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A novel approach for solving simultaneously
one-parameter nonexpansive semigroup, convex
minimization and fixed point problems involving
set-valued operators

T. M. M. SOW, AMINATA DIOP DIENE and N. DJITTE

ABSTRACT. In this paper, we introduce a new iterative process for solving simultaneously one-parameter
nonexpansive semigroup, convex minimization and fixed point problems involving set-valued operators in real
Hilbert spaces and establish strong convergence theorems for the proposed iterative process. There is no com-
pactness assumption. Our results improve important recent results.

1. INTRODUCTION

The theory of one-parameter semigroups of linear operators on in Hilbert spaces started
in the first half of this century, acquired its core in 1948 with the Hille-Yosida genera-
tion theorem, and attained its first apex with the 1957 edition of Semigroups and Func-
tional Analysis by E. Hille and R. S. Phillips. Semigroups have become important tools
for integro-differential equations and functional differential equations, in quantum me-
chanics or in infinite-dimensional control theory. Semigroup methods are also applied
with great success to concrete equations arising, e.g., in population dynamics or transport
theory (see, for example, [14] and the references contained in them).

One parameter family of mappings S := {G(t) : 0 ≤ t < ∞} is called a continuous
Lipschitzian semigroup on K (see e.g., [2]), if the following conditions are satisfied:

(a) G(0)x = x for all x ∈ K;
(b) G(s+ t) = G(s)G(t) for all s, t ≥ 0;
(c) for each t > 0, there exists a bounded measurable function Lt : (0,∞) → [0,∞)

such that ∥G(t)x−G(t)y∥ ≤ Lt∥x− y∥, ∀x, y ∈ K;
(d) for each x ∈ K, the mapping G(.)x from [0,∞) into K is continuous.

A Lipschitzian semigroup S is called nonexpansive if Lt = 1 for all t > 0. Let Fix(S)
denote the common fixed point set of the semigroup S i.e. Fix(S) := {x ∈ K : G(t)x =
x, ∀t > 0}. A simple example of nonexpansive semigroup on a Hilbert space is shown
here. Let G(t) : R3 → R3 be a rotation in R3 defined by, for α ∈ R and t ≥ 0,

(1.1) G(t) =

cos(αt) − sin(αt) 0
cos(αt) sin(αt) 0

0 0 1

 .
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Then S = {G(t) : t ≥ 0} is a nonexpansive semigroup on R3 with the common fixed point
set Fix(S) = {x ∈ R3 : (0, 0, x3)

T }.
Let (E, d) be a metric space, K be a nonempty subset of E and T : K → 2K be a mul-
tivalued mapping. An element x ∈ K is called a fixed point of T if x ∈ Tx. For sin-
gle valued mapping, this reduces to Tx = x. The fixed point set of T is denoted by
Fix(T ) := {x ∈ D(T ) : x ∈ Tx}. For several years, the study of fixed point theory for
single-valued and multivalued nonlinear mappings has attracted, and continues to at-
tract, the interest ofseveral well-known mathematicians (see, for example, Brouwer [5],
Sow, Djitte, and Chidume [23], and Gorniewicz [11]).
Many problems arising in different areas of mathematics such as optimization, variational
analysis, differential equations, mathematical economics, control theory, optimization,
calculus of variations, non-smooth and convex analysis, game theory, mathematical eco-
nomics and in other fields can be modeled as fixed point equations of the form:

(1.2) x ∈ Tx,

where T is a set-valued mapping. In the last decades, many effective algorithms for solv-
ing (1.2) are developed.

Let D be a nonempty subset of a normed space E. The set D is called proximinal (see, e.g.,
[13]) if for each x ∈ E, there exists u ∈ D such that

d(x, u) = inf{∥x− y∥ : y ∈ D} = d(x,D),

where d(x, y) = ∥x − y∥ for all x, y ∈ E. Every nonempty, closed and convex subset
of a real Hilbert space is proximinal. Let CB(D), K(D) and P (D) denote the family of
nonempty closed bounded subsets, nonempty compact subsets, and nonempty proximi-
nal bounded subsets of D respectively. The Pompeiu Hausdorff metric on CB(K) is defined
by:

H(A,B) = max
{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

for all A,B ∈ CB(K) (see, Berinde [3]). A multi-valued mapping T : D(T ) ⊆ E → CB(E)
is called L- Lipschitzian if there exists L > 0 such that

(1.3) H(Tx, Ty) ≤ L∥x− y∥ ∀x, y ∈ D(T ).

When L ∈ (0, 1), we say that T is a contraction, and T is called nonexpansive if L = 1.
A multivalued map T is called quasi-nonexpansive if

H(Tx, Tp) ≤ ∥x− p∥

holds for all x ∈ D(T ) and p ∈ F (T ).

Remark 1.1. It is easy to see that the class of mulivalued quasi-nonexpansive mappings
properly includes that of multivalued nonexpansive maps with fixed points.

The minimization problem (MP) is one of the most important problems in nonlinear anal-
ysis and optimization theory. The MP is defined as follows: find x ∈ H, such that

g(x) = min
y∈H

g(y),

where g : H → (−∞, +∞] is a proper convex and lower semi-continuous. The set of
all minimizers of g on H is denoted by argminy∈H g(y). A successful and powerful tool
for solving this problem is the well-known Proximal Point Algorithm (shortly, the PPA)
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which was initiated by Martinet [15] in 1970 and later studied by Rockafellar [18] in 1976.
The PPA is defined as follows: x1 ∈ H,

xn+1 = argminy∈H

[
g(y) +

1

2λn
∥xn − y∥2

]
,

(1.4)

where λn > 0 for all n ≥ 1. In [18] Rockafellar proved that the sequence {xn} given by
(1.4) converges weakly to a minimizer of g. He then posed the following question:
Q1: does the sequence {xn} converges strongly? This question was resolved in the neg-
ative by Güler [19] (1991). He produced a proper lower semi continuous and convex
function g in l2 for which the PPA converges weakly but not strongly. This leads naturally
to the following question:
Q2: Can the PPA be modified to guarantee strong convergence? In response to Q2, several
works have been done (see, e.g., Güler [19], Kamimura and Takahashi [20], Chidume and
Djitte [9] and the references therein). In the recent years, the problem of finding a com-
mon element of the set of solutions of convex minimization, variational inequality and
the set of fixed point problems in real Hilbert spaces, Banach spaces and complete CAT(0)
(Hadamard) spaces have been intensively studied by many authors; see, for example,
[10, 22] and the references therein.

Motivated and inspired by the ongoing results in this field, we introduce a new itera-
tive approach and prove a strong convergence theorem for convex minimization, one-
parameter nonexpansive semigroup and fixed point problems with multivalued quasi-
nonexpansive mappings in Hilbert spaces. Finally, our method of proof is of independent
interest.

2. PRELIMINARIES

Let H be a real Hilbert space and K be a nonempty convex subset of H.Let g : K →
(−∞, +∞] be a proper, lower semi-continuous and convex function. For every λ > 0, the
Moreau-Yosida resolvent of g, Jg

λ is defined by:

Jg
λx = argminu∈K

[
g(u) +

1

2λ
∥x− u∥2

]
,

for all x ∈ H. It was shown in [19] that the set of fixed points of the resolvent associated
to g coincides with the set of minimizers of g. Also, the resolvent Jg

λ of g is nonexpansive
for all λ > 0.

Lemma 2.1. (Miyadera [17]) Let H be a real Hilbert space and K be a nonempty convex subset
of H . Let g : K → (−∞, +∞] be a proper, lower semi-continuous and convex function. For
every r > 0 and µ > 0, the following holds:

Jg
r x = Jg

µ(
µ

r
x+ (1− µ

r
)Jg

r x).

Lemma 2.2 (Sub-differential inequality, Ambrosi et al., [1]). Let H be a real Hilbert space
and and g : H → (−∞, +∞] be a proper, lower semicontinuous and convex function. Then, for
every x, y ∈ H and λ > 0, the following sub-differential inequality holds:

(2.5)
1

λ
∥Jg

λx− y∥2 − 1

λ
∥x− y∥2 + 1

λ
∥x− Jg

λx∥
2 + g(Jg

λx) ≤ f(y).

Definition 2.1. Let H be a real Hilbert space and T : D(T ) ⊂ H → 2H be a multivalued
mapping.The multivalued map I − T is said to be demiclosed at 0 if for any sequence
{xn} ⊂ D(T ) such that {xn} converges weakly to p and d(xn, Txn) converges to zero,
then p ∈ Tp, where I is the identity map of H .
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Lemma 2.3 (Chidume, [8]). Let H be a real Hilbert space.Then,for every x, y ∈ H, and every
λ ∈ [0, 1], the following hold:

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − (1− λ)λ∥x− y∥2, λ ∈ (0, 1).

Lemma 2.4 (Xu, [24]). Assume that {an} is a sequence of nonnegative real numbers such that
an+1 ≤ (1−αn)an + σn for all n ≥ 0, where {αn} is a sequence in (0, 1) and {σn} is a sequence
in R such that

(a)

∞∑
n=0

αn = ∞, (b) lim sup
n→∞

σn

αn
≤ 0 or

∞∑
n=0

|σn| < ∞. Then lim
n→∞

an = 0.

Lemma 2.5 (Mainge, [16]). Let {tn} be a sequence of real numbers that does not decreases at
infinity in the sense that there exists a subsequence {tni

} of
{tn} such that tni

≤ tni+1
for all i ≥ 0. For n ∈ N, sufficiently large, let {τ(n)} be the sequence

of integers defined as follows:

τ(n) = max{k ≤ n : tk ≤ tk+1}.

Then, τ(n) → ∞ as n → ∞ and

max{tτ(n), tn} ≤ tτ(n)+1.

Lemma 2.6 ([21]). Let D be a nonempty, bounded, closed and convex subset of a real Hilbert
space H and let S := {G(u) : 0 ≤ u < ∞} be a one-parameter nonexpansive semigroup on D,
then for any h ≥ 0,

lim
t→0

sup
x∈D

∥∥∥G(h)
(1
t

∫ t

0

G(u)xdu
)
−

(1
t

∫ t

0

G(u)xdu
)∥∥∥ = 0.

3. MAIN RESULTS

We start by the following result.

Lemma 3.7. Let H be a real Hilbert space and K be a nonempty closed convex subset of H. Let
F : K → (−∞, +∞] be a proper, lower semi-continuous and convex function and T : K →
CB(K) be a multivalued quasi-nonexpansive mapping such that Tp = {p} ∀ p ∈ Fix(T ). Then,
Fix(T ◦ JF

λ ) = Fix(T ) ∩ argminu∈K F (u) and T ◦ JF
λ is a multivalued quasi-nonexpansive

mapping.

Proof. We split the proof into two steps.
Step 1: First, we show that Fix(T )∩argminu∈K F (u) = Fix(T ◦JF

λ ). We note that Fix(T )∩
argminu∈K F (u) = Fix(T ) ∩ Fix(JF

λ ) ⊂ Fix(T ◦ JF
λ ). Thus, we only need to show that

Fix(T ◦ JF
λ ) ⊆ Fix(T ) ∩ Fix(JF

λ ). Let p ∈ Fix(T ) ∩ Fix(JF
λ ) and q ∈ Fix(T ◦ JF

λ ). By
using properties of T and JF

λ , we have

∥q − p∥2 ≤ H(T ◦ JF
λ q, Tp)2

≤ ∥JF
λ q − p∥2.(3.6)

Using the fact that JF
λ is firmly nonexpansive, we have

∥JF
λ q − p∥2 ≤ ⟨JF

λ q − p, q − p⟩

=
1

2
(∥JF

λ q − p∥2 + ∥q − p∥2 − ∥JF
λ q − q∥2),
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which yields

(3.7) ∥JF
λ q − p∥2 ≤ ∥q − p∥2 − ∥JF

λ q − q∥2.

Using (3.6) implies that (3.7) becomes

∥JF
λ q − p∥2 ≤ ∥q − p∥2 − ∥JF

λ q − q∥2

≤ ∥JF
λ q − p∥2 − ∥JF

λ q − q∥2.

Clearly, ∥JF
λ q − q∥ = 0, which implies that

q = JF
λ q.

We obtain,
q = JF

λ q ∈ T ◦ JF
λ q = Tq.

Thus, q ∈ Fix(T ) ∩ Fix(JF
λ ). Hence, Fix(T ) ∩ argminu∈K F (u) = Fix(T ◦ JF

λ ).

Step 2: We show T ◦ JF
λ is a quasi-nonexpansive mapping on K. Let x ∈ K and p ∈

Fix(T ◦ JF
λ ). Then, p ∈ Fix(T ) ∩ Fix(JF

λ ) by step 1. We observe that,

H(T ◦ JF
λ x, T ◦ JF

λ p) = H(T ◦ JF
λ x, Tp)

≤ ∥JF
λ x− p∥

≤ ∥x− p∥.

This completes the proof. □

We now apply Lemma 3.7 for solving simultaneously one-parameter nonexpansive
semigroup, convex minimization and fixed point problems involving set-valued opera-
tors in real Hilbert spaces.

Theorem 3.1. Let K be a nonempty, closed convex subset of real a Hilbert space H. Let F :
K → R ∪ {+∞} be a proper, lower semi-continuous and convex function and f : K → K be
an b-contraction mapping. Let T : K → CB(K) be a multivalued quasi-nonexpansive mapping
and S := {G(u) : 0 ≤ u < ∞} be a one-parameter nonexpansive semigroup on K such that
Γ := Fix(S)∩Fix(T )∩argminu∈K F (u) ̸= ∅.Let αn, θn and βn be three sequences in (0, 1). Let
{xn} be a sequence defined as follows:

x0 ∈ K,
zn = θnxn + (1− θn)un, un ∈ T ◦ JF

λ xn,

yn = βnzn + (1− βn)
1

tn

∫ tn

0

G(u)zn du,

xn+1 = αnf(xn) + (1− αn)yn.

(3.8)

Assume that I − T ◦ JF
λ is demiclosed at origin and Tp = {p}, ∀ p ∈ Γ. Suppose that {αn},

{βn}, and {θn} are the sequences such that:

(i) lim
n→∞

αn = 0,

∞∑
n=0

αn = ∞,

(ii) lim
n→∞

inf(1− θn)θn > 0,

(iii) lim
n→∞

inf(1− βn)βn > 0.

Then, the sequence {xn} defined by (3.8) converges strongly to x∗ ∈ Fix(S) ∩ Fix(T )
∩argminu∈K F (u), which solves the following variational inequality:

(3.9) ⟨x∗ − f(x∗), x∗ − p⟩ ≤ 0, ∀p ∈ Fix(S) ∩ Fix(T ) ∩ argminu∈K F (u).
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Proof. From (I−f) is strongly monotone, then the variational inequality (3.9) has a unique
solution in Γ. In what follows, we denote x∗ to be the unique solution of (3.9). Now we
show that {xn} is bounded. Let p ∈ Γ. Using (3.8), the fact that Tp = {p}, Lemma 3.7 and
Lemma 2.3, we have

∥zn − p∥2 = ∥θnxn + (1− θn)un − p∥2

= θn∥xn − p∥2 + (1− θn)∥un − p∥2 − (1− θn)θn∥xn − un∥2

≤ θn∥xn − p∥2 + (1− θn)H(T (JF
λ xn), Tp)

2 − (1− θn)θn∥xn − un∥2

≤ θn∥xn − p∥2 + (1− θn)∥JF
λ xn − p∥2 − (1− θn)θn∥xn − un∥2

≤ ∥xn − p∥2 − (1− θn)θn∥xn − un∥2.

Hence,

(3.10) ∥zn − p∥2 ≤ ∥xn − p∥2 − (1− θn)θn∥xn − un∥2

From (3.8), we have
∥yn − p∥ = ∥βnzn + (1− βn)

1

tn

∫ tn

0
G(u)zn du− p∥ =∥βn(zn−p) +(1−βn)

( 1

tn

∫ tn

0
[G(u)zn−G(u)p]du

)
∥

≤ βn∥zn − p∥+ (1− βn)∥
1

tn

∫ tn

0
[G(u)zn −G(u)p]du∥ ≤ βn∥zn − p∥+ (1− βn)∥zn − p∥ ≤ ∥zn − p∥.

Therefore, we have

(3.11) ∥yn − p∥ ≤ ∥zn − p∥ ≤ ∥xn − p∥.

By using (3.8) and (3.11), we obtain
∥xn+1 − p∥ = ∥αnf(xn) + (1− αn)yn − p∥

≤ αn∥f(xn)− f(p)∥+ (1− αn)∥yn − p∥+ αn∥f(p)− p∥
≤ (1− αn(1− b))∥xn − p∥+ αn∥f(p)− p∥

≤ max {∥xn − p∥, ∥f(p)− p∥
1− b

}.

By induction, we conclude that

∥xn − p∥ ≤ max {∥x0 − p∥, ∥f(p)− p∥
1− b

}, n ≥ 1.

Hence {xn} is bounded, also {yn} and {f(xn)} are all bounded.
Thus we have

∥xn+1 − p∥2 ≤ ∥αnf(xn) + (1− αn)yn − p∥2

≤ αn∥f(xn)− p∥2 + (1− αn)∥yn − p∥2

≤ αn∥f(xn)− p∥2 + (1− αn)∥xn − p∥2 − (1− αn)(1− θn)θn∥un − xn∥2.

Since {xn} is bounded, then there exists a constant C > 0 such that

(3.12) (1− αn)(1− θn)θn∥un − xn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αnC.

Now, we prove that {xn} converges strongly to x∗. We divide the rest of the proof into
two cases.
Case 1. Assume that the sequence {∥xn−p∥} is monotonically decreasing. Then {∥xn−p∥}
is convergent. Clearly, we have

(3.13) lim
n→∞

[
∥xn − p∥2 − ∥xn+1 − p∥2

]
= 0.

Using the fact that lim
n→∞

inf(1− θn)θn > 0, we have

(3.14) lim
n→∞

∥un − xn∥ = 0.
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Since un ∈ T ◦ JF
λ xn, it follows that

(3.15) lim
n→∞

d(xn, T ◦ JF
λ xn) = 0.

Noticing that

∥zn − xn∥ = ∥θnxn + (1− θn)un − xn∥
= ∥θnxn + (1− θn)un − θnxn − (1− θn)xn∥
= (1− θn)∥un − xn∥
≤ ∥un − xn∥.

Therefore, from (3.16) we get that

(3.16) lim
n→∞

∥zn − xn∥ = 0.

From Lemma 2.3, properties of one-parameter nonexpansive semigroup S and (3.11), we
have

∥yn − x∗∥2 = ∥βnzn + (1− βn)
1

tn

∫ tn

0

G(u)zn du− x∗∥

= βn∥zn − x∗∥2 + (1− βn)∥zn − x∗∥2

−(1− βn)βn∥
1

tn

∫ tn

0

G(u)zn du− zn∥2

≤ ∥xn− x∗∥2 − (1− βn)βn∥
1

tn

∫ tn

0

G(u)zn du− zn∥2.

Hence,

∥xn+1 − x∗∥2 = ∥αnf(xn) + (1− αn)yn − x∗∥2

= ∥(1− αn)(yn − x∗) + αn(f(xn)− x∗)∥2

≤ (1− αn)∥yn− x∗∥2 + αn∥f(xn)− x∗∥2 + 2αn(1− αn)∥f(xn)− x∗∥∥yn− x∗∥

≤ (1− αn)∥xn − x∗∥2 − (1− αn)(1− βn)βn∥
1

tn

∫ tn

0

G(u)zn du− zn∥2

+ 2αn(1− αn)∥yn − x∗∥∥f(xn)− x∗∥.

Since {xn} is bounded, then there exists a constant B > 0 sucht that

(3.17) (1−αn)(1− βn)βn∥
1

tn

∫ tn

0

G(u)zn du− zn∥2 ≤ ∥xn − x∗∥2 −∥xn+1 − x∗∥2 +αnB.

It then implies from (3.17) and (3.13) that

(3.18) lim
n→∞

(1− βn)βn∥
1

tn

∫ tn

0

G(u)zn du− zn∥2 = 0.

Since lim
n→∞

inf βn(1− βn) > 0, we have

(3.19) lim
n→∞

∥ 1

tn

∫ tn

0

G(u)zn du− zn∥ = 0.

Put D := {ω ∈ H : ∥ω − x∗∥ ≤ {∥x0 − x∗∥, ∥f(x
∗)− x∗∥
1− b

}. Then D is a nonempty,

bounded, closed and convex subset of H. Since G(u) is nonexpansive for any u ∈ [0,∞),
D is G(u)-invariant for each u ∈ [0,∞) and contains {zn}.Without loss of generality, we
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may assume that S := {G(u) : 0 ≤ u < ∞} be a one-parameter nonexpansive semigroup
on D. By Lemma 2.6, we get

(3.20) lim
n→∞

∥∥∥G(h)
( 1

tn

∫ tn

0

G(u)zndu
)
−

( 1

tn

∫ tn

0

G(u)zndu
)∥∥∥ = 0,

for every h ∈ [0,∞). Furthermore, observe that

∥zn −G(h)zn∥ ≤ ∥zn − 1

tn

∫ tn

0

G(u)zndu∥+
∥∥∥G(h)

( 1

tn

∫ tn

0

G(u)zndu
)

−
( 1

tn

∫ tn

0

G(h)zndu
)∥∥∥

+
∥∥∥G(h)

( 1

tn

∫ tn

0

G(h)zndu
)
−G(h)zn

∥∥∥
≤ 2∥zn − 1

tn

∫ tn

0

G(u)zndu∥

+
∥∥∥G(h)

( 1

tn

∫ tn

0

G(u)zndu
)
−
( 1

tn

∫ tn

0

G(u)zndu
)∥∥∥,

from inequalities (3.12) and (3.20), we get

(3.21) lim
n→∞

∥zn −G(h)zn∥ = 0.

We show that lim sup
n→+∞

⟨x∗−f(x∗), x∗−xn⟩ ≤ 0.First, we note that there exists a subsequence

{xnj
} of {xn} such that xnj

converges weakly to ω in K and

lim sup
n→+∞

⟨x∗ − f(x∗), x∗ − xn⟩ = lim
j→+∞

⟨x∗ − f(x∗), x∗ − xnj
⟩.

Since {xnj
} is bounded, there exists a subsequence {xnji

} of {xnj
} which converges weakly

to ω. Without loss of generality, we can assume that {xnj
} converges weakly to the point

ω. From (3.15) and I − T ◦ JF
λ is demiclosed, we obtain ω ∈ Fix(T ◦ JF

λ ).Next, we show
that ω ∈ Fix(S). Assume that ω ̸= G(h)ω for some h ∈ [0,∞).

lim inf
j→∞

∥znj
−ω∥ < lim inf

j→∞
∥znj

−G(h)ω∥ ≤ lim inf
j→∞

(
∥znj

−G(h)znj
∥+∥G(h)ω−G(h)znj

∥
)

≤ lim inf
j→∞

∥znj
− ω∥.

This is a contradiction. Hence, ω ∈ Fix(S). Thus ω ∈ Γ := Fix(S)∩Fix(T )∩argminu∈K F (u).
Therefore,

lim sup
n→+∞

⟨x∗ − f(x∗), x∗ − xn⟩ = lim
j→+∞

⟨x∗ − f(x∗), x∗ − xnj
⟩

= ⟨x∗ − f(x∗), x∗ − a)⟩ ≤ 0.

Finally, we show that xn → x∗. From (3.8) and Lemma 2.3, we get that

∥xn+1 − x∗∥2 = ∥αnf(xn) + (1− αn)yn − x∗∥2

≤ ∥αn(f(xn)− f(x∗)) + (1− αn)(yn − x∗)∥2 + 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤
(
αn∥f(xn)− f(x∗)∥+∥(1−αn)(yn − x∗)∥

)2

+ 2αn⟨x∗−f(x∗), x∗− xn+1⟩

≤
(
αnb∥xn − x∗∥+ (1− αn)∥yn − x∗∥

)2

+ 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤
(
(1− αn(1− b))∥xn − x∗∥

)2

+ 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩

≤ (1− αn(1− b))∥xn − x∗∥2 + 2αn⟨x∗ − f(x∗), x∗ − xn+1⟩.
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From Lemma 2.4, its follows that xn → x∗.
Case 2. Assume that the sequence {∥xn − x∗∥} is not monotonically decreasing. Set
Bn = ∥xn − x∗∥2 and τ : N → N be a mapping defined for all n ≥ n0 (for some n0 large
enough) by τ(n) = max{k ∈ N : k ≤ n, Bk ≤ Bk+1}. We have τ is a non-decreasing
sequence such that τ(n) → ∞ as n → ∞ and Bτ(n) ≤ Bτ(n)+1 for n ≥ n0. Let i ∈ N∗,
from (3.12), we have

(1− ατ(n))(1− θτ(n))θτ(n)

∥∥∥uτ(n) − xτ(n)

∥∥∥2 ≤ ατ(n)C.

Furthermore, we have

(1− ατ(n))(1− θτ(n))θτ(n)

∥∥∥uτ(n) − xτ(n)

∥∥∥2 = 0.

Since lim
n→∞

inf(1− θτ(n))θτ(n) > 0, we can deduce

(3.22) lim
n→∞

∥∥∥uτ(n) − xτ(n)

∥∥∥2 = 0.

Since uτ(n) ∈ T ◦ JF
λ xτ(n), it follows that

(3.23) lim
n→∞

d
(
xτ(n), T ◦ JF

λ xτ(n)

)
= 0.

By a similar argument as in case 1, we can show that xτ(n) and yτ(n) are bounded in K
and lim sup

τ(n)→+∞
⟨x∗ − f(x∗), x∗ − xτ(n))⟩ ≤ 0. We have for all n ≥ n0,

0 ≤ ∥xτ(n)+1−x∗∥2−∥xτ(n)−x∗∥2 ≤ ατ(n)[−(1−b)∥xτ(n)−x∗∥2+2⟨x∗−f(x∗), x∗−xτ(n)+1⟩],

which implies that

∥xτ(n) − x∗∥2 ≤ 2

1− b
⟨x∗ − f(x∗), x∗ − xτ(n)+1⟩.

Then, we have

lim
n→∞

∥xτ(n) − x∗∥2 = 0.

Therefore,

lim
n→∞

Bτ(n) = lim
n→∞

Bτ(n)+1 = 0.

Thus, by Lemma 2.5, we conclude that

0 ≤ Bn ≤ max{Bτ(n), Bτ(n)+1} = Bτ(n)+1.

Hence, lim
n→∞

Bn = 0, that is {xn} converges strongly to x∗. This completes the proof. □

Remark 3.2. Many already studied problems in the literature can be considered as spe-
cial cases of this paper; see, for example, [6, 12] and the references therein. Our results
are applicable for finding a common solution of inclusion problems, convex optimization
problems and fixed point problems involving set-valued operators in real Hilbert spaces
(see, for example, [4] for more details).
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