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Stepsize Choice for Korpelevich’s and Popov’s
Extragradient Algorithms for Convex-Concave Minimax
Problems

JIAOJIAO WANG and HONG-KUN XU

ABSTRACT. We show that the choice of stepsize in Korpelevich’s extragradient algorithm is sharp, while the
choice of stepsize in Popov’s extragradient algorithm can be relaxed. We also extend Korpelevich’s extragradient
algorithm and Popov’s extragradient algorithm (with larger stepsize) to the infinite-dimensional Hilbert space
framework, with weak convergence.

1. INTRODUCTION

Consider a convex-concave minimax problem

(1.1) min
x∈C

max
y∈D

f(x, y),

where C and D are nonempty closed convex subsets of Hilbert spaces H1 and H2, respec-
tively, and the objective function f : C × D → R is convex-concave, that is, (i) f(·, y) is
convex for each fixed y ∈ D, and (ii) f(x, ·) is concave for each fixed x ∈ C. Set E := C×D
and H := H1×H2. Let E∗ := C∗×D∗ denote the set of solutions of (1.1) (i.e., set of saddle
points of f ). Assume E∗ ̸= ∅. In addition, assume f is continuously Fréchet differentiable.
Recall that the (saddle) gradient ∂f of f , which is denoted by g, is defined as

(1.2) g(z) ≡ ∂f(z) =

[
∇xf(x, y)

−∇yf(x, y)

]
.

Recall also that f is said to be L-smooth for some L ≥ 0 if the gradient g is L-Lipschitz
continuous, that is,

∥g(z)− g(z′)∥ ≤ L∥z′ − z∥, z, z′ ∈ E.

It is known that g is monotone and a point z∗ = (x∗, y∗) ∈ E is a solution of (1.1) (i.e., a
saddle point of f ) if and only if z∗ is a solution to the variational inequality (VI):

(1.3) ⟨g(z∗), z − z∗⟩ ≥ 0, z ∈ E.

Note that VI (1.3) is equivalent to the fixed point equation

(1.4) z∗ = PE(z
∗ − λg(z∗))

for every λ > 0. Here PE is the nearest point projection from H to E defined by

PEz = arg min
w∈E

∥w − z∥2, z ∈ H.
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Recently a lot of attention has been paid to algorithmic approaches to minimax prob-
lems (1.1), due to applications to machine learning (see [1, 3, 5, 10] and references therein).

Two classic methods, known as extragradient (EG) algorithms, are due to Korpelevich
[4] and Popov [7].

1.1. Korpelevich’s Extragradient Algorithm. In [4], Korpelevich introduced the follow-
ing extragradient (EG) algorithm:{

z̄n = PE(zn − αg(zn))(1.5a)
zn+1 = PE(zn − αg(z̄n))(1.5b)

where z0 ∈ E is an arbitrarily chosen initial point and α > 0 is the stepsize. Korpelevich
proved the following convergence result, where the stepsize α > 0 is selected such that
α < 1/L.

Theorem 1.1. [4, Theorem 1] Suppose H1 = Rd1 and H2 = Rd2 are Euclidean d1- and d2-
spaces, respectively, and f is convex-concave and L-smooth. Suppose, in addition, the stepsize α
is chosen in such a range that 0 < α < 1

L . Then the sequence {zn} generated by (1.5) converges
to a saddle point of f .

1.2. Popov’s Extragradient Algorithm. In [7], Popov introduced another EG algorithm
for the minimax problem (1.1) as follows:{

zn+1 = PE(zn − τg(z̄n))(1.6a)
z̄n+1 = PE(zn+1 − τg(z̄n))(1.6b)

for n = 0, 1, · · · , where z0, z̄0 ∈ E are the initial guesses, and τ > 0 is the sepsize.
Popov’s EG (1.6) differs from Korpelevich’s (1.5) in the way of defining the midway

point z̄n; Popov’s way of defining z̄n looks more complicated than Korpelevich’s. Popov
proved the following convergence result. Note that the stepsize τ is shrunk to the range
(0, 1/3L).

Theorem 1.2. [7, Theorem 1] Suppose H1 = Rd1 and H2 = Rd2 are Euclidean d1- and d2-
spaces, respectively, and f is convex-concave and L-smooth. Suppose, in addition, the stepsize τ
is chosen in such a range that 0 < τ < 1

3L . Then the sequence {zn} generated by (1.6) converges
to a saddle point of f .

The main aim of this paper is to discuss possible enlargement of the stepsizes α and τ
in Korpelevich’s EG (1.5) and Popov’s EG (1.6), respectively. We will show that the range
of Korpelevich’s stepsize α ∈ (0, 1/L) is sharp (see Example 3.1), and the range of Popov’s
stepsize τ ∈ (0, 1/3L) can however be relaxed at least to the range τ ∈ (0, (

√
2−1)/L) (see

Theorem 4.5). We will also include the infinite-dimensional versions of the convergence
results of Korpelevich’s EG (1.5) and Popov’s EG (1.6); in the latter, new stepsize is used.

2. PRELIMINARIES

In this section we present some basic notion and tools which are required in the discus-
sion and proof of the main results in the next section. We will use H to denote a Hilbert
space. The symbols ⟨·, ·⟩ and ∥ · ∥ always stand for the inner product and norm of a given
Hilbert space under any circumstances (no confusions would arise). Let K be a nonempty
closed convex subset of H and PK be the metric projection from H onto K. Recall that

PKu = argmin
v∈K

∥u− v∥2

for all u ∈ H . The following properties of PK will be utilized throughout the subsequent
sections.
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Lemma 2.1. PK satisfies the properties:
(a) ⟨u− PKu, v − PKu⟩ ≤ 0 for all u ∈ H and v ∈ K;
(b) ⟨u− v, PKu−PKv⟩ ≥ ∥PKu−PKv∥2, in particular, ∥PKu−PKv∥ ≤ ∥u− v∥, for all

u, v ∈ H ;
(c) ∥v − PKu∥2 ≤ ∥v − u∥2 − ∥u− PKu∥2 for all u ∈ H and v ∈ K.

We assume that the objective function f in the minimax problem (1.1) is convex-concave
and L-smooth, a consequence of which is that the (saddle) gradient g = ∂f defined in (1.2)
is 1

L -inverse strongly monotone ( 1
L -ISM), that is,

(2.7) ⟨g(z)− g(z′), z − z′⟩ ≥ 1

L
∥g(z)− g(z′)∥2, z, z′ ∈ H.

Closely related to inverse strongly monotone mappings are averaged mappings. Recall
that a mapping T : H → H is said to be µ-averaged (µ-AV) if

T = (1− µ)I + µV

where µ ∈ (0, 1), I is the identity on H , and V : H → H is a nonexpansive mapping (i.e.,
∥V (z)− V (z′)∥ ≤ ∥z − z′∥ for all z, z′ ∈ H). It is known that a projection PK is 1-ISM and
1
2 -AV.

A useful connection between inverse strongly monotone mappings and averaged map-
pings is given below.

Lemma 2.2. (cf. [8]) Given a mapping T : H → H and µ ∈ (0, 1). Then T is µ-AV if and only
I − T is 1

2µ -ISM. In particular, if f is L-smooth (i.e., g is 1
L -ISM), then PK(I − λg) is averaged

for λ such that 0 < λ < 2
L .

We will use the following notation:
• ωw(zn) := {ξ ∈ H : znk

→ ξ weakly for some subsequence {znk
} of {zn}} is the

set of weak accumulation points of a sequence {zn} in H ;
• Fix(T ) := {z ∈ H : Tz = z} is the set of fixed points of a mapping T : H → H .

For the purpose of proving weak (or strong) convergence of a sequence in H , we will
use the following tools listed in the lemmas below.

Lemma 2.3. (Demiclosedness principle for nonexpansive mappings.) [2] Let T : K → K be a
nonexpasive mapping with a fixed point, where K is a nonempty closed convex subset of a Hilbert
space H . Then I − T is demiclosed (at 0), that is, for any sequence {zn} in K, the condition
∥zn − Tzn∥ → 0 implies that ωw(zn) ⊂ Fix(T ).

Lemma 2.4. [6] Suppose K is a nonempty subset of a Hilbert space H and {zn} is sequence in H
such that the following conditions are satisfied:

• limn→∞ ∥zn − z∥ exists for each z ∈ K, and
• ωw(zn) ⊂ K.

Then the sequence {zn} weakly converges to a point in K.

Lemma 2.5. [9] Suppose a real nonnegative sequence {an}∞n=0 satisfies the condition:

an+1 ≤ an + σn, n = 0, 1, · · · ,
where {σn} is a nonnegative real sequence such that

∑∞
n=0 σn < ∞. Then limn→∞ an exists.

Lemma 2.6. [9] Suppose a real nonnegative sequence {an}∞n=0 satisfies the condition:

an+1 ≤ (1− γn)an + δnan + σn, n = 0, 1, · · · ,
where {γn}, {δn}, and {σn} fulfil the properties:

(i) {γn} ⊂ [0, 1] and
∑∞

n=0 γn = ∞,
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(ii) lim supn→∞ δn ≤ 0,
(iii) σn ≥ 0 for all n, and

∑∞
n=0 σn < ∞.

Then limn→∞ an = 0.

3. STEPSIZE CHOICE OF KORPELVICH’S AND POPOV’S EXTRAGRADIENT ALGORITHMS

We begin with a brief discussion on the projection-gradient algorithm (PGA) for solv-
ing a convex minimization problem of the form:

(3.8) min
x∈K

φ(z),

where K is a nonempty closed convex subset of a Hilbert space H , and φ is a convex,
continuously Frechet differentiable function. Recall that PGA generates a sequence {zn}
through the iteration process:

(3.9) zn+1 = PK(zn − λ∇φ(zn)) = PK(I − λ∇φ)zn, n ≥ 0,

where the initial guess z0 ∈ K, and λ > 0 is a (constant) stepsize. The following conver-
gence result is well known in the literature.

Theorem 3.3. Suppose φ is convex and L-smooth (i.e., ∇φ is L-Lipschitz) and suppose (3.8) has
a solution. If the stepsize λ is chosen in the range 0 < λ < 2

L , then the sequence {zn} generated
by PGA (3.9) converges weakly to a solution of (3.8).

Note that φ being convex and L-smooth implies that the mapping PC(I − λ∇φ) is
averaged if 0 < λ < 2/L and nonexpansive if λ = 2/L (cf. [8]).

Comparing the stepsizes α, τ and λ chosen in Korpelvich’s EG (Theorem 1.1), Popov’s
EG (Theorem 1.2), and PGA (Theorem 3.3), respectively, it is natural and reasonable to
wonder if the stepsizes α and τ in Korpelvich’s and Popov’s EGs can be made larger
(close to 2

L ). We are concerned with this issue. More precisely, we will show that the
stepsize α < 1

L in Korpelvich’s EG is sharp (see example 3.1), while the stepsize τ < 1
3L in

Popov’s EG can be relaxed (see Theorem 4.5).

3.1. Stepsize of 1/L is sharp for Korpelvich’s extragradient algorithm.

Example 3.1. If the stepsize α is taken to be 1
L , then Korpelevich’s algorithm (1.5) may

not converge to an optimal solution, as shown by the following simple example. Let
H1 = H2 = R and set C = D = [0, 1] Define the objective function f on E := [0, 1]2 by

f(x, y) =
1

2
x2 − 1

2
y2, 0 ≤ x, y ≤ 1.

Clearly, f is convex-concave and differentiable. Since ∂f
∂x = x and ∂f

∂y = −y, we get
g(z) = ∂f(z) = z for z = (x, y) ∈ E; hence g is 1-Lipschitz. It is easily seen that

(3.10) min
x∈[0,1]

max
y∈[0,1]

f(x, y) = max
y∈[0,1]

min
x∈[0,1]

f(x, y) = f(0, 0) = 0.

Korpelevich’s algorithm (1.5) generates a sequence {zn} by

(3.11) z̄n = PE(zn − αg(zn)), zn+1 = PE(zn − αg(z̄n)).

Now since α = 1
L = 1 and g(zn) = zn for all n, it easily follows that z̄n = (0, 0) and

zn+1 = zn. So, if we take the initial guess z0 ∈ E with z0 ̸= (0, 0), then zn ≡ z0, not
convergent to the saddle point (0,0).

However, if the stepsize α < 1, then the sequence {zn} generated by Korpelevich’s
algorithm (3.11) satisfies

z̄n = (1− α)z0, zn+1 = (1− α(1− α))zn, n ≥ 0.
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It turns out that zn = (1−α(1−α))nz0 → (0, 0), the optimal solution of (3.10). This verifies
Korpelevich’s convergence theorem.

3.2. Relaxation of Stepsize for Popov’s extragradient algorithm. Recall that Popov’s EG
produces a sequence {zn} by making use of the iteration procedure:{

zn+1 = PE(zn − τg(z̄n))(3.12a)
z̄n+1 = PE(zn+1 − τg(z̄n))(3.12b)

for n = 0, 1, · · · , where τ > 0 is the sepsize.
Popov [7] proved convergence of the algorithm (3.12) in the finite-dimensional setting

when the stepsize τ is taken in the range τ ∈ (0, 1
3L ). We now extend this range to τ ∈

(0,
√
2−1
L ).

Theorem 3.4. Suppose H1 = Rd1 and H2 = Rd2 are Euclidean d1- and d2-spaces, respectively,
and f is convex-concave and L-smooth. Then for stepsize τ such that 0 < τ <

√
2−1
L , the sequence

{zn} generated by Popov’s EG (3.12) converges to a saddle point of f .

Proof. Take ẑ ∈ E∗ and use Lemma 2.1 to derive that, for l ≥ 0,

∥zl+1 − ẑ∥2 = ∥PE(zl − τg(z̄l))− ẑ∥2

≤ ∥zl − ẑ − τg(z̄l)∥2 − ∥zl − τg(z̄l)− zl+1∥2

= ∥zl − ẑ∥2 − 2τ⟨zl − ẑ, g(z̄l)⟩+ τ2∥g(z̄l)∥2

− {∥zl − zl+1∥2 − 2τ⟨zl − zl+1, g(z̄l)⟩+ τ2∥g(z̄l)∥2}(3.13)

= ∥zl − ẑ∥2 − ∥zl+1 − zl∥2 − 2τ⟨zl+1 − ẑ, g(z̄l)⟩.(3.14)

Since ẑ is a solution to VI (1.3) and g is 1
L -ISM, it follows that

⟨g(z), z − ẑ⟩ − 1

L
∥g(z)− g(ẑ)∥2 ≥ ⟨g(ẑ), z − ẑ⟩ ≥ 0, z ∈ E.

In particular, we have

⟨g(z̄l), z̄l − ẑ⟩ − 1

L
∥g(z̄l)− g(ẑ)∥2 ≥ 0.

Adding this to the right side of (3.13), we get

∥zl+1 − ẑ∥2 ≤ ∥zl − ẑ∥2 − ∥zl+1 − zl∥2 − 2τ⟨zl+1 − z̄l, g(z̄l)⟩ −
2τ

L
∥g(z̄l)− g(ẑ)∥2

= ∥zl − ẑ∥2 − ∥zl+1 − z̄l∥2 − ∥z̄l − zl∥2 − 2⟨zl+1 − z̄l, z̄l − zl⟩

− 2τ⟨zl+1 − z̄l, g(z̄l)⟩ −
2τ

L
∥g(z̄l)− g(ẑ)∥2

= ∥zl − ẑ∥2 − ∥zl+1 − z̄l∥2 − ∥z̄l − zl∥2

+ 2⟨zl+1 − z̄l, zl − τg(z̄l)− z̄l⟩ −
2τ

L
∥g(z̄l)− g(ẑ)∥2

= ∥zl − ẑ∥2 − ∥zl+1 − z̄l∥2 − ∥z̄l − zl∥2 −
2τ

L
∥g(z̄l)− g(ẑ)∥2

+ 2⟨zl+1 − z̄l, zl − τg(z̄l−1)− z̄l⟩+ 2τ⟨zl+1 − z̄l, g(z̄l−1)− g(z̄l)⟩.(3.15)

However, since z̄l = PG(zl − τg(z̄l−1)), by Lemma 2.1 we have

⟨zl+1 − z̄l, zl − τg(z̄l−1)− z̄l⟩ ≤ 0.

On the other hand, since g is L-Lipschitz continuous,

|⟨zl+1 − z̄l, g(z̄l−1)− g(z̄l)⟩| ≤ L∥zl+1 − z̄l∥ · ∥z̄l−1 − z̄l∥.
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It turns out from (3.15) that

∥zl+1 − ẑ∥2 ≤ ∥zl − ẑ∥2 − ∥zl+1 − z̄l∥2 − ∥z̄l − zl∥2

+ 2τL∥z̄l−1 − z̄l∥∥zl+1 − z̄l∥ −
2τ

L
∥g(z̄l)− g(ẑ)∥2

≤ ∥zl − ẑ∥2 − ∥zl+1 − z̄l∥2 − ∥z̄l − zl∥2

+ 2τL(∥z̄l−1 − zl∥+ ∥zl − z̄l∥)∥zl+1 − z̄l∥ −
2τ

L
∥g(z̄l)− g(ẑ)∥2.(3.16)

An ingredient of this proof lies in the observation below: we have, for θ > 0 and β > 0,

2∥z̄l−1 − zl∥ · ∥zl+1 − z̄l∥ ≤ θ∥z̄l−1 − zl∥2 +
1

θ
∥zl+1 − z̄l∥2,

2∥zl − z̄l∥ · ∥zl+1 − z̄l∥ ≤ 1

β
∥zl − z̄l∥2 + β∥zl+1 − z̄l∥2.

Substituting them into the right side of (3.16) yields

∥zl+1 − ẑ∥2 ≤ ∥zl − ẑ∥2

− (1− τL(θ +
1

θ
+ β))∥zl+1 − z̄l∥2

− (1− τL

β
)∥zl − z̄l∥2

+
τL

θ
(∥zl − z̄l−1∥2 − ∥zl+1 − z̄l∥2)

− 2τ

L
∥g(z̄l)− g(ẑ)∥2.(3.17)

A key point is to choose θ and β appropriately to ensure that the constants c1 and c2 set in
(3.18) are positive, which is made success, due to our choice of the stepsize τ . As a matter
of fact, since 0 < τ <

√
2−1
L < 1

2L , it is possible to take β such that τL < β < 1
τL − 2. We

then take θ > 0 such that θ− < θ < θ+, where

θ± =

1
τL − β ±

√
( 1
τL − β)2 − 4

2
> 0.

With such choices of β and θ we surely have

(3.18) c1 := 1− τL(θ +
1

θ
+ β) > 0, c2 := 1− τL

β
> 0.

Setting c3 := τL
θ and c4 := 2τ

L , we can rewrite (3.17) as

∥zl+1 − ẑ∥2 ≤ ∥zl − ẑ∥2 − c1∥zl+1 − z̄l∥2 − c2∥zl − z̄l∥2

+ c3(∥zl − z̄l−1∥2 − ∥zl+1 − z̄l∥2)− c4∥g(z̄l)− g(ẑ)∥2.(3.19)

Summing up (3.19) from l = p and l = q for each q > p ≥ 0 yields

∥zq+1 − ẑ∥2 ≤ ∥zp − ẑ∥2 − c1

q∑
l=p

∥zl+1 − z̄l∥2 − c2

q∑
l=p

∥zl − z̄l∥2

+ c3(∥zp − z̄p−1∥2 − ∥zq+1 − z̄q∥2)− c4

q∑
l=p

∥g(z̄l)− g(ẑ)∥2.(3.20)

An immediate consequence of (3.20) is the following

(3.21) ∥zq+1 − ẑ∥2 ≤ ∥zp − ẑ∥2 + c3∥zp − z̄p−1∥2
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for all q > p ≥ 0. In particular, (zl) is bounded. Moreover, (3.20) also implies that

•
∑∞

l=0 ∥zl+1 − z̄l∥2 < ∞,
•
∑∞

l=0 ∥zl − z̄l∥2 < ∞,
•
∑∞

l=0 ∥g(z̄l)− g(ẑ)∥2 < ∞.

Consequently,

(3.22) lim
l→∞

∥zl+1 − z̄l∥ = lim
l→∞

∥zl − z̄l∥ = 0

and

(3.23) lim
l→∞

∥g(z̄l)− g(ẑ)∥ = 0.

It turns out that liml→∞ ∥zl+1 − zl∥ = 0. On the other hand, a special case of (3.21) is

(3.24) ∥zl+1 − ẑ∥2 ≤ ∥zl − ẑ∥2 + µl, l ≥ 0,

where µl = τL∥zl − z̄l−1∥2. Since
∑∞

l=1 µl < ∞, we can apply Lemma 2.5 to (3.24) to get
that

(3.25) lim
l→∞

∥zl − ẑ∥ exists for each ẑ ∈ E∗.

By virtue of boundedness, (zl) has a subsequence (zl′) convergent to some point z′. We
now claim that z′ ∈ E∗ and then by (3.25), the full sequence (zl) must be convergent to z′.
Note from (3.22) that z̄l′ → z′ and zl′+1 → z′. By (3.12a), we have zl′+1 = PG(zl′ − τg(z̄l′)).
Taking the limit as l′ → ∞ in yields z′ = PE(z

′ − τg(z′)). This is equivalent to the VI

⟨g(z′), z − z′⟩ ≥ 0

for all z ∈ E. Hence z′ ∈ E∗. This completes the proof. □

Remark 3.1. Our range of stepsize τ ∈ (0, (
√
2−1)/L) relaxed Popov’s range τ ∈ (0, 1/3L).

It remains an open question whether the stepsize can be enlarged to the range τ ∈ (0, 2/L).
Also in our proof of Theorem 1.2, we made use of the fact that g is 1

L -ISM by including
the terms ∥g(z̄l)−g(ẑ)∥2 in (3.16) and

∑q
l=p ∥g(z̄l)−g(ẑ)∥2 in (3.20), respectively. However,

we are unaware if these terms may help to enlarge the choice range of the stepsize τ .
However, from (3.23), we get at least that g(z̄l) → g(ẑ), a consequence of which is that
g(z̃) = g(ẑ) for all z̃, ẑ ∈ E∗. This is no surprising because in the unconstrained case (i.e.,
E = H), g(ẑ) = 0 for all ẑ ∈ E∗.

4. INFINITE-DIMENSIONAL SETTING

We begin by establishing the infinite-dimensional version of convergence of Popov’s
EG algorithm (3.12).

Theorem 4.5. Suppose H1 and H2 are infinite-dimensional Hilbert spaces, and f is convex-
concave and L-smooth. Then for stepsize τ such that 0 < τ <

√
2−1
L , the sequence {zn} generated

by Popov’s EG (3.12) converges weakly to a saddle point of f .

Proof. We will use Lemma 2.4 to prove the weak convergence of {zn}. Because of (3.25)
which remains valid in the infinite-dimensional scenario, it only remains to verify that
ωw(zn) ⊂ E∗. This is not straightforward since the gradient operator g is, in general, not
weakly continuous. To overcome the difficulty, we manipulate the technique of nonex-
pansive mappings. Set T := PG(I − τg); note that Fix(T ) = E∗. Since 0 < τ <

√
2−1
L < 2

L ,
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T is a nonexpansive mapping; hence I − T is demiclosed. We claim that ∥zn − Tzn∥ → 0.
Indeed, we have

∥zn − Tzn∥ ≤ ∥zn − zn+1∥+ ∥zn+1 − Tzn∥
= ∥zn − zn+1∥+ ∥PG(zn − τg(z̄n))− PG(zn − τg(zn))∥
≤ ∥zn − zn+1∥+ τ∥g(z̄n)− g(zn)∥
≤ ∥zn − zn+1∥+ τL∥z̄n − zn∥
≤ ∥zn+1 − z̄n∥+ (1 + τL)∥z̄n − zn∥ → 0 by (3.22).

Consequently, we can use the demiclosedness of I − T (Lemma 2.3) to obtain ωw(zn) ⊂
Fix(T ) = E∗. This together with (3.25) ensures that (zl) converges weakly to a point in
E∗. □

We end this section by proving the infinite-dimensional version of Korpelvich’s EG
algorithm (1.5).

Theorem 4.6. Suppose H1 and H2 are infinite-dimensional Hilbert spaces, and f is convex-
concave and L-smooth. Suppose the stepsize τ is chosen in the range 0 < α < 1

L . Then the
sequence {zn} generated by Korpelvich’s EG algorithm (1.5) converges weakly to a saddle point of
f .

Proof. Observe that Korpelvich’s finite-dimensional argument in the proof of [4, Theorem
1] remains valid for the infinite-dimensional setting; hence [4, Eq. (14), p. 39] remains
true, that is,

(4.26) ∥zn+1 − z∗∥2 ≤ ∥zn − z∗∥2 − (1− α2L2)∥zn − z̄n∥2.

Since 0 < αL < 1, it follows from (4.26) that
• ∥zn+1 − z∗∥2 ≤ ∥zn − z∗∥2; hence {zn} is bounded and

(4.27) lim
n→∞

∥zn − z∗∥ exists for each z∗ ∈ E∗.

• limn→∞ ∥zn − z̄n∥ = 0.
Similar to the proof of Theorem 4.5, it remains to verify that ωw(zn) ⊂ E∗. Define the

mapping T := PG(I − αg). Again we have Fix(T ) = E∗; moreover, T is averaged since
α < 1

L . By (1.5a), z̄n can be rewritten as z̄n = Tzn. Hence, we arrive at

∥zn − Tzn∥ = ∥zn − z̄n∥ → 0.

Consequently, Lemma 2.3 (the demiclosedness principle for nonexpansive mappings) is
applicable to obtain ωw(zn) ⊂ Fix(T ) = E∗. This ends the proof. □

5. CONCLUSION

In this paper we have discussed the problem of stepsize choice in two classic extragra-
dient algorithms - Korpelevich’s and Popov’s methods [4, 7], where the objective function
is convex-concave and L-Lipschitz. We have discovered that the range of the stepsize α ∈
(0, 1/L) is best possible for Korpelevich’s EG algorithm, and relaxed the range of the step-
size τ ∈ (0, 1/3L) in Popov’s EG algorithm to the slightly larger range τ ∈ (0, (

√
2−1)/L).

It is an open question what is the best possible range for the stepsize τ for Popov’s EG
algorithm. In addition, we have also proved weak convergence of both Korpelevich’s and
Popov’s EG algorithms in an infinite-dimensional Hilbert space.
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