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The affine Orlicz log-Minkowki inequality

CHANG-JIAN ZHAO

ABSTRACT. In this paper, we establish an affine Orlicz log-Minkowki inequality for the affine quermassinte-
grals by introducing new concepts of affine measures and Orlicz mixed affine measures, and using the newly es-
tablished Orlicz affine Minkowski inequality for the affine quermassintegrals. The affine Orlicz log-Minkowski
inequality in special case yields Lp-affine log-Minkowski inequality. The affine log-Minkowski inequality is also
derived .

1. INTRODUCTION

In 2016, Stancu [16] established the following logarithmic Minkowski inequality.
The log-Minkowski inequality If K and L are convex bodies in Rn containing the origin

in their interior, then

(1.1)
∫
Sn−1

ln

(
h(K,u)

h(L, u)

)
dv1 ≥ 1

n
ln

(
V (K)

V (L)

)
,

with equality if and only if K and L are homothetic, where dv1 is the mixed volume measure
dv1 = 1

nh(K,u)dS(L, u), and dv̄1 = 1
V1(L,K)dv1 is its normalization, and V1(L,K) denotes the

usual mixed volume of L and K, is defined by (see [2])

V1(L,K) =
1

n

∫
Sn−1

h(K,u)dS(L, u),

where S(L, u) is the affine surface area measure of convex body L, and the support function
h(K,x) of K is defined by

h(K,x) = max{x · y : y ∈ K},
for x ∈ Rn.

Lutwak defined the affine quermassintegrals for a convex body K, Φ0(K), Φ1(K), . . . ,
Φn(K), by taking Φ0(K) := V (K),Φn(K) := ωn and for 0 < j < n (also see [11]),

(1.2) Φn−j(K) := ωn

[∫
Gn,j

(
volj(K|ξ)

ωj

)−n

dµj(ξ)

]−1/n

,

where Gn,j denotes the Grassman manifold of j-dimensional subspaces in Rn, and µj

denotes the probability Haar measure on Gn,j , and volj(K|ξ) denotes the j-dimensional
volume of the orthogonal projection of K on j-dimensional subspace ξ ⊂ Rn and ωj

denotes the volume of j-dimensional unit ball.
Recently, the logarithmic Minkowski inequality and its dual form have attracted exten-

sive attention and research, and the recent research can be found in the references [1], [3],

Received: 21.10.2021. In revised form: 04.01.2022. Accepted: 29.05.2022
2010 Mathematics Subject Classification. 46E30, 52C07.
Key words and phrases. affine quermassintegral, Orlicz affine quermassintegral, log-Minkowski inequality, Orlicz

affine Minkowski inequality.

293



294 Chang-Jian Zhao

[4], [6], [7], [8], [12], [13], [14], [17], [18], [19], [20], [21], [22] and [23]. In the paper, we gen-
eralize the usual volumes and log-Minkowski inequality (1.1) to the affine quermassinte-
grals and Orlicz space, respectively. The following affine Orlicz log-Minkowski inequality
is established by introducing the concepts of affine and Orlicz affine measures and using
the newly established Orlicz Minkowski inequality for affine quermassintegrals. The new
affine Orlicz log-Minkowski inequality which in special case yields the following Lp-affine
log-Minkowski inequality. The affine log-Minkowski inequality is also derived.

Theorem 1.1. (The affine Orlicz log-Minkowski inequality) If K and L are convex bodies in Rn

containing the origin in their interior, 0 < j ≤ n and φ : [0,∞) → (0,∞) is a convex and
increasing function such that φ(0) = 0 and φ(1) = 1, then

(1.3)
∫
Gn,j

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

φ,n−j(L,K) ≥ ln

(
φ

((
Φn−j(K)

Φn−j(L)

)1/j
))

.

If φ is strictly convex, equality holds if and only if L and K are homothetic. Here V (j)
φ (L|ξ,K|ξ)

denotes the Orlicz mixed volume of j-dimensional L|ξ and K|ξ in j-dimensional subspace ξ,
dΦφ,n−j(L,K) denotes a new Orlicz affine probability measure of L and K, is defined by (see
Section 3)

(1.4) dΦ−n
φ,n−j(L,K) =

1

Φ−n
φ,n−j(L,K)

dφ−n
φ,n−j(L,K),

where dφφ,n−j(L,K) denotes the Orlicz affine measure, is defined by

(1.5) dφ−n
φ,n−j(L,K) =

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

(
ωnvolj(L|ξ)

ωj

)−n

dµj(ξ),

and Φφ,n−j(L,K) is the Orlicz affine quermissintegral of L and K, is defined by (see [24])

(1.6) Φφ,n−j(L,K) = ωn

[∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

(
volj(L|ξ)

ωj

)−n

dµj(ξ)

]−1/n

.

A special case of (1.3) is the following Lp-affine log-Minkowski inequality for the affine
quermassintegrals.

The Lp-affine log-Minkowski inequality If K and L are convex bodies in Rn containing
the origin in their interior, 0 < j ≤ n and p ≥ 1, then

(1.7)
∫
Gn,j

ln

(
V

(j)
p (L|ξ,K|ξ)
volj(L|ξ)

)
dΦ−n

p,n−j(L,K) ≥ p

j
ln

(
Φn−j(K)

Φn−j(L)

)
,

with equality if and only if L and K are homothetic. Here V
(j)
p (L|ξ,K|ξ) denotes the Lp-

dual mixed volume of j-dimensional convex bodies L|ξ and K|ξ in j-dimensional subspace ξ,
dΦp,n−j(L,K) denotes a new Lp-affine probability measure of convex bodies L and K, is defined
by

(1.8) dΦ−n
p,n−j(L,K) =

1

Φ−n
p,n−j(L,K)

dφ−n
p,n−j(L,K),

where dφp,n−j(L,K) denotes the Lp-affine measure, is defined by

(1.9) dφ−n
p,n−j(L,K) =

V
(j)
p (L|ξ,K|ξ)
volj(L|ξ)

(
ωnvolj(L|ξ)

ωj

)−n

dµj(ξ),
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and Φp,n−j(L,K) is the Lp-affine quermissintegral of L and K, is defined by

(1.10) Φp,n−j(L,K) = ωn

[∫
Gn,j

V
(j)
p (L|ξ,K|ξ)
volj(L|ξ)

(
volj(L|ξ)

ωj

)−n

dµj(ξ)

]−1/n

,

which is as in (1.6).
The Lp log-Minkowski inequality has been established in [22]. Obviously, the follow-

ing affine log-Minkowski inequality for the affine quermassintegrals can be derived from
(1.3).

The affine log-Minkowski inequality If K and L are convex bodies in Rn containing the
origin in their interior and 0 < j ≤ n, then

(1.11)
∫
Gn,j

ln

(
V

(j)
1 (L|ξ,K|ξ)
volj(L|ξ)

)
dΦ−n

n−j(L,K) ≥ 1

j
ln

(
Φn−j(K)

Φn−j(L)

)
,

with equality if and only if L and K are homothetic. Here V
(j)
1 (L|ξ,K|ξ) denotes the mixed

volume of j-dimensional convex bodies L|ξ and K|ξ in j-dimensional subspace ξ, dΦn−j(L,K)
denotes a new affine probability measure of convex bodies L and K, is defined by

(1.12) dΦ−n
n−j(L,K) =

1

Φ−n
n−j(L,K)

dφ−n
n−j(L,K),

where dφn−j(L,K) denotes the affine measure, is defined by

(1.13) dφ−n
n−j(L,K) =

V
(j)
1 (L|ξ,K|ξ)
volj(L|ξ)

(
ωnvolj(L|ξ)

ωj

)−n

dµj(ξ),

and Φn−j(L,K) is the mixed affine quermissintegral of L and K, is defined by

(1.14) Φn−j(L,K) = ωn

[∫
Gn,j

V
(j)
1 (L|ξ,K|ξ)
volj(L|ξ)

(
volj(L|ξ)

ωj

)−n

dµj(ξ)

]−1/n

.

Obviously, when L = K, Φn−j(L,K) becomes the well-known affine quermissintegral
Φn−j(K).

It’s worth mentioning that here we are establishing the affine Orlicz log-Minkowki
inequality. In fact, the Orlicz log-Minkowki inequality, which ia a special case of (1.3), has
been established in [22] as follows:

The Orlicz log-Minkowski inequality If K and L are convex bodies in Rn that containing
the origin in their interior, and φ : [0,∞) → (0,∞) is a convex and increasing function such that
φ(0) = 0 and φ(1) = 1, then∫

Sn−1

ln

(
φ

(
h(K,u)

h(L, u)

))
dvφ ≥ ln

(
φ

((
V (K)

V (L)

)1/n
))

.

If φ is strictly convex, equality holds if and only if K are L homothetic, where dvφ is the Or-
licz mixed volume measure dvφ = 1

nφ
(

h(K,u)
h(L,u)

)
h(L, u)dS(L, ·), and dv̄φ = 1

Vφ(L,K)dvφ is its
normalization, and Vφ(L,K) denotes the usual Orlicz mixed volume of L and K, defined by (see
[5])

Vφ(L,K) =
1

n

∫
Sn−1

φ

(
h(K,u)

h(L, u)

)
h(L, u)dS(L, u).

where S(L, ·) is the mixed surface area measure of L.
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2. NOTATIONS AND PRELIMINARIES

The setting for this paper is n-dimensional Euclidean space Rn. A body in Rn is a
compact set equal to the closure of its interior. A set K is called a convex body, if it is
compact and convex subsets with non-empty interiors. Let Kn denote the class of convex
bodies in Rn. Let Kn

o denote the class of convex bodies containing the origin in their
interiors in Rn. We reserve the letter u ∈ Sn−1 for unit vectors, and the letter B for the
unit ball centered at the origin. The surface of B is Sn−1. For a compact set K, we write
V (K) for the (n-dimensional) Lebesgue measure of K and call this the volume of K. Let
d denote the Hausdorff metric on Kn, i.e., for K,L ∈ Kn,

d(K,L) = |h(K,u)− h(L, u)|∞,

where | · |∞ denotes the sup-norm on the space of continuous functions C(Sn−1). Let
K ⊂ Rn be a nonempty closed convex set. If ξ is a subspace of Rn, then it is easy to show
that

h(K | ξ, x) = h(K,x | ξ),
for x ∈ Rn. Let φ : [0,∞) → (0,∞) be a convex and increasing function such that φ(1) =
1 and φ(0) = 0. Let Φ denote the set of convex functions φ : [0,∞) → [0,∞) that is
increasing and satisfies φ(0) = 0 and φ(1) = 1.

2.1 Mixed volumes

If Ki ∈ Kn (i = 1, 2, . . . , r) and λi (i = 1, 2, . . . , r) are nonnegative real numbers, then
the volume of

∑r
i=1 λiKi is a homogeneous polynomial in λi given by (see e.g. [9])

(2.15) V (λ1K1 + · · ·+ λnKn) =
∑

i1,...,in

λi1 . . . λinVi1...in ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding
r. The coefficient Vi1...in depends only on the bodies Ki1 , . . . ,Kin and is uniquely deter-
mined by (2.15). It is called the mixed volume of Ki1 , . . . ,Kin , and is written as V (Ki1 , . . . ,Kin).
Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L. Then the mixed vol-
ume V (K1, . . . ,Kn) is written as Vi(K,L). If K1 = · · · = Kn−i = K, Kn−i+1 = · · · =
Kn = B. The mixed volume Vi(K,B) is written as Wi(K) and called as quermassinte-
grals (or ith mixed quermassintegrals) of K. We write Wi(K,L) for the mixed volume
V (K, . . . ,K,B, . . . , B︸ ︷︷ ︸

i

, L) and call as mixed quermassintegrals, and

Wi(K,L) =
1

n

∫
Sn−1

h(L, u)dSi(K,u).

Associated with K1, . . . ,Kn ∈ Kn is a Borel measure S(K1, . . . ,Kn−1, ·) on Sn−1, called
the mixed surface area measure of K1, . . . ,Kn−1, which has the property that for each
K ∈ Kn,

V (K1, . . . ,Kn−1,K) =
1

n

∫
Sn−1

h(K,u)dS(K1, . . . ,Kn−1, u).

Let K1 = . . . = Kn−i−1 = K and Kn−i = . . . = Kn−1 = L, then the mixed surface area
measure S(K1, . . . ,Kn−1, ·) is written as S(K[n−i], L[i], ·). When L = B, S(K[n−i], L[i], ·)
is written as Si(K, ·) and called as ith mixed surface area measure.

2.2 Lp-mixed volumes

Mixed quermassintegrals are the first variation of the ordinary quermassintegrals with
respect to Minkowski addition. The p-mixed quermassintegrals Wp,0(K,L), Wp,1(K,L), . . . ,
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Wp,n−1(K,L), as the first variation of the ordinary quermassintegrals, with respect to
Firey addition, for K,L ∈ Kn, and real p ≥ 1, is defined by (see e.g. [10])

Wp,i(K,L) =
p

n− i
lim

ε→0+

Wi(K +p ε · L)−Wi(K)

ε
.

The mixed p-quermassintegrals Wp,i(K,L), for all K,L ∈ Kn, has the following integral
representation:

(2.16) Wp,i(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp,i(K,u),

where Sp,i(K, ·) denotes the Boel measure on Sn−1. The measure Sp,i(K, ·) is absolutely
continuous with respect to Si(K, ·), and has Radon-Nikodym derivative

dSp,i(K, ·)
dSi(K, ·)

= h(K, ·)1−p,

where Si(K, ·) is a regular Boel measure on Sn−1. The measure Sn−1(K, ·) is independent
of the body K, and is just ordinary Lebesgue measure, S, on Sn−1. Si(B, ·) denotes the i-th
surface area measure of the unit ball in Rn. In fact, Si(B, ·) = S for all i. The surface area
measure S0(K, ·) just is S(K, ·). When i = 0, Sp,i(K, ·) is written as Sp(K, ·). Obviously,
putting i = 0 in (2.16), the mixed p-quermassintegrals Wp,i(K,L) become the well-known
Lp-mixed volume Vp(K,L), is defined by

(2.17) Vp(K,L) =
1

n

∫
Sn−1

h(L, u)pdSp(K,u).

2.3 Orlicz mixed volumes

The Orlicz mixed volume was introduced by Gardner, Hug and Weil [5], as follows: for
K,L ∈ Kn

o and φ ∈ Φ, the Orlicz mixed volume of L and K, is denoted by Vφ(L,K), is
defined by

(2.18) Vφ(L,K) =
1

n

∫
Sn−1

φ

(
h(K,u)

h(L, u)

)
h(L, u)dS(L, u).

If φ(t) = tp and p ≥ 1, then the Orlicz mixed volume Vφ(L,K) becomes the classical Lp-
mixed volume Vp(L,K). The Orlicz-Minkowski inequality is the following: for K,L ∈ Kn

o

and φ ∈ Φ, then

Vφ(L,K) ≥ V (L) · φ

((
V (K)

V (L)

)1/n
)
.

If φ is strictly convex, equality holds if and only if K and L are homothetic.

2.4 Orlicz mixed affine quermassintegrals

The Orlicz mixed affine querlmassintegral of convex bodies K and L, is denoted by
Φφ,n−j(K,L), is defined by (see [24])

(2.19) Φφ,n−j(K,L) := ωn

[∫
Gn,j

V
(j)
φ (K|ξ, L|ξ)
volj(K|ξ)

(
volj(K|ξ)

ωj

)−n

dµj(ξ)

]−1/n

,

where φ ∈ Φ, K,L ∈ Kn
o and 0 < j ≤ n. Specifically, for j = n, it follows that

(2.20) Φφ,0(K,L) =

(
V (K)

Vφ(K,L)

)1/n

V (K).
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3. ORLICZ AFFINE LOG-MINKOWSKI INEQUALITY

In the section, in order to derive the Orlicz affine log-Minkowski inequality, we need to
define some new affine measures. Lutwak [11] defined the affine quermassintegrals for a
convex body K, Φn−j(K), for 0 ≤ j ≤ n,

(3.21) Φn−j(K) := ωn

[∫
Gn,j

(
volj(K|ξ)

ωj

)−n

dµj(ξ)

]−1/n

.

From (3.21), we introduce the following affine measure of star body K.

Definition 3.1. (The affine measure) For K ∈ Kn
o and 0 < j ≤ n, the affine measure of K,

is denoted by dφ−n
n−j(K), is defined by

(3.22) dφ−n
n−j(K) =

(
ωnvolj(K|ξ)

ωj

)−n

dµj(ξ).

From Definition 3.1, we find the following affine probability measure.

(3.23) dΦ−n
n−j(K) =

1

dΦ−n
n−j(K)

dφ−n
n−j(K).

For φ ∈ Φ and 0 < j ≤ n, Orlicz mixed affine quermasintegral of L and K, is denoted
by Φφ,n−j(L,K), is defined by (see [24])

(3.24) Φφ,n−j(L,K) = ωn

[∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

(
volj(L|ξ)

ωj

)−n

dµj(ξ)

]−1/n

.

From (3.24), we introduce the following Orlicz affine measure of convex bodies L and K.

Definition 3.2. (Orlicz mixed affine measure) For L,K ∈ Kn
o , 0 < j ≤ n and φ ∈ Φ, the

Orlicz mixed affine measure of L and K, is denoted by dφ−n
φ,n−j(L,K), is defined by

(3.25) dφ−n
φ,n−j(L,K) =

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

(
ωnvolj(L|ξ)

ωj

)−n

dµj(ξ),

From Definition 3.2, Orlicz mixed affine probability measure is defined by

(3.26) dΦ−n
φ,n−j(L,K) =

1

Φ−n
φ,n−j(L,K)

dφ−n
φ,n−j(L,K).

Lemma 3.1. ([24]) (The Orlicz affine Minkowski inequlity for mixed affine quermassinte-
grals) If φ ∈ Φ, 0 < j ≤ n and K,L ∈ Kn

o , then(
Φφ,n−j(K,L)

Φn−j(K)

)−n

≥ φ

((
Φn−j(L)

Φn−j(K)

)1/j
)
.

If φ is strictly convex, equality holds if and only if K and L are homothetic.

Theorem 3.2. (The affine Orlicz log-Minkowski inequality) If L,K ∈ Kn
o , 0 < j ≤ n and φ ∈ Φ,

then ∫
Gn,j

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dΦ−n

φ,n−j(L,K) ≥ ln

(
Φn

n−j(L)

Φn
φ,n−j(L,K)

)

(3.27) ≥ ln

(
φ

((
Φn−j(K)

Φn−j(L)

)1/j
))

.

If φ is strictly convex, each equality holds if and only if L and K are homothetic.
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Proof. From (3.22) and (3.25), we have

∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L)

(3.28) =

∫
Gn,j

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

φ,n−j(L,K).

Note the following equality

Φ−n
φ,n−j(L,K) =

∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

(
ωnvolj(L|ξ)

ωj

)−n

dµj(ξ).

From Lebesgue’s dominated convergence theorem, we obtain

∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

dφ−n
n−j(L) → Φ−n

φ,n−j(L,K),

as q → ∞, and

∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L)

→
∫
Gn,j

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

φ,n−j(L,K),

as q → ∞.
Given the function gL,K(q) : [1,∞] → R, is defined by

(3.29) gL,K(q) =
1

Φ−n
φ,n−j(L,K)

∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

dφ−n
n−j(L).

From (3.29), we obtain

dgL,K(q)

dq
=

n

(q + n)2Φ−n
φ,n−j(L,K)

×

(3.30) ×
∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L).

and

(3.31) lim
q→∞

gL,K(q) = 1.
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From (3.29), (3.30) and (3.31), we have

lim
q→∞

ln(gL,K(q))q+n = −(q + n)2 lim
q→∞

1

gL,K(q)

dgL,K(q)

dq

= − n

Φ−n
φ,n−j(L,K)

×

× lim
q→∞

∫
Gn,j

(
V (j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

ln

(
V (j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L)

gL,K(q)

= − n

Φ−n
φ,n−j(L,K)

∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

×

× ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L).

Hence

exp

(
− n

Φ−n
φ,n−j(L,K)

∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L)

)

= lim
q→∞

(gL,K)q+n

(3.32) = lim
q→∞

 1

Φ−n
φ,n−j(L,K)

∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

dφ−n
n−j(L)

q+n

.

On the other hand, from Hölder’s inequality∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

dφ−n
n−j(L)

(q+n)/q (∫
Gn,j

dφ−n
n−j(L)

)−n/q

(3.33) ≤
∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

dφ−n
n−j(L) = Φ−n

φ,n−j(L,K).

If φ is strictly convex, from the equality of Hölder’s inequality, it follows that the equal-
ity in (3.33) holds if and only if K|ξ and L|ξ are homothetic. This yields that equality in
(3.33) holds if and only if K and L are homothetic. Hence 1

Φ−n
φ,n−j(L,K)

∫
Gn,j

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

) q
q+n

dφ−n
n−j(L)

q+n

≤

(
Φn

n−j(L)

Φ−n
φ,n−j(L,K)

)−n

.

If φ is strictly convex, equality holds if and only if K and L are homothetic. Therefore

exp

(
− n

Φ−n
φ,n−j(L,K)

∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L)

)

≤

(
Φ−n

n−j(L)

Φ−n
φ,n−j(L,K)

)n

.
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Hence

1

Φn
φ,n−j(L,K)

∫
Gn,j

V
(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dφ−n

n−j(L) ≥ ln

(
Φ−n

φ,n−j(L,K)

Φ−n
n−j(L)

)
.

That is

(3.34)
∫
Gn,j

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dΦ−n

φ,n−j(L,K) ≥ ln

(
Φ−n

φ,n−j(L,K)

Φ−n
n−j(L)

)
.

If φ is strictly convex, equality holds if and only if K and L are homothetic. The completes
proof of the first inequality in (3.27).

Furthermore, by using the Orlicz affine Minkowski inequlity for mixed affine quer-
massintegrals in Lemma 3.1, we obtain

(3.35)
∫
Gn,j

ln

(
V

(j)
φ (L|ξ,K|ξ)
volj(L|ξ)

)
dΦ−n

φ,n−j(L,K) ≥ ln

(
φ

((
Φn−j(K)

Φn−j(L)

)1/j
))

.

If φ is strictly convex, from the equality of Orlicz affine Minkowski inequlity, the equality
in (3.35) holds if and only if K and L are homothetic.

This completes the proof. □

When φ(t) = t, (3.27) becomes the affine log-Minkowski inequality (1.11) stated in the
introduction. When φ(t) = tp and p ≥ 1, (3.27) becomes the Lp-affine log-Minkowski
inequality (1.7) stated in the introduction.

Moreover, when j = n, some new Orlicz log-Minkowski inequalities for the Orlicz
mixed volumes are derived. Here we omit the details.
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