj∥).

Lemma 2.2. [11] Let X be a real smooth and uniformly convex Banach space, and let {xn}
and {yn} be two sequences of X . If either {xn} or {yn} is bounded and ϕ(xn, yn) → 0 as
n → ∞, then ∥xn − yn∥ → 0 as n → ∞.

Lemma 2.3. [1] Let C be a nonempty closed and convex subset of a smooth, strictly convex
and reflexive Banach space E. Then, the following are equivalent.
(i) C is a sunny generalized nonexpansive retract of E,
(ii) C is a generalized nonexpansive retract of E,
(iii) JC is closed and convex.

Lemma 2.4. [1] Let C be a nonempty closed and convex subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive retraction
R from E onto C. Then, the following hold.
(i) z = Rx iff ⟨x− z, Jy − Jz⟩ ≤ 0 for all y ∈ C,
(ii) ϕ(x,Rx) + ϕ(Rx, z) ≤ ϕ(x, z).

Lemma 2.5. [10] Let C be a nonempty closed sunny generalized nonexpansive retract of
a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive
retraction from E to C is uniquely determined.

Lemma 2.6. [3] Let C be a nonempty closed subset of a smooth, strictly convex and reflex-
ive Banach space E such that JC is closed and convex, let f be a bifunction from JC×JC
to R satisfying (A1) − (A4). For r > 0 and let x ∈ E. Then there exists z ∈ C such that
f(Jz, Jy) + 1

r ⟨z − x, Jy − Jz⟩ ≥ 0, ∀ y ∈ C.

Lemma 2.7. [23] Let C be a nonempty closed subset of a smooth, strictly convex and
reflexive Banach space E such that JC is closed and convex, let f be a bifunction from
JC × JC to R satisfying (A1) − (A4). For r > 0 and let x ∈ E, define a mapping Tr(x) :
E → C as follows:

Tr(x) = {z ∈ C : f(Jz, Jy) +
1

r
⟨y − z, Jz − Jx⟩ ≥ 0, ∀ y ∈ C}.

Then the following hold:
(i) Tr is single valued;

(ii) for all x, y ∈ E, ⟨Trx− Try, JTrx− JTry⟩ ≤ ⟨x− y, JTrx− JTry⟩;
(iii) F (Tr) = EP (f);
(iv) ϕ(p, Tr(x)) + ϕ(Tr(x), x) ≤ ϕ(p, x) for all p ∈ F (Tr).
(v) JEP (f) is closed and convex.

Lemma 2.8. [24] Let C be a nonempty closed subset of a smooth, strictly convex and
reflexive Banach space E. Let A : C → E∗ be a continuous monotone mapping. For r > 0
and let x ∈ E, define a mapping Fr(x) : E → C as follows:

Fr(x) = {z ∈ C : ⟨y − z,Az⟩+ 1

r
⟨y − z, Jz − Jx⟩ ≥ 0, ∀ y ∈ C}.

Then the following hold:
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(i) Fr is single valued;
(ii) for all x, y ∈ E, ⟨Frx− Try, JFrx− JFry⟩ ≤ ⟨x− y, JFrx− JFry⟩;

(iii) F (Fr) = V I(C,A);
(iv) ϕ(p, Fr(x)) + ϕ(Fr(x), x) ≤ ϕ(p, x) for all p ∈ F (Fr).
(v) JV I(C,A) is closed and convex.

Lemma 2.9. [24] Let E be a uniformly convex and uniformly smooth real Banach space
with dual space E∗ and let C be a closed subset of E such that JC is closed and convex.
Let T be a generalized J∗−nonexpansive map from C to E∗ such that FJ(T ) ̸= ∅, then
FJ(T ) and JFJ(T ) are closed. Additionally, if JFJ(T ) is convex, then FJ(T ) is a sunny
generalized nonexpansive retract of E.

3. MAIN RESULTS

Let E be a uniformly smooth and uniformly convex real Banach space with dual space E∗

and let C be a nonempty closed and convex subset of E such that JC is closed and convex.
Let fl, l = 1, 2, 3, ..., L be a family of bifunctions from JC×JC to R satisfying (A1)− (A4),
Tn : C → E∗, n = 1, 2, 3, ... be an infinite family of generalized J∗−nonexpansive maps,
and Ak : C → E∗, k = 1, 2, 3, ..., N be a finite family of continuous monotone mappings.
Let the sequence {xn} be generated by the following iteration process:

(3.7)



x1 = x ∈ C;C1 = C,

zn := {z ∈ C : fn(Jz, Jy) +
1
rn
⟨y − z, Jz − Jxn⟩ ≥ 0, ∀ y ∈ C},

un := {z ∈ C : ⟨y − z,Anz⟩+ 1
rn
⟨y − z, Jz − Jxn⟩ ≥ 0, ∀ y ∈ C},

yn = J−1(α1Jxn + α2Jzn + α3Tnun),

Cn+1 = {z ∈ Cn : ϕ(z, yn) ≤ ϕ(z, xn)},
xn+1 = RCn+1x,

for all n ∈ N, with α1, α2, α3 ∈ (0, 1) satisfying α1+α2+α3 = 1, {rn} ⊂ [a,∞) for some
a > 0, An = An(mod N) and fn(·, ·) = fn(mod L)(·, ·).

Lemma 3.10. The sequence {xn} generated by (3.7) is well defined.

Proof. Observe that JC1 is closed and convex. Moreover, it is easy to see that ϕ(z, yn) ≤
ϕ(z, xn) is equivalent to

0 ≤ ||xn||2 − ||yn||2 − 2⟨z, Jxn − Jyn⟩,

which is affine in z. Hence, by induction JCn is closed and convex for each n ≥ 1. There-
fore, from Lemma 2.3, we have that Cn is a sunny generalized retract of E for each n ≥ 1.
This shows that {xn} is well defined. □

Theorem 3.1. Let E be a uniformly smooth and uniformly convex real Banach space with dual
space E∗ and let C be a nonempty closed and convex subset of E such that JC is closed and convex.
Let fl, l = 1, 2, 3, ..., L be a family of bifunctions from JC × JC to R satisfying (A1) − (A4),
Tn : C → E∗, n = 1, 2, 3, ... be an infinite family of generalized J∗−nonexpansive maps, Ak :
C → E∗, k = 1, 2, 3, ..., N be a finite family of continuous monotone mappings and Γ be a family
of J∗−closed and generalized J∗−nonexpansive maps from C to E∗ such that ∩∞

n=1FJ(Tn) =

FJ(Γ) ̸= ∅ and B := FJ(Γ) ∩
[
∩L
l=1 EP (fl)

]
∩
[
∩N
k=1 V I(C,Ak)

]
̸= ∅. Assume that JFJ(Γ)

is convex and {Tn} satisfies the NST-condition with Γ. Then, {xn} generated by (3.7) converges
strongly to RBx, where RB is the sunny generalized nonexpansive retraction of E onto B.
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Proof. The proof is given in 6 steps.
Step 1: We show that the expected limit RBx exists as a point in Cn for all n ≥ 1.
First, we show that B ⊂ Cn for all n ≥ 1 and B is a sunny generalized retract of E.
Since C1 = C, we have B ⊂ C1. Suppose B ⊂ Cn for some n ∈ N. Let u ∈ B. We observe
from algorithm (3.7) that un = Frnxn and zn = Trnxn for all n ∈ N, using this and the fact
that {Tn} is an infinite family of generalized J∗−nonexpansive maps, the definition of yn,
Lemmas 2.7, 2.8, and 2.1, we compute as follows:

ϕ(u, yn) = ϕ(u, J−1(α1Jxn + α2Jzn + α3Tnun)

≤ α1

[
||u||2 − 2⟨u, Jxn⟩+ ||xn||2

]
+ α2

[
||u||2 − 2⟨u, Jzn⟩+ ||zn||2

]
+α3

[
||u||2 − 2⟨u, J(J∗ ◦ Tn)un⟩+ ||Tnun||2

]
−α1α3g(||Jxn − J(J∗ ◦ Tn)un||)

= α1ϕ(u, xn) + α2ϕ(u, zn) + α3ϕ(u, (J∗ ◦ Tn)un)− α1α3g(||Jxn − Tnun||)
≤ α1ϕ(u, xn) + α2ϕ(u, zn) + α3ϕ(u, un)− α1α3g(||Jxn − Tnun||)(3.8)
= α1ϕ(u, xn) + α2ϕ(u, Trnxn) + α3ϕ(u, un)− α1α3g(||Jxn − Tnun||)
≤ α1ϕ(u, xn) + α2ϕ(u, xn) + α3ϕ(u, un)− α1α3g(||Jxn − Tnun||),

which yields

(3.9) ϕ(u, yn) ≤ ϕ(u, xn)− α1α3g(||Jxn − Tnun||).
Hence, ϕ(u, yn) ≤ ϕ(u, xn) and we have that u ∈ Cn+1, which implies that B ⊂ Cn for
all n ≥ 1. Moreover, From Lemma 2.7 and 2.8 both JV I(C,Ak) and JEP (fl) are closed
and convex for each l and for each k. Also, using our assumption and lemma 2.9, we have
that J(FJ(Γ) is closed and convex. Since E is uniformly convex, J is one-to-one. Thus,
we have that,
J
(
FJ(Γ)∩

[
∩L
l=1EP (fl)

]
∩
[
∩N
k=1V I(C,Ak)

])
= JFJ(Γ)∩J

[
∩L
l=1EP (fl)

]
∩J

[
∩N
k=1V I(C,Ak)

]
so J(B) is closed and convex. Using Lemma 2.3, we obtain that B is a sunny generalized
retract of E. Therefore, from Lemma 2.5 , we have that RBx exists as a point in Cn for all
n ≥ 1. This completes step 1.
Step 2: We show that the sequence {xn} defined by (3.7) converges to some x∗ ∈ C.
Using the fact that xn = RCn

x and Lemma 2.4(ii), we obtain

ϕ(x, xn) = ϕ(x,RCn
x) ≤ ϕ(x, u)− ϕ(RCn

x, u) ≤ ϕ(x, u),

for all u ∈ FJ(Γ) ∩ EP (fl) ∩ V I(C,Ak) ⊂ Cn; (l = 1, 2, . . . , L; k = 1, 2, . . . ,K). This
implies that {ϕ(x, xn)} is bounded. Hence, from equation (2.5), {xn} is bounded. Also,
since xn+1 = RCn+1

x ∈ Cn+1 ⊂ Cn, and xn = RCn
x ∈ Cn, applying Lemma 2.4(ii) gives

ϕ(x, xn) ≤ ϕ(x, xn+1) ∀ n ∈ N.
So, limn→∞ ϕ(x, xn) exists. Again, using Lemma 2.4(ii) and xn = RCnx, we obtain that
for all m,n ∈ N with m > n,

ϕ(xn, xm) = ϕ(RCn
x, xm) ≤ ϕ(x, xm)− ϕ(x,RCn

x)

= ϕ(x, xm)− ϕ(x, xn) → 0 as n → ∞.(3.10)

From Lemma 2.2, we conclude that ||xn − xm|| → 0, as m, n → ∞. Hence, {xn} is a
Cauchy sequence in C, and so, there exists x∗ ∈ C such that xn → x∗ completing step 2.
Step 3: We prove x∗ ∈ ∩N

k=1V I(C,Ak).
From the definitions of Cn+1 and xn+1, we obtain that ϕ(xn+1, yn) ≤ ϕ(xn+1, xn) → 0 as
n → ∞. Hence, by Lemma 2.2 , we have that

(3.11) lim
n→∞

||xn − yn|| = 0.
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Since from step 2 xn → x∗ as n → ∞, equation (3.11) implies that yn → x∗ as n → ∞.
Using the fact that un = Frnxn for all n ∈ N and Lemma 2.2, we get for u ∈ B,

ϕ(un, xn) = ϕ(Frnxn, xn)(3.12)
≤ ϕ(u, xn)− ϕ(u, Frnxn)

= ϕ(u, xn)− ϕ(u, un).

From equations (3.8) and (3.9) we have

(3.13) ϕ(u, yn) ≤ α1ϕ(u, xn) + α2ϕ(u, xn) + α3ϕ(u, un) ≤ ϕ(u, xn).

Since xn, yn → x∗ as n → ∞, equation (3.13) implies that ϕ(u, un) → ϕ(u, x∗) as n → ∞.
Therefore, from (3.12), we have ϕ(u, xn) − ϕ(u, un) → 0 as n → ∞ which implies that
limn→∞ ϕ(un, xn) = 0. Hence, from Lemma 2.2, we have

(3.14) lim
n→∞

||un − xn|| = 0.

Observe that since J is uniformly continuous on bounded subsets of E, it follows from
(3.14) that ||Jun − Jxn|| → 0.
Again, since rn ∈ [a,∞), we have that

lim
n→∞

||Jun − Jxn||
rn

= 0.(3.15)

From un = Frnxn, we have

⟨y − un, Anun⟩+
1

rn
⟨y − un, Jun − Jxn⟩ ≥ 0, ∀ y ∈ C.(3.16)

Let {nl}∞l=1 ⊂ N be such that Anl
= A1 ∀ l ≥ 1. Then, from (3.16), we obtain

⟨y − unl
, A1unl

⟩+ 1

rnl

⟨y − unl
, Junl

− Jxnl
⟩ ≥ 0, ∀ y ∈ C.(3.17)

If we set vt = ty + (1− t)x∗ for all t ∈ (0, 1] and y ∈ C, then we get that vt ∈ C. Hence, it
follows from (3.17) that

⟨vt − unl
, A1unl

⟩+ ⟨y − unl
,
Junl

− Jxnl

rnl

⟩ ≥ 0.(3.18)

This implies that

⟨vt − unl
, A1vt⟩ ≥ ⟨vt − unl

, A1vt⟩ − ⟨vt − unl
, A1unl

⟩ − ⟨y − unl
,
Junl

− Jxnl

rnl

⟩

= ⟨vt − unl
, A1vt −A1unl

⟩ − ⟨y − unl
,
Junl

− Jxnl

rnl

⟩.

Since A1 is monotone, ⟨vt − unl
, A1vt −Aunl

⟩ ≥ 0. Thus, using (3.15), we have that

0 ≤ lim
l→∞

⟨vt − unl
, A1vt⟩ = ⟨vt − x∗, A1vt⟩,

therefore,

⟨y − x∗, A1vt⟩ ≥ 0, ∀ y ∈ C.

Letting t → 0 and using continuity of A1, we have that

⟨y − x∗, A1x
∗⟩ ≥ 0, ∀ y ∈ C.

This implies that x∗ ∈ V I(C,A1). Similarly, if {ni}∞i=1 ⊂ N is such that Ani
= A2 for all i ≥

1, then we have again that x∗ ∈ V I(C,A2). If we continue in similar manner, we obtain
that x∗ ∈ ∩N

k=1V I(C,Ak).
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Step 4: We prove that x∗ ∈ FJ(Γ).
First, we show that limn→∞ ||Jxn − Tun|| = 0 ∀ T ∈ Γ.
From inequality (3.9) and the fact that g is nonnegative, we obtain

0 ≤ α1α3g(||Jxn − Tnun||) ≤ ϕ(u, xn)− ϕ(u, yn) ≤ 2||u||.||Jxn − Jyn||+ ||xn − yn||M,

for some M > 0. Thus, using (3.11) and properties of g, we obtain that
limn→∞ ||Jxn−Tnun|| = 0. Using the above and triangle inequality gives ∥Jun−Tnun| →
0 as n → ∞. Since {Tn}∞n=1 satisfies the NST condition with Γ, we have that

(3.19) lim
n→∞

||Jun − Tun|| = 0 ∀ T ∈ Γ.

Now, from equation (3.14), we have un → x∗ ∈ C. Assume that (J∗ ◦ T )un → y∗. Since
T is J∗−closed, we have y∗ = (J∗ ◦ T )x∗. Furthermore, by the uniform continuity of J on
bounded subsets of E, we have: Jun → Jx∗ and J(J∗ ◦ T )un → Jy∗ as n → ∞. Hence,
we have

lim
n→∞

||Jun − J(J∗ ◦ T )un|| = lim
n→∞

||Jun − Tun|| = 0, ∀ T ∈ Γ,

which implies ||Jx∗ − Jy∗|| = ||Jx∗ − J(J∗ ◦ T )x∗|| = ||Jx∗ − Tx∗|| = 0. So, x∗ ∈ FJ(Γ).
Step 5: We prove that x∗ ∈ ∩L

l=1EP (fl).
This follows by similar argument as in step 3 but for the sake of completeness we provide
the details. Using the fact that zn = Trnxn and Lemma 2.7, we obtain that for u ∈ FJ(Γ)∩
EP (fl) ∩ V I(C,Ak) for all i, k,

ϕ(zn, xn) = ϕ(Trnxn, xn)(3.20)
≤ ϕ(u, xn)− ϕ(u, Trnxn)

= ϕ(u, xn)− ϕ(u, zn).

From equations (3.8) and (3.9), we have

(3.21) ϕ(u, yn) ≤ α1ϕ(u, xn) + α2ϕ(u, zn) + α3ϕ(u, xn) ≤ ϕ(u, xn).

Since xn, yn, un → x∗ as n → ∞, from equation (3.21) we have ϕ(u, zn) → ϕ(u, x∗)
as n → ∞. Therefore, from (3.20), we have ϕ(u, xn) − ϕ(u, un) → 0 as n → ∞. Hence
limn→∞ ϕ(zn, xn) = 0. From Lemma 2.2, we have

(3.22) lim
n→∞

||zn − xn|| = 0,

which implies that zn → x∗ as n → ∞. Again, since J is uniformly continuous on
bounded subsets of E, (3.22) implies ∥Jzn − Jxn∥ → 0. Since rn ∈ [a,∞), we have
that

lim
n→∞

||Jzn − Jxn||
rn

= 0.(3.23)

Since zn = Trnxn, we have that
1

rn
⟨y − zn, Jzn − Jxn⟩ ≥ −fn(Jzn, Jy), ∀ y ∈ C.

Let {nl}∞l=1 ⊂ N be such that fnl
= f1 ∀ l ≥ 1. Then, using (A2), we have

⟨y − zn,
Jzn − Jxn

rn
⟩ ≥ −f1(Jzn, Jy) ≥ f1(Jy, Jzn), ∀ y ∈ C.(3.24)

Since f1(x, ·) is convex and lower-semicontinuous and zn → x∗, it follows from equation
(3.23) and inequality (3.24) that

f1(Jy, Jx
∗) ≤ 0, ∀ y ∈ C.



Equilibrium, Variational inequality, and fixed point problems 289

For t ∈ (0, 1] and y ∈ C, let y∗t = tJy + (1 − t)Jx∗. Since JC is convex, we have that
y∗t ∈ JC and hence f1(y

∗
t , Jx

∗) ≤ 0. Applying (A1) gives,

0 = f1(y
∗
t , y

∗
t ) ≤ tf1(y

∗
t , Jy) + (1− t)f1(y

∗
t , Jx

∗) ≤ tf1(y
∗
t , Jy), ∀ y ∈ C.

This implies that
f1(y

∗
t , Jy) ≥ 0, ∀ y ∈ C.

Letting t ↓ 0 and using (A3), we get

f1(Jx
∗, Jy) ≥ 0, ∀ y ∈ C.

Therefore, we have that Jx∗ ∈ JEP (f1). This implies that x∗ ∈ EP (f1). Applying similar
argument, we can show that x∗ ∈ EP (fl) for l = 2, 3, . . . , L. Hence, x∗ ∈ ∩L

l=1EP (fl).
Step 6: Finally, we show that x∗ = RBx.
From Lemma 2.4(ii), we obtain that

(3.25) ϕ(x,RBx) ≤ ϕ(x, x∗)− ϕ(RBx, x
∗) ≤ ϕ(x, x∗).

Again, using Lemma 2.4(ii), definition of xn+1, and x∗ ∈ B ⊂ Cn, we compute as follows:

ϕ(x, xn+1) ≤ ϕ(x, xn+1) + ϕ(xn+1, RBx)

= ϕ(x,RCn+1
x) + ϕ(RCn+1

x,RBx) ≤ ϕ(x,RBx).

Since xn → x∗, taking limits on both sides of the last inequality, we obtain

(3.26) ϕ(x, x∗) ≤ ϕ(x,RBx).

Using inequalities (3.25) and (3.26), we obtain that ϕ(x, x∗) = ϕ(x,RBx). By the unique-
ness of RB(Lemma 2.5), we obtain that x∗ = RBx. This completes proof of the theo-
rem. □

4. APPLICATIONS

Corollary 4.1. Let E be a uniformly smooth and uniformly convex real Banach space with dual
space E∗ and let C be a nonempty closed and convex subset of E such that JC is closed and
convex. Let f be a bifunction from JC × JC to R satisfying (A1) − (A4), A : C → E∗, be a
continuous monotone mapping, T : C → E∗, be a generalized J∗−nonexpansive and J∗−closed
map such that B := FJ(T )∩EP (f)∩V I(C,A) ̸= ∅. Assume that JFJ(T ) is convex. Then, {xn}
generated by (3.7) converges strongly to RBx, where RB is the sunny generalized nonexpansive
retraction of E onto B.

Proof. Set Tn := T for all n ∈ N, A := Ai for any i = 1, 2, · · · , N , and f := fl for any
l = 1, 2, · · · , L. Then, from remark 2.1, {Tn} satisfies the NST-condition with {T}. The
conclusion follows from Theorem 3.1. □

Corollary 4.2. Let E be a uniformly smooth and uniformly convex real Banach space with dual
space E∗ and let C be a nonempty closed and convex subset of E such that JC is closed and
convex. Let fl, l = 1, 2, 3, ..., L be a family of bifunctions from JC × JC to R satisfying (A1) −
(A4), Tn : C → E∗, n = 1, 2, 3, ... be an infinite family of generalized J∗−nonexpansive maps
and Γ be a family of J∗−closed and generalized J∗−nonexpansive maps from C to E∗ such that
∩∞
n=1FJ(Tn) = FJ(Γ) ̸= ∅ and B := FJ(Γ) ∩

[
∩L
l=1 EP (fl)

]
̸= ∅. Assume that JFJ(Γ) is

convex and {Tn} satisfies the NST-condition with Γ. Then, {xn} generated by (3.7) converges
strongly to RBx, where RB is the sunny generalized nonexpansive retraction of E onto B.

Proof. Setting Ak = 0 for any k = 1, 2, 3, ..., N , then result follows from Theorem 3.1. □
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Remark 4.3. We note here that the theorem and corollaries presented above are applicable in
classical Banach spaces, such as Lp, lp, or W

m
p (Ω), 1 < p < ∞, where Wm

p (Ω) denotes the usual
Sobolev space.

Remark 4.4. ([2]; p. 36) The analytical representations of duality maps are known in a number
of Banach spaces, for example, in the spaces Lp, lp, and W p

m(Ω), p ∈ (1,∞), p−1 + q−1 = 1.

Corollary 4.3. Let E = H , a real Hilbert space and let C be a nonempty closed and convex
subset of H . Let fl, l = 1, 2, 3, ..., L be a family of bifunctions from C × C to R satisfying
(A1) − (A4), Tn : C → H,n = 1, 2, 3, ... be an infinite family of nonexpansive maps, Ak :
C → H, k = 1, 2, 3, ..., N be a finite family of continuous monotone mappings and Γ be a family
of closed and generalized nonexpansive maps from C to H such that ∩∞

n=1F (Tn) = F (Γ) ̸= ∅
and B := F (Γ) ∩

[
∩L
l=1 EP (fl)

]
∩
[
∩N
k=1 V I(C,Ak)

]
̸= ∅. Assume that {Tn} satisfies the

NST-condition with Γ. Let {xn} be generated by:

(4.27)



x1 = x ∈ C;C1 = C,

zn := {z ∈ C : fn(z, y) +
1
rn
⟨y − z, z − xn⟩ ≥ 0, ∀ y ∈ C},

un := {z ∈ C : ⟨y − z,Anz⟩+ 1
rn
⟨y − z, z − xn⟩ ≥ 0, ∀ y ∈ C},

yn = α1Jxn + α2zn + α3Tnun,

Cn+1 = {z ∈ Cn : ||z − yn|| ≤ ||z − xn||},
xn+1 = PCn+1x,

for all n ∈ N, α1, α2, α3 ∈ (0, 1) such that α1 + α2 + α3 = 1, {rn} ⊂ [a,∞) for some a > 0,
An = An(mod N) and fn(·, ·) = fn(mod L)(·, ·). Then, {xn} converges strongly to PBx, where
PB is the metric projection of H onto B.

Proof. In a Hilbert space, J is the identity operator and ϕ(x, y) = ||x− y||2 for all x, y ∈ H .
The result follows from Theorem 3.1. □

Example 4.1. Let E = lp, 1 < p < ∞, 1
p + 1

q = 1, and C = Blp(0, 1) = {x ∈ lp : ||x||lp ≤ 1}.
Then JC = Blq (0, 1). Let f : JC × JC −→ R defined by f(x∗, y∗) = ⟨J−1x∗, x∗ − y∗⟩ ∀ x∗ ∈
JC, A : C −→ lq defined by Tx = J(x1, x2, x3, · · · ) ∀ x = (x1, x2, x3, · · · ) ∈ C, T : C −→ lq
defined by Tx = J(0, x1, x2, x3, · · · ) ∀ x = (x1, x2, x3, · · · ) ∈ C, and Tn : C −→ lq defined by
Tnx = αnJx+ (1− αn)Tx, ∀n ≥ 1, ∀ x ∈ C,αn ∈ (0, 1) such that 1− αn ≥ 1

2 . Then C, JC,
f , A, T , and Tn satisfy the conditions of Theorem 3.1. Moreover, 0 ∈ FJ(Γ)∩EP (f)∩V I(C,A).

5. CONCLUSION

Our theorem and its applications complement, generalize, and extend results of Uba et al.
[24], Zegeye and Shahzad [28], Kumam [14], Qin and Su [19], and Nakajo and Takahashi
[17]. Theorem 3.1 is a complementary analogue and extension of Theorem 3.2 of [28] in
the following sense: while Theorem 3.2 of [28] is proved for a finite family of self-maps
in uniformly smooth and strictly convex real Banach space which has the Kadec–Klee
property, Theorem 3.1 is proved for countable family of non-self maps in uniformly smooth
and uniformly convex real Banach space; in Hilbert spaces, Corollary 4.3 is an extension
of Corollary 3.5 of [28] from finite family of nonexpansive self-maps to countable family of
nonexpansive non-self maps. Additionally, Theorem 3.1 extends and generalizes Theorem
3.7 of [24] in the following sense: while Theorem 3.7 of [24] studied equilibrium problem
and countable family of generalized J∗−nonexpansive non-self maps, Theorem 3.1 studied
finite family of equilibrium and variational inequality problems and countable family of
generalizes J∗−nonexpansive non-self maps; corollary 4.2 generalized Theorem 3.7 of [24] to a
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finite family of equilibrium problems and countable family of generalized J∗−nonexpansive
non-self maps. Furthermore, Corollary 4.1 extends Theorem 3.1 of [14] from Hilbert spaces
to a more general uniformly smooth and uniformly convex Banach spaces and to a more
general class of continuous monotone mappings. Finally, Corollary 4.1 improves and
extends the results in [19, 17] from a nonexpansive self-map to a generalized J∗−nonexpansive
non-self map.
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