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An iterative method for variational inclusions and fixed
points of total uniformly L-Lipschitzian mappings
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ABSTRACT. The characterizations of m-relaxed monotone and maximal m-relaxed monotone operators are
presented and by defining the resolvent operator associated with a maximal m-relaxed monotone operator,
its Lipschitz continuity is proved and an estimate of its Lipschitz constant is computed. By using resolvent
operator associated with a maximal m-relaxed monotone operator, an iterative algorithm is constructed for
approximating a common element of the set of fixed points of a total uniformly L-Lipschitzian mapping and
the set of solutions of a variational inclusion problem involving maximal m-relaxed monotone operators. By
employing the concept of graph convergence for maximal m-relaxed monotone operators, a new equivalence
relationship between the graph convergence of a sequence of maximal m-relaxed monotone operators and their
associated resolvent operators, respectively, to a given maximal m-relaxed monotone operator and its associated
resolvent operator is established. At the end, we study the strong convergence of the sequence generated by the
proposed iterative algorithm to a common element of the above mentioned sets.

1. INTRODUCTION

Many mathematical problems arising in different fields, such as optimization theory,
game theory, economic equilibrium, mechanics and social sciences can be formulated as
variational inequality / inclusion problems. During the past few decades, significant ef-
forts have been made by many authors to propose and develop several effective methods
to find the solutions of these problems, namely, projection method and its variant forms
such as resolvent operator method, see, for example, [4, 5, 9, 10, 15] and the references
therein.

It is well known truth that there is a close relation between the variational inequality /
inclusion problems and the fixed point problems. This fact has motivated many authors
to present a unified approach for these two different problems. For more information
and relevant commentaries, we refer [4–7, 11] and the references therein. Due to the fact
that the study of nonexpansive mappings is a very interesting research area in the fixed
point theory, in the last five decades, various extensions of this notion have been proposed
and analyzed. In 2006, with the aim of presenting a unifying framework for generalized
nonexpansive mappings appeared in the literature and verifying a general convergence
theorem applicable to all these classes of nonlinear mappings, Alber et al. [1] introduced a
more general class of asymptotically nonexpansive mappings called total asymptotically
nonexpansive mappings and studied methods for approximation of fixed points of such
mappings. Recently, Kiziltunc and Purtas [14] succeeded to introduce the concept of total
uniformly L-Lipschitzian mappings which extends and unifies the classes of generalized
nonexpansive mappings existing in the literature. They also studied the approximation
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methods for fixed points of such kind of mappings. Further extensions along with sev-
eral interesting illustrative examples can be found in [1, 5, 8, 13, 14, 18] and the references
therein.

On the other hand, the concept of graph convergence which was originally introduced
by Attouch [2] in 1984, has received a great deal of interest from the researchers. It is
pointed out in [2] that this notion is limited to maximal monotone operators, and the
equivalence between the graph convergence and resolvent operator convergence is estab-
lished for such kind of operators. But, recent interests are focused on presenting various
extensions of the notion of graph convergence and obtaining new equivalence relations
for the generalized monotone (accretive) operators existing in the literature.

The main objectives of this paper are (i) to propose an iterative method for finding a
common element of the set of fixed points of a total uniformly L-Lipschitzian mapping
and the set of solutions of a variational inclusion problem involving maximal m-relaxed
monotone multi-valued operator, and (ii) to study the strong convergence of the sequence
generated by the proposed iterative algorithm.

The layout of the paper is as follows. Section 2 provides the basic definitions and pre-
liminaries concerning maximal m-relaxed monotone operators. We give characterizations
of m-relaxed monotone and maximal m-relaxed monotone operators and define the re-
solvent operator associated with a maximal m-relaxed monotone operator. We also prove
the Lipschitz continuity of the resolvent operator associated with a maximal m-relaxed
monotone operator and compute an estimate of its Lipschitz constant. In Section 3, un-
der sufficient conditions, the existence of a unique solution to the variational inclusion
problem involving a maximal m-relaxed monotone operator is proved in the setting of
Hilbert spaces. We recall the definition of a total asymptotically nonexpansive mapping
and total uniformly L-Lipschtizian mapping and give an example of a total uniformly
L-Lipschtizian mapping which is not total asymptotically nonexpansive. In the last sec-
tion, we propose an iterative algorithm for approximating a common element of the set
of solutions of the variational inclusion problem and the set of fixed points of a total uni-
formly L-Lipschitzian mapping. The notion of graph convergence for maximal m-relaxed
monotone operators is recalled and a new equivalence relation between the graph con-
vergence of a sequence of maximal m-relaxed monotone operators and their associated
resolvent operators, respectively, to a given maximal m-relaxed monotone operator and
its associated resolvent operator is established. Finally, we prove the strong convergence
of the sequence generated by the proposed iterative algorithm to a common element of
the above mentioned sets.

2. BASIC DEFINITIONS AND TECHNICAL PRELIMINARIES

Let X be a real Hilbert space endowed with a norm ∥ · ∥ and an inner product ⟨., .⟩.
We denote by 2X the family of all nonempty subsets of X . Given a multi-valued operator
M : X → 2X , its effective domain and graph are defined as

D(M) := {x ∈ X : ∃y ∈ X : y ∈ M(x)} = {x ∈ X : M(x) ̸= ∅}

and

Graph(M) := {(x, y) ∈ X ×X : x ∈ D(M), y ∈ M(x)},

respectively. The range of M is defined by

R(M) := {y ∈ X : ∃x ∈ X : (x, y) ∈ Graph(M)}.
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The inverse M−1 of M is {(y, x) : (x, y) ∈ Graph(M)}. For an arbitrary real constant ρ
and multi-valued operators M,N : X → 2X , we define ρM and M +N by

ρM = {(x, ρy) : (x, y) ∈ Graph(M)}

and

M +N = {(x, y + z) : (x, y) ∈ Graph(M), (x, z) ∈ Graph(N)},

respectively.

Definition 2.1. A multi-valued operator M : X → 2X is said to be
(a) monotone if ⟨u− v, x− y⟩ ≥ 0 for all(x, u), (y, v) ∈ Graph(M);
(b) strictly monotone if M is monotone and equality holds if and only if x = y;
(c) r-strongly monotone if there exists a constant r > 0 such that ⟨u − v, x − y⟩ ≥

r∥x− y∥2 for all (x, u), (y, v) ∈ Graph(M);
(d) m-relaxed monotone if there exists a constant m > 0 such that ⟨u − v, x − y⟩ ≥

−m∥x− y∥2 for all (x, u), (y, v) ∈ Graph(M).

We derive the following characterization of m-relaxed monotone operators which plays
a key role in the sequel.

Proposition 2.1. A multi-valued operator M : X → 2X is m-relaxed monotone if and only if for
every ρ ∈

(
0, 1

2m

)
,

∥x− y∥ ≤ 1√
1− 2ρm

∥x− y + ρ(u− v)∥, ∀(x, u), (y, v) ∈ Graph(M).(2.1)

Proof. Let ρ ∈
(
0, 1

2m

)
be an arbitrary real constant. Since M is m-relaxed monotone, for

all (x, u), (y, v) ∈ Graph(M), we compute

∥x− y + ρ(u− v)∥2 = ∥x− y∥2 + ρ2∥u− v∥2 + 2ρ⟨u− v, x− y⟩
≥ ∥x− y∥2 + ρ2∥u− v∥2 − 2ρm∥x− y∥2

≥ (1− 2ρm)∥x− y∥2,

which implies that

∥x− y∥ ≤ 1√
1− 2ρm

∥x− y + ρ(u− v)∥.

Conversely, assume that (2.1) holds for every ρ ∈
(
0, 1

2m

)
. Then, for all (x, u), (y, v) ∈

Graph(M), we have

(1− 2ρm)∥x− y∥2 ≤ ∥x− y + ρ(u− v)∥2

= ∥x− y∥2 + ρ2∥u− v∥2 + 2ρ⟨u− v, x− y⟩,

from which we conclude that

−2ρm∥x− y∥2 ≤ ρ2∥u− v∥2 + 2ρ⟨u− v, x− y⟩.

Clearly, m-relaxed monotonicity of M obtains by dividing both the sides by 2ρ > 0 and
letting ρ → 0. □

In the light of the above-mentioned characterization, we obtain the following result.

Theorem 2.1. Let M : X → 2X be an m-relaxed monotone operator. Then, for any ρ ∈
(
0, 1

2m

)
,

the operator (I + ρM)−1 from R(I + ρM) to X is single-valued.
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Proof. Let ρ ∈
(
0, 1

2m

)
be an arbitrary real constant, u, v ∈ R(I + ρM) be given points and

let x ∈ (I + ρM)−1(u) and y ∈ (I + ρM)−1(v). Then, u ∈ x + ρM(x) and v ∈ y + ρM(y).
By (2.1), we get

∥x− y∥ ≤ 1√
1− 2ρm

∥∥∥∥x− y + ρ

(
u− x

ρ
− v − y

ρ

)∥∥∥∥ =
1√

1− 2ρm
∥u− v∥.

Taking into account of this fact and picking u = v, it follows that x = y, that is, the
operator (I + ρM)−1 : R(I + ρM) → X is single-valued. □

Recall that a multi-valued operator M : X → 2X is said to be maximal monotone [20]
if M is monotone and R(I+ρM) = X for all ρ > 0, where I denotes the identity mapping
on X .

We now turn our attention to a more general class of monotone operators which pro-
vides a unifying framework for maximal monotone operators and the classical monotone
operators.

Definition 2.2. A multi-valued operator M : X → 2X is said to be maximal m-relaxed
monotone if M is m-relaxed monotone and R(I + ρM) = X for every ρ > 0.

We point out that the notion of a maximal m-relaxed monotone operator is a spe-
cial case of the concept of A-maximal m-relaxed monotone operator (also known as A-
monotone operator [19]). Indeed, Definition 2.2 is obtained by taking A ≡ I , the identity
mapping on X , in Definition 2.2 in [19].

Since every monotone operator is m-relaxed monotone for any real constant m > 0, it
follows that every maximal monotone operator is maximal m-relaxed monotone for any
real constant m > 0. In other words, for any real constant m > 0, the class of maxi-
mal monotone operators is contained within the class of maximal m-relaxed monotone
operators.

The following characterization of maximal m-relaxed monotone operators provides a
useful and manageable way for recognizing that an element u belongs to M(x).

Proposition 2.2. A multi-valued operator M : X → 2X is maximal m-relaxed monotone if and
only if for given points x, u ∈ X , the property

⟨u− v, x− y⟩+m∥x− y∥2 ≥ 0, ∀(y, v) ∈ Graph(M),(2.2)

implies that (x, u) ∈ Graph(M).

Proof. Suppose first that M is a maximal m-relaxed monotone operator and x, u ∈ X are
two given points such that (2.2) holds. Assume contrary that (x, u) /∈ Graph(M). Since
M is a maximal m-relaxed monotone operator, we have R(I + ρM) = X for every ρ > 0.
Let ρ ∈

(
0, 1

2m

)
be an arbitrary real constant. Then, there exists (x0, u0) ∈ Graph(M) such

that

x0 + ρu0 = x+ ρu.(2.3)

Picking (y, v) = (x0, u0) and taking into account the assumption, yields

⟨u− u0, x− x0⟩+m∥x− x0∥2 ≥ 0.(2.4)

By (2.3) and (2.4), we obtain

2ρm∥x− x0∥2 < −ρm∥x− x0∥2 ≤ −ρ⟨u− u0, x− x0⟩
= −⟨x− x0, x− x0⟩ = −∥x− x0∥2.

The preceding relation implies that 2ρm < −1 which contradicts the choice of ρ ∈
(
0, 1

2m

)
.
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Conversely, assume that for any given points x, u ∈ X , (2.2) implies that (x, u) ∈
Graph(M). This fact ensures that the operator M is m-relaxed monotone and its graph is
not properly contained in the graph of any other m-relaxed monotone operator. In other
words, M is an m-relaxed monotone operator which has no proper m-relaxed monotone
extension and so M is a maximal m-relaxed monotone operator. □

Thanks to the arguments mentioned above, we note that M is a maximal m-relaxed
monotone operator if and only if M is m-relaxed monotone and there is no other m-
relaxed monotone operator whose graph contains strictly Graph(M). The maximal m-
relaxed monotonicity is to be understood in terms of inclusion of graphs. If M : X → 2X

is a maximal m-relaxed monotone operator, then adding anything to its graph so as to
obtain the graph of a new multi-valued operator, destroys the m-relaxed monotonicity. In
fact, the extended operator is no longer m-relaxed monotone. In other words, for every
pair (x, u) ∈ X ×X\Graph(M), there exists (y, v) ∈ Graph(M) such that

⟨u− v, x− y⟩+m∥x− y∥2 < 0.

As an immediate consequence of Theorem 2.2, we have the following result.

Corollary 2.1. Let M : X → 2X be a maximal m-relaxed monotone operator. Then, for any
ρ ∈

(
0, 1

2m

)
, the operator (I + ρM)−1 : X → X is single-valued.

Based on Corollary 2.1, associated with a maximal m-relaxed monotone operator M
and an arbitrary real constant ρ ∈

(
0, 1

2m

)
, one can define the resolvent operator Jρ

M as
follows.

Definition 2.3. For any maximal m-relaxed monotone operator M : X → 2X and arbi-
trary real constant ρ ∈

(
0, 1

2m

)
, the resolvent operator Jρ

M : X → X associated with M
and ρ is defined by

Jρ
M (u) := (I + ρM)−1(u), ∀u ∈ X.

We now prove the Lipschitz continuity of the resolvent operator Jρ
M and calculate an

estimate of its Lipschitz constant under some suitable conditions.

Theorem 2.2. Let M : X → 2X be a maximal m-relaxed monotone operator. Then, for any
ρ ∈

(
0, 1

2m

)
, the resolvent operator Jρ

M : X → X is 1√
1−2ρm

-Lipschitz continuous, i.e.,

∥Jρ
M (u)− Jρ

M (v)∥ ≤ 1√
1− 2ρm

∥u− v∥, ∀u, v ∈ X.

Proof. Let ρ ∈
(
0, 1

2m

)
be an arbitrary real constant and u, v ∈ X be any given points. Since

the operator M is maximal m-relaxed monotone, invoking Corollary 2.1, the resolvent
operator Jρ

M : X → X is single-valued. Let Jρ
M (u) = {x} and Jρ

M (v) = {y} for some x, y ∈
X . In the light of the definition of Jρ

M , it follows that u ∈ x + ρM(x) and v ∈ y + ρM(y).
Then, by (2.1), we yield

∥Jρ
M (u)− Jρ

M (v)∥ = ∥x− y∥ ≤ 1√
1− 2ρm

∥∥∥∥x− y + ρ

(
u− x

ρ
− v − y

ρ

)∥∥∥∥
=

1√
1− 2ρm

∥u− v∥.

This completes the proof. □

It is worthwhile to stress that the conclusions derived in this section can be viewed
as extensions of the corresponding results relating to monotone and maximal monotone
operators, see, for example, [3].
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3. FORMULATION OF THE PROBLEM AND EXISTENCE RESULTS

Given an operator T : X → X and a maximal m-relaxed monotone operator M : X →
2X , we consider the problem of finding x ∈ X such that

0 ∈ T (x) +M(x),(3.5)

which is known as a variational inclusion problem (VIP) involving maximal m-relaxed
monotone operator and has been studied by many authors in the setting of Hilbert /
Banach spaces under suitable conditions imposed on the operators T and M , see, for
example, [11] and the references therein. We denote by VIP(X,M, T ) the set of solutions
of the VIP (3.5).

The following lemma, which follows directly from Definition 2.3 and some simple ar-
guments, gives a characterization of a solution of the VIP (3.5).

Lemma 3.1. Let X,M and T be the same as in the VIP (3.5). Then, x ∈ X is a solution of the
VIP (3.5) if and only if x = Jρ

M [x− ρT (x)], where ρ ∈
(
0, 1

2m

)
is a constant.

Before to deal with the existence theorem for a solution of the VIP (3.5), we need to
recall the following definitions.

Definition 3.4. A mapping T : X → X is said to be
(a) monotone if ⟨T (x)− T (y), x− y⟩ ≥ 0 for all x, y ∈ X ;
(b) r-strongly monotone if there exists a constant r > 0 such that ⟨T (x)−T (y), x−y⟩ ≥

r∥x− y∥2 for all x, y ∈ X ;
(c) ϱ-Lipschitz continuous if there exists a constant ϱ > 0 such that ∥T (x) − T (y)∥ ≤

ϱ∥x− y∥ for all x, y ∈ X .

Theorem 3.3. Let T : X → X be an r-strongly monotone and ϱ-Lipschitz continuous operator,
and M : X → 2X be a maximal m-relaxed monotone operator. Suppose further that there exists a
real constant ρ ∈

(
0, 1

2m

)
such that√

1− 2ρr + ρϱ2

1− 2ρm
< 1 and 2ρr < 1 + ρ2ϱ2.(3.6)

Then, the VIP (3.5) has a unique solution.

Proof. Define a mapping F : X → X by

F (x) = Jρ
M [x− ρT (x)], ∀x ∈ X.(3.7)

We prove that F is a contraction mapping. For this end, assume that x, x′ ∈ X be chosen
arbitrarily but fixed. By (3.7) and Theorem 2.2, we deduce that

∥F (x)− F (x′)∥ = ∥Jρ
M [x− ρT (x)]− Jρ

M [x′ − ρT (x′)]∥

≤ 1√
1− 2ρm

∥x− x′ − ρ(T (x)− T (x′))∥.
(3.8)

Since T is an r-strongly monotone and ϱ-Lipschitz continuous operator, we yield

∥x− x′ − ρ(T (x)− T (x′))∥2 = ∥x− x′∥2 − 2ρ⟨T (x)− T (x′), x− x′⟩+ ρ2∥T (x)− T (x′)∥2

≤ (1− 2ρr + ρ2ϱ2)∥x− x′∥2,

which implies that

∥x− x′ − ρ(T (x)− T (x′))∥ ≤
√
1− 2ρr + ρ2ϱ2 ∥x− x′∥.(3.9)



Iterative Method for Variational Inclusions and Fixed Points 341

Substituting (3.9) into (3.8), we obtain

∥F (x)− F (x′)∥ ≤

√
1− 2ρr + ρ2ϱ2

1− 2ρm
∥x− x′∥ = ϑ∥x− x′∥,(3.10)

where ϑ =
√

1−2ρr+ρϱ2

1−2ρm < 1. Clearly, (3.6) ensures that ϑ ∈ (0, 1) and so (3.10) implies that
F is a contraction mapping. By Banach fixed point theorem, there exists a unique point
x∗ ∈ X such that F (x∗) = x∗. Thereby, recalling (3.7), it follows that x∗ = Jρ

M [x∗−ρT (x∗)].
Thanks to Lemma 3.1, we conclude that x∗ ∈ X is a unique solution of the VIP (3.5). □

Recall that a mapping T : X → X is said to be nonexpansive if ∥T (x)−T (y)∥ ≤ ∥x−y∥
for all x, y ∈ X . During the past few decades, considerable effort has been aimed to
introduce various generalizations of the notion of a nonexpansive mapping in different
contexts and to study the approximate conditions for the existence of fixed points of such
mappings. Goebel and Kirk [13] introduced the following notion of asymptotically non-
expansive mappings which is an extension of a nonexpansive mapping.

Definition 3.5. [13]A nonlinear mapping T : X → X is said to be asymptotically non-
expansive if there exists a sequence {an} ⊂ (0,+∞) with lim

n→∞
an = 0 such that for each

n ∈ N,

∥Tn(x)− Tn(y)∥ ≤ (1 + an)∥x− y∥, ∀x, y ∈ X.

Equivalently, we say that T is asymptotically nonexpansive if there exists a sequence
{kn} ⊂ [1,+∞) with lim

n→∞
kn = 1 such that for each n ∈ N,

∥Tn(x)− Tn(y)∥ ≤ kn∥x− y∥, ∀x, y ∈ X.

It is significant to emphasize that every nonexpansive mapping is asymptotically non-
expansive with kn = 1 for all n ∈ N, but the converse is not true necessarily. A further
generalization, known as total uniformly L-Lipschitzian, of a nonexpansive mapping is
given by Kiziltunc and Purtas [14].

Definition 3.6. A nonlinear mapping T : X → X is said to be
(a) total asymptotically nonexpansive (also referred to as ({an}, {bn}, ϕ)-total asymptotically

nonexpansive in the literature) [1] if there exist nonnegative real sequences {an} and {bn}
with an, bn → 0 as n → ∞ and a strictly increasing continuous function ϕ : R+ → R+

with ϕ(0) = 0 such that for all x, y ∈ X ,

∥Tn(x)− Tn(y)∥ ≤ ∥x− y∥+ anϕ(∥x− y∥) + bn, ∀n ∈ N.

(b) total uniformly L-Lipschitzian (or ({an}, {bn}, ϕ)-total uniformly L-Lipschitzian) [14] if
there exist a constant L > 0, nonnegative real sequences {an} and {bn} with an, bn → 0
as n → ∞ and strictly increasing continuous function ϕ : R+ → R+ with ϕ(0) = 0 such
that for each n ∈ N,

∥Tn(x)− Tn(y)∥ ≤ L[∥x− y∥+ anϕ(∥x− y∥) + bn], ∀x, y ∈ X.

We note that for given nonnegative real sequences {an} and {bn} and a strictly in-
creasing continuous function ϕ : R+ → R+, an ({an}, {bn}, ϕ)-total asymptotically non-
expansive mapping is ({an}, {bn}, ϕ)-total uniformly L-Lipschitzian with L = 1, but the
converse is not true necessarily. The following example shows that the class of total uni-
formly L-Lipschitzian mappings properly includes the class of total asymptotically non-
expansive mappings.
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Example 3.1. Consider X = R with the Euclidean norm ∥·∥ = |·| and let the self-mapping
T of X be defined by

T (x) =


1
β , if x ∈ [0, α) ∪ {β},
β, if x = α,
0, if x ∈ (−∞, 0) ∪ (α, β) ∪ (β,+∞),

where α > 0 and β > α+
√
α2+4
2 are arbitrary real constants such that αβ > 1. Since the

mapping T is discontinuous at the points x = 0, α, β, it follows that T is not Lipschitzian
and so it is not an asymptotically nonexpansive mapping. Take an = σ

n and bn = α
kn for

each n ∈ N, where σ > 0 and k > 1 are arbitrary constants. Moreover, let the function ϕ :

R+ → R+ be defined by ϕ(t) = γtp for all t ∈ R+, where p ∈ N and γ ∈
(
0, kp(β2−αβ−1)

αpβσ(k−1)p

)
are arbitrary constants. Picking x = α and y = α

k , we have T (x) = β and T (y) = 1
β .

Thanks to the fact that 0 < γ < kp(β2−αβ−1)
αpβσ(k−1)p , we conclude that

|T (x)− T (y)| = β − 1

β
> α+

σγ(k − 1)pαp

kp

=
(k − 1)α

k
+

σγ(k − 1)pαp

kp
+

α

k

= |x− y|+ σγ|x− y|p + α

k
= |x− y|+ a1ϕ(|x− y|) + b1,

which ensures that T is not an ({an}, {bn}, ϕ)-total asymptotically nonexpansive map-
ping.

However, for all x, y ∈ X , we obtain

|T (x)− T (y)| ≤ β ≤ kβ

α

(
|x− y|+ σγ|x− y|p + α

k

)
=

kβ

α
(|x− y|+ a1ϕ(|x− y|) + b1),

(3.11)

and for all n ≥ 2, taking into account that Tn(z) = 1
β for all z ∈ X , yields

|Tn(x)− Tn(y)| < kβ

α

(
|x− y|+ σγ

n
|x− y|p + α

kn

)
=

kβ

α
(|x− y|+ anϕ(|x− y|) + bn).

(3.12)

Therefore, (3.11) and (3.12) imply that T is a ({σ
n}, {

α
kn }, ϕ)-total uniformly L-Lipschitzian

mapping for each L ≥ kβ
α .

4. ITERATIVE ALGORITHMS AND GRAPH CONVERGENCE

Let S : X → X be an ({an}, {bn}, ϕ)-total uniformly L-Lipschitzian mapping and let
M and T be the same as in Lemma 3.1. Denote by Fix(S) the set of all fixed points of S. If
x∗ ∈ Fix(S) ∩VIP(X,M, T ), then invoking Lemma 3.1, we conclude that

x∗ = Snx∗ = Jρ
M [x∗ − ρT (x∗)] = SnJρ

M [x∗ − ρT (x∗)].(4.13)

The fixed point formulation (4.13) enables us to construct the following iterative algo-
rithm.
Algorithm 1. Suppose that X and T are the same as in the VIP (3.5). For each n ≥ 0,
let Mn : X → 2X be a maximal mn-relaxed monotone operator and let S : X → X be
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an ({an}, {bn}, ϕ)-total uniformly L-Lipschitzian mapping. For an arbitrary chosen initial
point x0 ∈ X , compute the iterative sequence {xn}∞n=0 in X by the iterative scheme

xn+1 = αnxn + (1− αn)S
nJρn

Mn
[xn − ρnT (xn)],(4.14)

where n ≥ 0; ρn ∈
(
0, 1

2mn

)
are real constants, and {αn}∞n=0 is a sequence in the interval

[0, 1) such that lim sup
n→∞

αn < 1.

If S ≡ I , the identity mapping on X , ρn = ρ and Mn = M , then Algorithm 4 reduces
to the following iterative algorithm.
Algorithm 2. Let X,M and T be the same as in the VIP (3.5). For any given x0 ∈ X ,
define the iterative sequence {xn}∞n=0 in X in the following way:

xn+1 = αnxn + (1− αn)J
ρ
M [xn − ρT (xn)],

where n ≥ 0; ρ ∈
(
0, 1

2m

)
is a real constant and the sequence {αn}∞n=0 is the same as in

Algorithm 4.

Definition 4.7. [4] Let X be a real Hilbert space and Mn,M : X → 2X (n ≥ 0) be multi-
valued mappings. We say that the sequence {Mn}∞n=0 is graph-convergent to M , denoted
by Mn

G−→ M , if for every point (x, u) ∈ Graph(M), there exists a sequence of points
(xn, un) ∈ Graph(Mn) such that xn → x and un → u, as n → ∞.

We now derive an equivalence relation between the graph convergence of a sequence
of maximal m-relaxed monotone operators and their associated resolvent operators, re-
spectively, to a given maximal m-relaxed monotone operator and its associated resolvent
operator.

Theorem 4.4. Let X be a real Hilbert space, and M,Mn : X → 2X (n ≥ 0) be maximal m-
relaxed monotone and maximal mn-relaxed monotone operators, respectively. Suppose further that
{ρn} is a sequence of real constants such that ρn ∈

(
0, 1

2mn

)
for each n ≥ 0, ρn → ρ ∈

(
0, 1

2m

)
as n → ∞, and the sequence

{
1√

1−2ρnmn

}∞

n=0
is bounded. Then, Mn

G−→ M if and only if

Jρn

Mn
(z) → Jρ

M (z), for all z ∈ X , as n → ∞, where Jρ
M = (I + ρM)−1 and for each n ≥ 0,

Jρn

Mn
= (I + ρnMn)

−1.

Proof. Assume that for all z ∈ X , lim
n→∞

Jρn

Mn
(z) = Jρ

M (z). Then, for any (x, u) ∈ Graph(M),

we have x = Jρ
M [x + ρu], and so Jρn

Mn
[x + ρu] → x as n → ∞. Letting xn = Jρn

Mn
[x + ρu]

for each n ≥ 0, we deduce that x + ρu ∈ (I + ρnMn)(xn). Therefore, for each n ≥ 0, one
can choose un ∈ M(xn) such that x+ ρu = xn + ρnun. By virtue of the fact that xn → x as
n → ∞, it follows that ρnun → ρu as n → ∞. Furthermore, for all n ≥ 0, we yield

ρ∥un − u∥ = ∥ρun − ρu∥ ≤ ∥ρnun − ρun∥+ ∥ρnun − ρu∥
= |ρn − ρ|∥un∥+ ∥ρnun − ρu∥.

Taking into account that ρn → ρ and ρnun → ρu, as n → ∞, we conclude that the right-
hand side of the preceding inequality approaches zero, as n → ∞, which implies that
un → u as n → ∞. In the light of Definition 4.7, we deduce that Mn

G−→ M .
Conversely, suppose that Mn

G−→ M , and let z ∈ X be chosen arbitrarily but fixed.
Since M is a maximal m-relaxed monotone operator, it follows that the range of I + ρM
is precisely X and so there exists (x, u) ∈ Graph(M) such that z = x + ρu. Definition
4.7 ensures the existence of a sequence {(xn, un)}∞n=0 ⊂ Graph(M) such that xn → x and
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un → u as n → ∞. In view of the facts that (x, u) ∈ Graph(M) and (xn, un) ∈ Graph(Mn),
we obtain

x = Jρ
M [x+ ρu] and xn = Jρn

Mn
[xn + ρnun].(4.15)

Assuming zn = xn+ρnun for all n ≥ 0, utilizing Theorem 2.2, (4.15) and the assumptions,
we derive that for all n ≥ 0,∥∥Jρn

Mn
(z)− Jρ

M (z)
∥∥ ≤

∥∥Jρn

Mn
(z)− Jρn

Mn
(zn)

∥∥+ ∥∥Jρn

Mn
(zn)− Jρ

M (z)
∥∥

≤ 1√
1− 2ρnmn

∥zn − z∥+
∥∥Jρn

Mn
[xn + ρnun]− Jρ

M [x+ ρu]
∥∥

≤ 1√
1− 2ρnmn

∥zn − z∥+ ∥xn − x∥

=
1√

1− 2ρnmn
∥xn + ρnun − x− ρu∥+ ∥xn − x∥

≤ 1√
1− 2ρnmn

(∥xn − x∥+ ∥ρnun − ρu∥) + ∥xn − x∥

≤ 1√
1− 2ρnmn

(∥xn − x∥+ ∥ρnun − ρnu∥+ ∥ρnu− ρu∥) + ∥xn − x∥

=

(
1 +

1√
1− 2ρnmn

)
∥xn − x∥+ ρn√

1− 2ρnmn
∥un − u∥

+
|ρn − ρ|√
1− 2ρnmn

∥u∥.

(4.16)

Since the sequence
{

1√
1−2ρnmn

}∞

n=0
is bounded and lim

n→∞
ρn = ρ, it follows that the se-

quence
{

ρn√
1−2ρnmn

}∞

n=0
is also bounded. Since xn → x, un → u and ρn → ρ as n → ∞,

we have that the right-hand side of (4.16) tends to zero as n → ∞, which guarantees
Jρn

Mn
(z) → Jρ

M (z) as n → ∞. □

Before proceeding to the main result of this paper, we need to present a significant
lemma which plays a critical role in our proof. We first recall the following result.

Lemma 4.2. [17] If a sequence {un}∞n=0 that satisfies

un+1 ≤ qun + α, ∀n ≥ 0,

for some q ∈ [0, 1) and α > 0, then

un ≤ α

1− q
+

(
u0 −

α

1− q

)
qn.

Lemma 4.3. Let {cn}∞n=0, {dn}∞n=0 and {tn}∞n=0 be three real sequences of nonnegative numbers
which satisfy the following conditions:

(i) 0 ≤ tn < 1 for all n ≥ 0 and lim sup
n

tn < 1;

(ii) cn+1 ≤ tncn + dn, for all n ≥ 0, and lim
n→∞

dn = 0.

Then, lim
n→∞

cn = 0.

Proof. For any ϵ > 0, take n0 ∈ N such that lim sup
n

tn < 1 − ϵ, and dn < ϵ2 for all n ≥ n0.

Then by (ii), we have

cn+1 ≤ (1− ϵ)cn + ϵ2.
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Now, letting q = 1− ϵ and α = ϵ2, from Lemma 4.2, it follow that

cn ≤ ϵ+ (cn0
− ϵ)(1− ϵ)n, ∀n ≥ n0.

The preceding inequality implies that lim sup
n

cn ≤ ϵ. □

Remark 4.1.

(a) Taking cn = κ, dn = κ
n and tn = 1 − 1

n for all n ∈ N, where κ > 0 is an arbitrary
but fixed real number, we have cn+1 ≤ tncn + dn for all n ∈ N, lim

n→∞
dn = 0 and

lim sup
n→∞

tn = 1, but lim
n→∞

cn = κ ̸= 0. Hence, it is important to emphasize that the

condition lim sup
n→∞

tn < 1 imposed on the sequence {tn} in Lemma 4.3 is essential

and cannot be dropped.
(b) We point out that Lemma 4.3 extends and unifies Lemma 5.1 in [9,12] and Lemma

2.2 in [16].

Theorem 4.5. Let X,M and T be the same as in Theorem 3.3 and let all the conditions of Theorem
3.3 hold. Let S : X → X be an ({an}, {bn}, ϕ)-total uniformly L-Lipschitzian mapping such that
Lϑ < 1, where ϑ is the same as in (3.10) and Fix(S) ∩ VIP(X,M, T ) ̸= ∅. Suppose that for
each n ≥ 0, Mn : X → 2X is a maximal mn-relaxed monotone operator such that Mn

G−→ M
and mn → m as n → ∞. If there exist real constants ρn > 0 (n ≥ 0) satisfying (4.14) and
2ρnr < 1 + ρ2nϱ

2 for each n ≥ 0, and a real constant ρ ∈
(
0, 1

2m

)
satisfying (3.6) such that

ρn → ρ as n → ∞, then the iterative sequence {xn}∞n=0 generated by Algorithm 4 converges
strongly to the only element x∗ of Fix(S) ∩VIP(X,M, T ).

Proof. It follows from Theorem 3.3 that VIP(X,M, T ) is a singleton set, that is, VIP(X,M, T ) =
{x∗}. Since Fix(S) ∩ VIP(X,M, T ) ̸= ∅, we have x∗ ∈ Fix(S). Thus, by Lemma 3.1, for
each n ≥ 0, we have

x∗ = αnx
∗ + (1− αn)S

nJρ
M [x∗ − ρT (x∗)],(4.17)

where the sequence {αn}∞n=0 is the same as in Algorithm 4. Utilizing Theorem 2.2 and in
the light of the hypothesis, we derive that for each n ≥ 0,

∥Jρn

Mn
[xn − ρnT (xn)]− Jρ

M [x∗ − ρT (x∗)]∥

≤ ∥Jρn

Mn
[xn − ρnT (xn)]− Jρn

Mn
[x∗ − ρT (x∗)]∥

+ ∥Jρn

Mn
[x∗ − ρT (x∗)]− Jρ

M [x∗ − ρT (x∗)]∥

≤ 1√
1− 2ρnmn

∥xn − ρnT (xn)− (x∗ − ρT (x∗))∥+ ∥µn∥

≤ 1√
1− 2ρnmn

(
∥xn − ρnT (xn)− (x∗ − ρnT (x

∗))∥

+ |ρn − ρ|∥T (x∗)∥
)
+ ∥µn∥

≤

√
1− 2ρnr + ρ2nϱ

2

1− 2ρnm
∥xn − x∗∥+ |ρn − ρ|√

1− 2ρnmn
∥T (x∗)∥+ ∥µn∥,

(4.18)

where for each n ≥ 0, µn = Jρn

Mn
[x∗ − ρT (x∗)]− Jρ

M [x∗ − ρT (x∗)].
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Relying on the assumptions and employing (4.14), (4.17) and (4.18), for each n ≥ 0,
yields

∥xn+1 − x∗∥ ≤ αn∥xn − x∗∥+ (1− αn)∥SnJρn

Mn
[xn − ρnT (xn)]− SnJρ

M [x∗ − ρT (x∗)]∥
≤ αn∥xn − x∗∥+ (1− αn)L

(
∥Jρn

Mn
[xn − ρnT (xn)]− Jρ

M [x∗ − ρT (x∗)]∥
+ anϕ(∥Jρn

Mn
[xn − ρnT (xn)]− Jρ

M [x∗ − ρT (x∗)]∥
)
+ bn

)
≤ αn∥xn − x∗∥+ (1− αn)L

(√
1− 2ρnr + ρ2nϱ

2

1− 2ρnmn
∥xn − x∗∥

+
|ρn − ρ|√
1− 2ρnmn

∥T (x∗)∥+ ∥µn∥+ anϕ
(√1− 2ρnr + ρ2nϱ

2

1− 2ρnmn
∥xn − x∗∥

+
|ρn − ρ|√
1− 2ρnmn

∥T (x∗)∥+ ∥µn∥
)
+ bn

)

= αn∥xn − x∗∥+ (1− αn)L

(
ϑn∥xn − x∗∥+ |ρn − ρ|√

1− 2ρnmn
∥T (x∗)∥

+ ∥µn∥+ anϕ(ϑn∥xn − x∗∥+ |ρn − ρ|√
1− 2ρnmn

∥T (x∗)∥+ ∥µn∥) + bn

)
,

(4.19)

where for each n ≥ 0, ϑn =
√

1−2ρnr+ρ2
nϱ

2

1−2ρnmn
. Since ρn → ρ and mn → m as n → ∞, it

follows that ϑn → ϑ as n → ∞. Taking into account that ϑ ∈ (0, 1), there exist n0 ∈ N and
ϑ̂ ∈ (ϑ, 1) such that ϑn ≤ ϑ̂ for all n ≥ n0. Thereby, for all n > n0, by (4.19), we yield

∥xn+1 − x∗∥ ≤ (αn + (1− αn)Lϑ̂)∥xn − x∗∥

+ (1− αn)Lanϕ

(
ϑ̂∥xn − x∗∥+ |ρn − ρ|√

1− 2ρnmn
∥T (x∗)∥+ ∥µn∥

)
+ (1− αn)L

(
|ρn − ρ|√
1− 2ρnmn

∥T (x∗)∥+ ∥µn∥+ bn

)
= (Lϑ̂+ (1− Lϑ̂)αn)∥xn − x∗∥

+ (1− αn)Lanϕ

(
ϑ̂∥xn − x∗∥+ |ρn − ρ|√

1− 2ρnmn
∥T (x∗)∥+ ∥µn∥

)
+ (1− αn)L

(
|ρn − ρ|√
1− 2ρnmn

∥T (x∗)∥+ ∥µn∥+ bn

)
.

(4.20)

Assuming that tn = Lϑ̂ + (1 − Lϑ̂)αn for each n ≥ 0 and in view of the facts that Lϑ̂ < 1
and lim sup

n→∞
αn < 1, we get

lim sup
n→∞

tn = lim sup
n→∞

(Lϑ̂+ (1− Lϑ̂)αn) ≤ Lϑ̂+ (1− Lϑ̂) lim sup
n→∞

αn < 1.

Considering the fact that Mn
G−→ M , Theorem 4.4 guarantees that ∥µn∥ → 0 as n → ∞. At

the same time, since lim
n→∞

ρn = ρ, it follows that lim
n→∞

|ρn−ρ|√
1−2ρnmn

∥T (x∗)∥ = 0. In virtue of

the fact that S is an ({an}, {bn}, ϕi)-total uniformly L-Lipschitzian mapping, by Definition
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3.6 (b), we have lim
n→∞

an = lim
n→∞

bn = 0. Let us now take for all n ≥ 0, cn = ∥xn−x∗∥∗ and

dn = (1− αn)Lanϕ

(
ϑ̂∥xn − x∗∥+ |ρn − ρ|√

1− 2ρnmn
∥T (x∗)∥+ ∥µn∥

)
+ (1− αn)L

(
|ρn − ρ|√
1− 2ρnmn

∥T (x∗)∥+ ∥µn∥+ bn

)
.

Then, in the light of the above-mentioned arguments and the fact that lim sup
n→∞

αn < 1,

we conclude that lim
n→∞

dn = 0. Since Lϑ̂ < 1, we note that all the conditions of Lemma
4.3 are satisfied and so making use of (4.20) and Lemma 4.3, it follows that lim

n→∞
cn = 0,

i.e., lim
n→∞

xn = x∗. Therefore, the sequence {xn}∞n=0 generated by Algorithm 4 converges

strongly to the unique solution of the VIP (3.5), that is, the only element of Fix(S) ∩
SGVI(X,M, T ). □

As a direct consequence of the above theorem, we obtain the following corollary.

Corollary 4.2. Suppose that X,M and T are the same as in Theorem 3.3 and let all the conditions
of Theorem 3.3 hold. Then the iterative sequence {xn}∞n=0 generated by Algorithm 4 converges
strongly to the unique solution of the VIP (3.5).

5. CONCLUSION

The history of monotone operators, and in particular maximal monotone ones which
are rooted in the calculus of variations, and nonlinear operator equations with monotone
and maximal monotone operators can be traced back to the early of nineteen sixties. Since
then, it has a rapid development and a prolific growth of its applications. This is mainly
due to the fact that monotone and maximal monotone operators are effective tools in the
study of boundary value problems. Inspired by their wide applications, the introduction
and study of a variety of generalizations of the concepts of maximal monotone operators
in the setting of different spaces have been the focus of many researchers in the last two
decades. The above description motivated us to study the class of maximal m-relaxed
monotone operators as an extension of the class of maximal monotone operators and to
present a characterization of such operators. By defining the resolvent operator associated
with a maximal m-relaxed monotone operator, we have proved its Lipschitz continuity
and computed an estimate of its Lipschitz constant under some appropriate conditions.
By using the resolvent operator associated with a maximal m-relaxed monotone operator,
we have constructed an iterative algorithm for approximating a common element of the
set of fixed points of a total uniformly L-Lipschitzian mapping and the set of solutions
of a variational inclusion problem involving maximal m-relaxed monotone operators. We
have used the concept of graph convergence for maximal m-relaxed monotone opera-
tors and established a new equivalence relationship between the graph convergence of a
sequence of maximal m-relaxed monotone operators and their associated resolvent oper-
ators, respectively, to a given maximal m-relaxed monotone operator and its associated
resolvent operator. Finally, we have studied the strong convergence of the sequence gen-
erated by the proposed iterative algorithm to a common element of the above mentioned
sets. The results derived in this paper can be extended to different classes of generalized
monotone operators existing in the literature.
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