In memoriam Professor Charles E. Chidume (1947-2021)

Fixed points and coupled fixed points in b-metric spaces via graphical contractions

MONICA-FELICIA BOTA, LILIANA GURAN and GABRIELA PETRUŞEL

ABSTRACT. In this paper some existence and stability results for cyclic graphical contractions in complete metric spaces are given. An application to a coupled fixed point problem is also derived.

1. Introduction and Preliminaries

In this paper, we will prove some fixed point and coupled fixed point theorems in complete *b*-metric spaces. Our results extend some recent theorems proved in classical metric spaces.

We recall first some notions and results.

Definition 1.1. Let M be a nonempty set and let $s \ge 1$ be a given real number. A functional $d: M \times M \to \mathbb{R}_+$ is said to be a b-metric (also called in some papers quasi-metric) with constant $s \ge 1$ if the Fréchet axioms of the metric are satisfied, except the so-called triangle inequality axiom, which has the following form:

$$(\star)$$
 $d(x,z) \leq s[d(x,y) + d(y,z)]$, for all $x, y, z \in M$.

A pair (M, d) with the above properties is called a *b*-metric space with constant s > 1.

Some interesting examples and a very recent work regarding the origins of the notion of *b*-metric space are given in [2], [3], [4], [5], [6], [9]. It is known that some topological properties in the setting of *b*-metric spaces are the same as in metric spaces.

Definition 1.2. Let (M, d) be a b-metric space. Then, a subset Y of M is called:

- (1) compact if for every sequence of elements of Y there exists a subsequence that converges to an element of Y.
- (2) closed if for each sequence $(x_n)_{n\in\mathbb{N}}$ in Y which converges to an element x, we have $x\in Y$.

The *b*-metric space (M, d) is complete if every Cauchy sequence from M converges in X.

Lemma 1.1. Notice that in a b-metric space (M, d) the following assertions hold:

- (i) a convergent sequence has a unique limit;
- (ii) each convergent sequence is Cauchy.

Although, there are some important distance-type differences: the b-metric on M need not be continuous, open balls in b-metric spaces need not be open sets, the closed ball is not necessary a closed set, to recall few.

Received: 09.01.2022. In revised form: 10.05.2022. Accepted: 12.07.2022

2010 Mathematics Subject Classification. 46T99, 47H10, 54H25.

Key words and phrases. Fixed point, b-metric space, vector-valued b-metric space, coupled fixed point.

Corresponding author: Monica-Felicia Bota; monica.bota@ubbcluj.ro

Definition 1.3. [8] Let (M,d) be a b-metric space. Let p be a positive integer with $p \geq 2$, let $K_1, K_2, ..., K_p$ be subsets of M, and $\tilde{K} := \bigcup_{i=1}^p K_i$. Then, $T: \tilde{K} \to \tilde{K}$ is called a cyclic operator if

- (i) the sets $K_i \neq \emptyset$ for every $i \in \{1, 2, ...p\}$;
- (ii) $\bigcup_{i=1}^{p} K_i$ is a cyclical representation of \tilde{K} with respect to T, i.e.,

$$T(K_1) \subseteq K_2, T(K_2) \subseteq K_3, \cdots T(K_{p-1}) \subseteq K_p, T(K_p) \subseteq K_1.$$

Let X be a nonempty set and $T: X \to X$ be a single-valued operator. We denote by $Fix(T) := \{x \in X : x = T(x)\}$ the fixed point set of T.

Definition 1.4. [20] Let (M,d) a b-metric space. An operator $T:M\to M$ is called a weakly Picard operator (WPO) if the sequence $(T^n(x))_{n\in\mathbb{N}}$ converges for all $x\in M$ and its limit, denoted by $T^\infty(x)$, is a fixed point for T.

Definition 1.5. [20] In the above context, if T is a WPO and $Fix(T) = \{x^*\}$, then, by definition, T is a Picard operator.

If (M,d) is a b-metric space and $F: M \times M \to M$ is an operator, then, by definition, a coupled fixed point for F is a pair $(x^*,y^*) \in M \times M$ satisfying

(1.1)
$$\begin{cases} x^* = F(x^*, y^*) \\ y^* = F(y^*, x^*). \end{cases}$$

Another generalization of the classical metric of Fréchet is the vector-valued metric. In this case, if M is a nonempty set, then a mapping $d: M \times M \to \mathbb{R}^m$ is a vector-valued metric (or a Perov type metric) if d satisfies all the axioms of the metric with respect to the componentwise inequality between vectors in \mathbb{R}^m . If the triangle inequality takes the form given in (\star) , then we say that (M,d) is a generalized b-metric space in the sense of Perov with constant $s \geq 1$. In particular, if m = 1 we obtain the above presented notion of b-metric.

We denote by $M_{mm}(\mathbb{R}_+)$ the set of all $m \times m$ matrices with positive elements, by I_m the identity $m \times m$ matrix and by O_m the null $m \times m$ matrix.

Definition 1.6. A square matrix $A \in M_{mm}(\mathbb{R}_+)$ is said to be convergent to zero if and only if its spectral radius $\rho(A)$ is strictly less than 1. In other words, this means that all the eigenvalues of A are in the open unit disc.

We have the following characterization theorem for a matrix convergent to zero.

Lemma 1.2. (see e.g. [16], [18]) Let $A \in \mathcal{M}_{m,m}(\mathbb{R}_+)$. Then the following statements are equivalent:

- (1) A is a matrix convergent to zero;
- (2) $A^n \longrightarrow O_m$ as $n \to \infty$;
- (3) $I_m A$ is non-singular and $(I_m A)^{-1} = I_m + A + ... + A^n + ...;$
- (4) $I_m A$ is non-singular and $(I_m A)^{-1}$ has nonnegative elements.

Definition 1.7. Let (M,d) be a generalized b-metric space in the sense of Perov and let $f: M \to M$ be an operator. Then, f is called an A-contraction if and only if $A \in \mathcal{M}_{m,m}(\mathbb{R}_+)$ is a matrix convergent to zero and

$$d\left(f\left(x\right),f\left(y\right)\right)\leq Ad\left(x,y\right)$$
, for any $\left(x,y\right)\in M\times M.$

If the above condition holds for every $(x, y) \in Graph(f)$, i.e.,

$$d\left(f\left(x\right),f^{2}\left(x\right)\right)\leq Ad\left(x,f(x)\right)$$
, for any $x\in M$,

then f is called a graphical (orbital) A-contraction.

Notice that any A-contraction $f: M \to M$ on a generalized b-metric space in the sense of Perov (M,d) is continuous, in the sense that for any convergent sequence $\{x_n\}_{n\in\mathbb{N}}\subset M$ to $\tilde{x} \in M$, the sequence $\{f(x_n)\}_{n \in \mathbb{N}}$ converges to $f(\tilde{x})$. Not the same is true for graphical (orbital) A-contraction.

In particular, if m=1 we get the classical notions of (Banach) a-contraction and graphical (orbital) a-contraction in b-metric spaces, where $A := a \in]0,1[$.

2. MAIN RESULTS

We recall first the following important result given by Miculescu and Mihail.

Lemma 2.3. [11] Every sequence $(x_n)_{n\in\mathbb{N}}$ of elements from a b-metric space (M,d) with constant s having the property that there exists $\gamma \in [0,1]$ such that $d(x_{n+1},x_n) \leq \gamma d(x_n,x_{n-1})$, $n \in \mathbb{N}$ is a Cauchy sequence. Moreover, the following estimation holds

$$d(x_{n+1}, x_{n+p}) \le \frac{\gamma^n S}{1-\gamma} d(x_0, x_1), \text{ for all } n, p \in \mathbb{N},$$

where
$$S := \sum_{i=1}^{\infty} \gamma^{2i \log_{\gamma} s + 2^{i-1}}$$
.

Our first main result is the following theorem in *b*-metric spaces.

Theorem 2.1. Let (M,d) be a complete b-metric space with constant $s \ge 1$, $p \in \mathbb{N}$ with $p \ge 2$ and let $K_1, K_2, ..., K_p$ be nonempty and closed subsets of M. Consider $\tilde{K} = \bigcup_{i=1}^p K_i$ and $T: \tilde{K} \to \tilde{K}$ be such that $\bigcup_{i=1}^{p} K_i$ is a cyclical representation of \tilde{K} with respect to T. Suppose that T is a cyclic graphical (orbital) a-contraction, i.e., $a \in]0, 1[$ and

$$d(T(x), T^2(x)) \leq ad(x, T(x)), \text{ for every } x \in \tilde{K}.$$

Then:

$$\begin{array}{ll} (i) & \bigcap\limits_{i=1}^p K_i \neq \emptyset \text{ and } T: \bigcap\limits_{i=1}^p K_i \rightarrow \bigcap\limits_{i=1}^p K_i; \\ (ii) & \textit{if, additionally, } T \textit{ has closed graph, then:} \end{array}$$

(ii)-(a)
$$T$$
 is a weakly Picard operator with the constant $\frac{1}{1-a}$ on $\bigcap_{i=1}^{p} K_i$, i.e., $Fix(T) \neq 0$

 \emptyset and, for every element $x \in \bigcap_{i=1}^p K_i$, the sequence $\{T^n(x)\}_{n \in \mathbb{N}}$ converges to $T^{\infty}(x) \in \mathbb{N}$ Fix(T);

(ii)-(b) the following apriori estimation holds:

$$d(T^{n+1}(x), T^{\infty}(x)) \leq \frac{a^n sS}{1-a} d(x, T(x)), n \in \mathbb{N}, \text{ for all } x \in \bigcap_{i=1}^p K_i,$$

where
$$S := \sum_{i=1}^{\infty} a^{2i \log_a s + 2^{i-1}};$$

(iii)-(c) the following retraction-displacement condition holds

$$d(x, T^{\infty}(x)) \leq \frac{s(1-a+sS)}{1-a}d(x, T(x)), n \in \mathbb{N}, \text{ for all } x \in \bigcap_{i=1}^{p} K_i,$$

where
$$S := \sum_{i=1}^{\infty} a^{2i \log_a s + 2^{i-1}};$$

(iv)-(d) if $s < \sqrt{\frac{1-a}{2S}}$, then T is a quasi-contraction, in the sense that

$$d(T(x), T^{\infty}(x)) \leq \beta d(x, T^{\infty}(x)), \text{ for all } x \in \bigcap_{i=1}^{p} K_i,$$

where
$$\beta := \frac{s^2 S}{1 - a - s^2 S} \in]0,1[$$
 and $S := \sum_{i=1}^{\infty} a^{2i \log_a s + 2^{i-1}}.$

Proof. (i) Let $x_0 \in \bigcup_{i=1}^p K_i$ be arbitrary. Then, there exists $i_0 \in \mathbb{N}$ such that $x_0 \in K_{i_0}$. Hence, $x_1 := T(x_0) \subset T(K_{i_0}) \subset K_{i_0+1}$. Then, for $x_1 \in K_{i_0+1}$ we have $x_2 := T(x_1) \in T(K_{i_0+1}) \subset K_{i_0+2}$. Inductively, we get a sequence $\{x_n\}_{n \in \mathbb{N}}$, with $x_{n+1} = T(x_n) = T^{n+1}(x_0) \in \bigcup_{i=1}^p K_i$, for each $n \in \mathbb{N}$.

If $x_n = x_{n+1}$, then x_n is a fixed point of T. We suppose that $x_n \neq x_{n+1}$ for all $n \geq 0$. From the graphical contraction condition it follows that

$$d(x_n,x_{n+1}) = d(T(x_{n-1}),T(x_n)) = d(T(x_{n-1}),T^2(x_{n-1})) \le ad(x_{n-1},T(x_{n-1})) = ad(x_{n-1},x_n).$$

Applying Lemma 2.3 for $\gamma = a$, we deduce that $(x_n)_{n \in \mathbb{N}}$ is a Cauchy sequence. From the same lemma we also have that

(2.2)
$$d(x_{n+1}, x_{n+p}) \le \frac{a^n S}{1 - a} d(x_0, x_1), \text{ for all } n, p \in \mathbb{N},$$

where
$$S := \sum_{i=1}^{\infty} a^{2i \log_a s + 2^{i-1}}$$
.

Since $(x_n)_{n\in\mathbb{N}}^{i=1}$ is Cauchy, by the completeness of the b-metric, we have that the sequence converges $x^*:=x^*(x)\in\bigcup_{i=1}^p K_i$.

Moreover, we observe that infinitely many terms of $(x_n)_{n\in\mathbb{N}}$ lie in each $K_i, i\in\{1,2,...,p\}$. Thus $x^*\in\bigcap_{i=1}^pK_i$. By the cyclical representation of \tilde{K} with respect to T, we get that $T:\bigcap_{i=1}^pK_i\to\bigcap_{i=1}^pK_i$.

(ii) Since $(T^n(x_0))_n$ converges to x^* , the closed graph condition of T implies that $x^* \in Fix(T)$.

In addition, from (2.2), we get

$$d(T^{n+1}(x_0), x^*) \le s(d(x_{n+1}, x_{n+k}) + d(x_{n+k}, x^*)) \le \frac{a^n sS}{1 - a} d(x_0, T(x_0)) + sd(x_{n+k}, x^*), n, k \in \mathbb{N}.$$

By letting $k \to \infty$ we obtain that

$$d(T^{n+1}(x_0), x^*) \le \frac{a^n sS}{1 - a} d(x_0, T(x_0)), n \in \mathbb{N}.$$

(iii) By (ii), for n = 0 we get

$$d(T(x), T^{\infty}(x)) \leq \frac{sS}{1-a}d(x, T(x)), \text{ for all } x \in \bigcap_{i=1}^{p} K_i.$$

Thus, for all $x \in \bigcap_{i=1}^{p} K_i$, we have that

$$d(x, T^{\infty}(x)) \le s(d(x, T(x)) + d(T(x), T^{\infty}(x))) \le \frac{s(1 - a + sS)}{1 - a}d(x, T(x)).$$

(iv) As before, by (ii), for n = 0 we get

$$d(T(x), T^{\infty}(x)) \leq \frac{sS}{1-a}d(x, T(x)), \text{ for all } x \in \bigcap_{i=1}^{p} K_i.$$

Then, we have:

$$d(T(x), T^{\infty}(x)) \le \frac{sS}{1-a}d(x, T(x)) \le \frac{s^2S}{1-a}\left[d(x, T^{\infty}(x)) + d(T(x), T^{\infty}(x))\right].$$

Hence, we conclude that

$$d(T(x), T^{\infty}(x)) \leq \frac{s^2 S}{1 - a - s^2 S} d(x, T^{\infty}(x)), \text{ for all } x \in \bigcap_{i=1}^p K_i.$$

Example 2.1. Let $X = [0, +\infty[$ be equipped with $d: X \times X \to \mathbb{R}^+$, defined by $d = |x - y|^2$.

Let
$$A_1 = [0, \frac{1}{2}], \ A_2 = [\frac{1}{4}, 1]$$
 be subsets of $X = \mathbb{R}^+$. Define $T: \bigcup_{i=1}^3 A_i \to \bigcup_{i=1}^3 A_i$ by

$$T(x) := \begin{cases} \frac{2}{5}, & x \in [0, \frac{1}{2}[\\ 1 - x, & x \in [\frac{1}{2}, 1]. \end{cases}$$

Notice that (X,d) is a complete b-metric space with $b=\frac{1}{2}$. Moreover $T(A_1)\subseteq A_2, T(A_2)\subseteq A_1$. Then $\bigcup_{i=1}^2 A_i$ is a cyclic representation with respect to T. Additionally, T satisfies all the assumptions (i-iv) in Theorem 2.1, i.e., T is a cyclic graphical $\frac{1}{4}$ -contraction with respect to d.

We also observe that $Fix(T) = \{\frac{2}{5}, \frac{1}{2}\}.$

As a consequence of the first main result we can prove some stability results for cyclic graphical contractions in *b*-metric spaces.

Definition 2.8. Let (M,d) be a b-metric space with constant $s \ge 1$, $T:M \to M$ be an operator with $Fix(T) \ne \emptyset$ and let $r:M \to Fix(T)$ be a set retraction. Then:

(a) the fixed point equation $x = T(x), x \in M$ is said to be well-posed in the sense of Reich and Zaslavski if for each $x^* \in Fix(T)$ and for any sequence $(y_n)_{n \in \mathbb{N}}$ in $r^{-1}(x^*)$ for which

$$d(y_n, T(y_n)) \to 0 \text{ as } n \to \infty$$

we have that

$$u_n \to x^*$$
 as $n \to \infty$.

(b) the fixed point equation

$$(2.3) x = T(x), x \in M,$$

is said to be Ulam-Hyers stable if there exists c>0 such that for any $\varepsilon>0$ and any ε -solution z of the fixed point equation (2.3), i.e.,

$$d(z, T(z)) < \varepsilon$$

there exists $x^* \in Fix(T)$ such that $d(z, x^*) \leq c\varepsilon$.

П

(c) The operator T has the Ostrowski stability property if for each $x^* \in Fix(T)$ and for any sequence $(z_n)_{n \in \mathbb{N}}$ in $r^{-1}(x^*)$ for which

$$d(z_{n+1}, T(z_n)) \to 0 \text{ as } n \to \infty,$$

we have that

$$z_n \to x^* \text{ as } n \to \infty.$$

We have the following stability results for a fixed point equation with cyclic graphical contractions in complete b-metric spaces.

Theorem 2.2. Let (M,d) be a complete b-metric space with constant $s \ge 1$, let $p \in \mathbb{N}$ with $p \ge 2$ and $K_1, K_2, ..., K_p$ be nonempty and closed subsets of M. Let $\tilde{K} := \bigcup_{i=1}^p K_i$ and let $T: \tilde{K} \to \tilde{K}$ be such that $\bigcup_{i=1}^p K_i$ is a cyclical representation of \tilde{K} with respect to T. Suppose that T is a cyclic graphical (orbital) a-contraction, i.e., $a \in]0,1[$ and

$$d(T(x), T^2(x)) \le ad(x, T(x)), \text{ for every } x \in \tilde{K}.$$

Then, the fixed point equation $x=T(x), x\in \tilde{K}$ is well-posed in the sense of Reich and Zaslavski and it is Ulam-Hyers stable.

Proof. By Theorem 2.1 we know that T is a weakly $\frac{1}{1-a}$ -Picard on $\bigcap_{i=1}^{p} K_i$ and the following retraction-displacement condition holds:

(2.4)
$$d(x, T^{\infty}(x)) \le \frac{s(1 - a + sS)}{1 - a} d(x, T(x)), \text{ for all } x \in \bigcap_{i=1}^{p} K_i,$$

where, for each $x \in \bigcap_{i=1}^p K_i$, the value $T^{\infty}(x) \in Fix(T)$ is the limit of the sequence of

Picard iterates $\{T^n(x)\}_{n\in\mathbb{N}}$ and $S:=\sum_{i=1}^\infty a^{2i\log_a s+2^{i-1}}$. Since $T:\bigcap_{i=1}^p K_i\to\bigcap_{i=1}^p K_i$ is a

weakly Picard operator, the mapping $T^{\infty}: \bigcap_{i=1}^{p} K_i \to Fix(T)$ is a set retraction.

Consider first $x^* \in Fix(T)$ and $(y_n)_{n \in \mathbb{N}}$ a sequence such that $T^{\infty}(y_n) = x^*$ and

$$d(y_n, T(y_n)) \to 0 \text{ as } n \to \infty.$$

If we consider in (2.4) $x := y_n$, then we get that

$$d(y_n, x^*) = d(y_n, T^{\infty}(y_n)) \le \frac{s(1 - a + sS)}{1 - a} d(y_n, T(y_n)) \to 0$$
, as $n \to \infty$.

Thus, the fixed point equation $x = T(x), x \in \bigcap_{i=1}^{p} K_i$ is well-posed in the sense of Reich and Zaslavski.

Consider now any $\varepsilon>0$ and any ε -solution z of the fixed point equation $x=T(x), x\in\bigcap_{i=1}^p K_i$. Thus, $d(z,T(z))\leq \varepsilon$. As before, since T is a weakly $\frac{1}{1-a}$ -Picard on $\bigcap_{i=1}^p K_i$ we

have that $Fix(T) \neq \emptyset$ and for each $x \in \bigcap_{i=1}^p K_i$, the sequence of Picard iterates $\{T^n(x)\}_{n \in \mathbb{N}}$

converges to $T^{\infty}(x) \in Fix(T)$. Using again the retraction-displacement condition (2.4) with x := z, we get that

$$d(z, T^{\infty}(z)) \le \frac{s(1-a+sS)}{1-a}d(z, T(z)) \le \frac{s(1-a+sS)}{1-a}\varepsilon.$$

hence, the fixed point equation $x = T(x), x \in \bigcap_{i=1}^{p} K_i$ is Ulam-Hyers stable. \Box

The following result is know as Cauchy-Toeplitz Lemma.

Lemma 2.4. (Cauchy-Toeplitz Lemma, see, for example, [20]) Let $(a_n)_{n\in\mathbb{N}}$ be a sequence in \mathbb{R}_+ , such that the series $\sum_{n\geq 0} a_n$ is convergent and $(b_n)_{n\in\mathbb{N}} \in \mathbb{R}_+$ be a sequence such that $\lim_{n\to\infty} b_n = 0$.

Then

$$\lim_{n \to \infty} \left(\sum_{k=0}^{n} a_{n-k} b_k \right) = 0.$$

Theorem 2.3. Let (M,d) be a complete b-metric space with constant $s \ge 1$, let $p \in \mathbb{N}$ with $p \ge 2$ and $K_1, K_2, ..., K_p$ be nonempty and closed subsets of M. Let $\tilde{K} := \bigcup_{i=1}^p K_i$ and let $T: \tilde{K} \to \tilde{K}$ be such that $\bigcup_{i=1}^p K_i$ is a cyclical representation of \tilde{K} with respect to T. Suppose that T is a cyclic graphical (orbital) a-contraction, i.e., $a \in]0,1[$ and

$$d(T(x), T^2(x)) \le ad(x, T(x)), \text{ for every } x \in \tilde{K}.$$

If $\frac{s^3S}{1-a-s^2S}$ < 1, then the operator T has the Ostrowski property on $\bigcap_{i=1}^p K_i$.

Proof. Since $\frac{s^3S}{1-a-s^2S} < 1$ we get that $s < \sqrt{\frac{1-a}{2S}}$. Then, by Theorem 2.1 we know that T is a quasi-contraction, i.e.,

$$d(T(x), T^{\infty}(x)) \leq \beta d(x, T^{\infty}(x)), \text{ for all } x \in \bigcap_{i=1}^{p} K_i,$$

where $\beta := \frac{s^2 S}{1 - a - s^2 S} \in]0,1[$ and $S := \sum_{i=1}^{\infty} a^{2i \log_a s + 2^{i-1}}.$ Moreover $s\beta < 1.$ Then, T has

the Ostrowski property on $\bigcap_{i=1}^p K_i$. For this conclusion, let $x^* \in Fix(T)$ and let $(z_n)_{n \in \mathbb{N}}$ a

sequence in $\bigcap_{i=1}^{p} K_i$ such that $T^{\infty}(z_n) = x^*$ and

$$d(z_{n+1},T(z_n))\to 0 \text{ as } n\to\infty.$$

Then, we have

$$d(z_{n+1}, x^*) = d(z_{n+1}, T^{\infty}(z_n)) \le s \left[d(z_{n+1}, T(z_n)) + d(T(z_n), x^*) \right] =$$

$$s \left[d(z_{n+1}, T(z_n)) + d(T(z_n), T^{\infty}(z_n)) \right] \le$$

$$s \left[d(z_{n+1}, T(z_n)) + \beta d(z_n, T^{\infty}(z_n)) \right] = s \left[d(z_{n+1}, T(z_n)) + \beta d(z_n, x^*) \right] \le$$

$$s d(z_{n+1}, T(z_n)) + s^2 \beta \left[d(z_n, T(z_{n-1})) + d(T(z_{n-1}), x^*) \right] \le$$

. . .

$$s\left[d(z_{n+1},T(z_n)) + s\beta d(z_n,T(z_{n-1})) + \dots + (s\beta)^n d(z_1,T(z_0))\right] + (s\beta)^n d(z_0,x^*).$$

П

Now, by the Cauchy-Toeplitz Lemma we get the conclusion.

If we consider now the case of a generalized b-metric space in the sense of Perov, then the following lemma follows in a similar way to Lemma 2.1 given by Miculescu and Mihail in [11].

Lemma 2.5. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of elements from a generalized b-metric space in the sense of Perov (X, d). Then, the inequality

$$d(x_0, x_k) \le s^n \sum_{i=0}^{k-1} d(x_i, x_{i+1})$$

holds for each $n \in \mathbb{N}$ and each $k \in \{1, 2, 3, ..., 2^{n-1}, 2^n\}$.

Using the above lemma, it is an open question to prove a similar result with Lemma 2.2 given by Miculescu and Mihail in [11], for the case of vector-valued b-metric space.

Conjecture. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of elements from a vector-valued b-metric space (M,d)of constant s > 1 having the property that there exists $A \in \mathfrak{M}_{m,m}(\mathbb{R}_+)$, such that:

- (i) A is convergent to zero:
- (ii) $d(x_{n+1}, x_n) \leq Ad(x_n, x_{n-1})$ for every $n \in \mathbb{N}$.

Then $(x_n)_{n\in\mathbb{N}}$ is a Cauchy sequence in (M,d).

As an application of the main result we can obtain a coupled fixed point theorem in complete b-metric spaces. We give first the following immediate consequence of Theorem 2.1.

Theorem 2.4. Let (X,d), (Y,ρ) be two complete b-metric space, with $s\geq 1$, $p\in\mathbb{N}$ with $p\geq 2$ and $A_1, A_2, ..., A_p, B_1, B_2, ..., B_p$ be nonempty and closed subsets of X. Consider $Z = \bigcup_{i=1}^p (A_i \times A_i)^{-1}$ B_i) and the operator $F: Z \to Z$ be such that $F(A_i \times B_i) \subset A_{i+1} \times B_{i+1}$, for every $i \in \{1, ..., p\}$, where $A_{n+1} = A_1$ and $B_{n+1} = B_1$. Suppose that there exists $a \in]0,1[$ such that

$$\bar{d}(F(x,y),F^2(x,y)) \leq a\bar{d}((x,y),F(x,y)), \text{ for every } (x,y) \in Z,$$

where d is a scalar b-metric generated by d and ρ . Then:

(i)
$$\bigcap_{i=1}^{p} (A_i \times B_i) \neq \emptyset$$
 and $F : \bigcap_{i=1}^{p} (A_i \times B_i) \rightarrow \bigcap_{i=1}^{p} (A_i \times B_i)$;
(ii) if, additionally F has closed graph, then $Fix(F) \neq \emptyset$ and the following apriori estimation

$$\bar{d}(F^{n}(x_{0}), z^{*}) \leq \frac{a^{n}sS}{1 - a}\bar{d}(x_{0}, F(x_{0})), n \in \mathbb{N},$$
 where $S := \sum_{i=1}^{\infty} a^{2i\log_{a}s + 2^{i-1}}.$

Using the above result we can obtain the following extended coupled fixed point theorem.

Theorem 2.5. Let (X,d), (Y,ρ) be two complete b-metric space with constant $s \geq 1$, $p \in \mathbb{N}$ with $p \geq 2$ and $A_1, A_2, ..., A_p$, $B_1, B_2, ..., B_p$ be nonempty and closed subsets of X. Consider $Z = \bigcup_{i=1}^p (A_i \times B_i)$ and $F_1 : Z \to \bigcup_{i=1}^p A_i$ and $F_2 : Z \to \bigcup_{i=1}^p B_i$ be such that the following

(i) $F_1(A_i \times B_i) \subset A_{i+1}$ and $F_2(A_i \times B_i) \subset B_{i+1}$, for every $i \in \{1, ..., p\}$, where $A_{p+1} = A_1$ and $B_{p+1} = B_1$.

(ii) Suppose that there exist $a_1, a_2 \in (0, 1)$ such that

$$d(F_1(x,y), F_1^2(x,y)) \le a_1 d(x, F_1(x,y)), \text{ for every } (x,y) \in Z,$$

$$\rho(F_2(x,y), F_2^2(x,y)) \le a_2 \rho(y, F_2(x,y)), \text{ for every } (x,y) \in Z,$$

where $F_1^n(x,y) = F_1^{n-1}(F_1(x,y), F_2(x,y))$ and $F_2^n(x,y) = F_2^{n-1}(F_1(x,y), F_2(x,y))$ for $n \in \mathbb{N}, n \geq 2$.

Then, the following conclusions hold:

(i)
$$\bigcap_{i=1}^{p} (A_i \times B_i) \neq \emptyset$$
;

(ii) if, additionally, F_1, F_2 have closed graph, then, for each element $z = (x, y) \in \bigcap_{i=1}^p (A_i \times B_i)$, the sequence $(F_1^n(z), F_2^n(z))_{n \in \mathbb{N}}$ converges to a solution $(x^*, y^*) \in Fix(F) \cap \bigcap_{i=1}^p (A_i \times B_i)$ of the operator system

$$\begin{cases}
 x = F_1(x, y) \\
 y = F_2(x, y).
\end{cases}$$

Moreover for every $(x,y) \in \bigcap_{i=1}^{p} (A_i \times B_i)$ the following apriori estimation holds:

$$\begin{split} d(F_1^n(x_0), x^*) + \rho(F_2^n(x_0), x^*) &\leq \frac{\max\{a_1, a_2\}^n sS}{1 - \max\{a_1, a_2\}} (d(x_0, F_1(x_0)) + d(x_0, F_2(x_0))), n \in \mathbb{N}, \\ where \ S &:= \sum_{i=1}^\infty \max\{a_1, a_2\}^{2i \log_{\max\{a_1, a_2\}} s + 2^{i-1}}. \end{split}$$

Proof. Let us consider the following *b*-metric

$$\tilde{d}((x,y),(u,v)) := d(x,u) + \rho(y,v)$$

defined on $X\times Y$. By the hypothesis we have that $(X\times Y,\tilde{d})$ is a complete b-metric space. Let us define the operator $T_{F_1,F_2}:Z\to Z$ by

$$(2.6) T_{F_1,F_2}(x,y) := (F_1(x,y),F_2(x,y)).$$

Notice that the fixed point set of this operator coincides with the solution set of (2.5).

Let us notice that the operator T_{F_1,F_2} satisfies all the conditions of Theorem 2.4. We have that $T_{F_1,F_2}(A_i \times B_i) \subset A_{i+1} \times B_{i+1}$ and also

$$\tilde{d}(T_{F_1,F_2}(x,y),T^2_{F_1,F_2}(x,y)) \leq a\tilde{d}((x,y),T_{F_1,F_2}(x,y)), \text{ for every } (x,y) \in Z,$$

where $a = \max\{a_1, a_2\}.$

Applying the previous theorem we obtain the conclusion.

Remark 2.1. In particular, if in the above theorem we consider $F_1(x,y) = F(x,y)$ and $F_2(x,y) = F(y,x)$, where $F: X \times X \to X$ is a given operator, then we obtain an existence and approximation result for the coupled fixed point problem (1.1).

Aknoledgment. The publication of this article was supported by the 2021 Development Fund of the Babes-Bolyai University.

REFERENCES

- [1] Bakhtin, I. A. The contraction mapping principle in almost spaces. Funct. Anal., Ulianowsk Gos. Ped. Inst. 30 (1989), 26–37.
- [2] Berinde, V. Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3–9.
- [3] Berinde, V. Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. *Nonlinear Anal.* 74 (2011) 7347-7355.
- [4] Berinde, V.; Păcurar, M. The early developments in fixed point theory on b-metric spaces: a brief survey and some important related aspects. *Carpathian J. Math.* **38** (2022), no. (3), 523–538.
- [5] Bota, M.; Molnar, A.; Varga, Cs. On Ekeland's variational principle in b-metric spaces. *Fixed Point Theory* **12** (2011), No. 1, 21–28.
- [6] Czerwik, S. Contraction mappings in b-metric spaces. Acta Mathematica et Informatica Univ. Ostraviensis 1 (1993), 5–11.
- [7] Guo, D.; Lakshmikantham, V. Coupled fixed points of nonlinear operators with applications. *Nonlinear Anal.* 11 (1987), 623–632.
- [8] Kirk, W. A.; Srinivasan, P.S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4 (2003), 79-89.
- [9] Kirk, W. A.; Shahzad, N. Fixed Point Theory in Distance Spaces, Springer, Heidelberg, 2014.
- [10] Lakshmikantham, V.; Ćirić, L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. *Nonlinear Anal.* 70 (2009), 4341–4349.
- [11] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. *J. Fixed Point Theory Appl.* **19** (2017), 2153–2163.
- [12] Petruşel, A.; Petruşel, G.; Samet, B.; Yao, J.-C. Coupled fixed point theorems for symmetric contractions in b-metric spaces with applications to a system of integral equations and a periodic boundary value problem. *Fixed Point Theory* **17** (2016,) 459–478.
- [13] Petruşel, A.; Petruşel, G.; Yao, J.-C.; Existence and stability results for a system of operator equations via fixed point theory for nonself orbital contractions. *J. Fixed Point Theory Appl.* **21** (2019), no. 3, DOI: 10.1007/s11784-019-0711-1.
- [14] Petruşel, A.; Rus, I. A. Fixed point theory in terms of a metric and of an order relation. Fixed Point Theory 20 (2019), 601–622.
- [15] Petruşel, A.; Rus, I. A.; Şerban, M. A. Contributions to the fixed point theory of diagonal operators. Fixed Point Theory Appl. (2016) 2016:95. doi:10.1186/s13663-016-0589-1
- [16] Petruşel, A.; Petruşel, G. A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory. J. Fixed Point Theory Appl. 19 (2017), 1793–1814.
- [17] Petruşel, A.; Petruşel, G.; Xiao, Y.B.; Yao, J.-C. Fixed point theorems for generalized contractions with applications to coupled fixed point theory. *J. Nonlinear Convex Anal.* **19** (2018), 71–88.
- [18] Petruşel, A.; Petruşel, G.; Yao, J.-C. Perov type theorems for orbital contractions. *J. Nonlinear Convex Anal.* **21** (2020), 759–769.
- [19] Reich, S.; Zaslavski, A. J. Well-posedness of fixed point problems. Far East J. Math. Sci., Special Volume (Functional Analysis and its Applications) Part III (2001), 393–401.
- [20] Rus, I. A.; Petrusel A.; Petrusel, G. Fixed Point Theory, Clui University Press, Clui-Napoca, 2008.

DEPARTMENT OF MATHEMATICS

BABEŞ-BOLYAI UNIVERSITY OF CLUJ-NAPOCA

M. Kogălniceanu Street, No.1, 400084, Cluj-Napoca, Romania.

Email address: monica.bota@ubbcluj.ro

VASILE GOLDIŞ WESTERN UNIVERSITY OF ARAD

DEPARTMENT OF PHARMACEUTICAL SCIENCES

Arad, L. Rebreanu Street, no. 86, 310048, Arad, Romania.

Email address: guran.liliana@uvvg.ro

Babeş-Bolyai University Cluj-Napoca

DEPARTMENT OF BUSINESS

Horea Street, No.7, Cluj-Napoca, Romania.

Email address: gabriela.petrusel@ubbcluj.ro