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ABSTRACT. In this paper, we introduce the generalized Ekeland’s variational principle in several forms. The
general setting of our results includes a graphical metric structure and also employs a generalized w-distance.
We then applied the proposed variational principles to obtain existence theorems for a class of quasi-equilibrium
problems whose constraint maps are induced from the graphical structure. The conditions used in our existence
results are based on a very general concept called a convergence class. Finally, we deduce the existence of a
generalized Nash equilibrium via its quasi-equilibrium reformulation. A validating example is also presented.

1. INTRODUCTION

The Ekeland’s Variational Principle (EVP) was first introduced in [6, 7] and since then
became largely involved in nonconvex nonsmooth analysis and optimization. The EVP
itself has several equivalent formulations, each of which are of importance in their own
aspects. One of the most renowned equivalent form is the Caristi fixed point theorem [5].
Hence it is quite natural that the improvements done in metric fixed point theory would
seamlessly make their ways into the study of EVP (see e.g. [3] for an example of a recent
development).

Generalizing the metric conditions is one of the famous extensions in fixed point theory.
Following this pipeline, several researchers have successfully replaced the distance func-
tion used in the original EVP with a generalized distance (see e.g. [11, 12, 14, 16]). This
outlook enables us to relax the cone-shaped supports of a lsc function into some other
shapes. Among these, we would like to emphasize the work of Lin and Du [11] which
applied a generalized w-distance to the EVP and deduced several existence conditions for
variational problems including minimax inequalities and equilibrium problems.

Recently, in 2019, Alfuraidan and Khamsi [1] introduced the graphical version of the
EVP. The graphical approach used in [1] was originally developed in [8] also for metric
fixed point theory. This method can be seen as an augmentation to the same theory in
partially ordered metric spaces [13, 15], while some assumptions were ripped out. The
authors of [1] also studied the graphical Caristi fixed point theorem in addition to their
EVP, and applied their results to obtain an approximate Fermat’s rule for Fréchet deriva-
tive. By looking closely at the graphical EVP, we can also regard the problem at hand as
a quasi-optimization problem, which asks for a minimizer over a moving constraint. This
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is the perspective that we embrace so dearly in this paper and we show that the graphi-
cal approach has the capability to capture a quasi-equilibrium problem, while maintain-
ing the simplicity to the same level with those of equilibrium problems. The study of
equilibrium-type problems via Ekeland’s variational principle has also recently been ex-
plored in [2, 18].

In this paper, we introduce the graphical EVP where a new concept of generalized w-
distance function is used. Our EVP improves and refines the existing works of [11] and
[1]. Viewing the graphical structure as a road to quasi-optimization problem, we continue
further to deduce a variational principle and existence theorems for a quasi-equilibrium
problem (QEP). To obtain the existence theorems for a QEP and at the same time avoid
the restriction of metric compactness, we introduce the notion of a convergence class to
unify several weaker convergence concepts. This will cover the weak convergence from
the classical Banach space theory and also from the CAT(0) theory of Kirk and Panyanak
[10]. Finally, we show the existence of a generalized Nash equilibrium to a generalized
non-cooperative game, with a support of a validating example.

2. PRELIMINARIES

In this section, we collect the necessary concepts, especially from metric graph theory
and CAT(0) spaces, that will be used in the main results of this paper.

First, we recall the graphical metric structures. Let G = (V (G), E(G)) be a (directed)
graph endowed with a metric d, that is, (V (G), d) is a metric space where the vertex set
V (G) is possibly infinite and the edge set E(G) is any subset of V (G) × V (G). We say
that G is reflexive if (x, x) ∈ E(G) for all x ∈ V (G) and that it is transitive if for any
x, y, z ∈ V (G), (x, y), (y, z) ∈ E(G) implies (x, z) ∈ E(G). For any x ∈ V (G), we write
K(x) := {y ∈ V (G) | (y, x) ∈ E(G)}. This (set-valued) map K associated to the graph G
will be referred to as the inward adjacency map of G. Let C ⊆ V (G). If the limit point of a
convergent sequence (xn) in C which satisfies the condition xn ∈ K(xn−1) for all n ∈ N is
included in C, we say that C is G-sequentially closed. Moreover, if every sequence (xn) in
C which satisfies the condition xn ∈ K(xn−1) for all n ∈ N has a convergent subsequence
with a limit in C, we say that C is G-compact. The metric d is said to be G-complete if every
Cauchy sequence (xn) such that xn ∈ K(xn−1) for all n ∈ N is convergent. We say that
a function φ : V (G) → R is G-lsca (or G-lower semicontinuous from above) on C ⊆ V (G)
if for any x ∈ C, the inequality φ(x) ≤ limn φ(xn) holds whenever a sequence (xn) in
C is convergent to x, xn ∈ K(xn−1) for all n ∈ N, and (φ(xn)) is decreasing. We say
that G satisfies the (OSC) condition if any convergent sequence (xn) in V (G) such that
xn ∈ K(xn−1) for all n ∈ N has the following properties, where x denotes the limit of (xn):

(OSC1) x ∈ K(xm) for all m ∈ N, and
(OSC2) y ∈ K(x) provided that y ∈ K(xm) for all m ∈ N.
Note that (OSC1) implies K(u) is G-sequentially closed for all u ∈ V (G).

Now, we make a brief recall of basics about a CAT(0) space. A metric space (M,d)
is said to be uniquely geodesic if for any two points x, y ∈ M , there exists a unique curve
c : [0, 1] → M such that d(c(s), c(t)) = d(x, y) |s− t| for all s, t ∈ [0, 1]. The notation
x#ty := c(t), for t ∈ [0, 1] is also widely adopted. A uniquely geodesic metric space
(M,d) is said to be a CAT(0) space if

d(x#ty, z)
2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2

for every x, y, z ∈ M and every t ∈ [0, 1]. Hilbert spaces, simply connected Riemannian
manifolds with nonpositive sectional curvature and metric trees are typical examples of
a CAT(0) space. A subset C ⊆ M is said to be convex if x, y ∈ C implies x#ty ∈ C for
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all t ∈ [0, 1] and a function φ : M → R is convex whenever x, y ∈ C implies φ(x#ty) ≤
(1− t)φ(x) + tφ(y) for all t ∈ [0, 1].

Next, we recall the weak convergence in a CAT(0) space introduced in [10]. The idea
here is very similar to weak convergence in Hilbert spaces or some particular Banach
spaces. Suppose for now that (M,d) is a complete CAT(0) space. A bounded sequence
(xn) in M is said to be weakly convergent to x∗ ∈ M if x∗ = argminM

[
lim supn d

2(·, xnk
)
]

for every subsequence (xnk
) of (xn). The point x∗ here is called the weak sequential limit of

(xn). It is known [10] that a sequence can have at most one weak sequential limit. More-
over, we say that a subset C ⊆ M is weakly sequentially closed if every weakly convergent
sequence in C has its weak sequential limit in C. We say that C is weakly compact if any
sequence in C has a weakly convergent subsequence whose weak sequential limit is also
contained in C. The following properties of weak convergence are of great importance.

Proposition 2.1. Let (M,d) be a complete CAT(0) space. Then the following properties hold:

(i) Every bounded sequence has a weakly convergent subsequence. [10]
(ii) If (xn) is a sequence in a closed convex set C which is weakly convergent, then its weak

sequential limit is in C. [4]

In particular, the two statements (i) and (ii) implies that every bounded closed convex set is weakly
compact.

3. EKELAND’S VARIATIONAL PRINCIPLE

In this section, we present the graphical alternative of the renowned Ekeland’s varia-
tional principles in both the strong and weak forms. Note the heavy usage of the inward
adjacency map K in our formulations throughout the paper. Moreover, we replace the
distance function with a new generalized w-distance given in the following.

Definition 3.1. Let (M,d) be a metric space. We say that p : M×M → [0,∞) is a generalized
w-distance on M if the following conditions are satisfied:

(w1) p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ M .
(w2) Let x ∈ M and (yn) be a sequence in M that converges to y ∈ M . If τ ≥ 0 satisfies

p(x, yn) ≤ τ for all n ∈ N, then p(x, y) ≤ τ .
(w3) For any sequences (xn) and (yn) in M and z ∈ M . If there exist sequences (αn)

and (βn) of positive real converging to 0 satisfying the estimates p(xn, yn) ≤ αn

and p(xn, z) ≤ βn for all n ∈ N, then (yn) converges to the point z.

Note that the above concept is more general than the original w-distance of Kada et al.
[9] or the extended version used by Lin and Du [11]. Now, we are ready to state our EVPs.

Theorem 3.1 (Generalized EVP: Strong form). Let G := (V (G), E(G)) be a reflexive and
acyclic graph endowed with a G-complete metric d satisfying the (OSC) property. Suppose that p
is a generalized w-distance on V (G). Let φ : V (G) → R and assume that there is u ∈ V (G) such
that K(u) is G-sequentially closed and φ is G-lsca and bounded below on K(u). Let r, ε > 0 and
x̃ ∈ K(u) be given such that

φ(x̃) < inf
K(u)

φ+ rε.

Then, there exists z ∈ K(x̃) such that

(i) p(x̃, z) ≤ r,
(ii) φ(z) + εp(x̃, z) ≤ φ(x̃),

(iii) φ(x) + εp(z, x) > φ(z) for all x ∈ K(z) \ {z}.
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Proof. For any x, y ∈ V (G), we adopt the notations

x ≼ε,φ y ⇐⇒ p(y, x) ≤ 1

ε
(φ(y)− φ(x))

and
Γ(x) := {z ∈ V (G) | z ≼ε,φ x}.

From (w1), the relation ≼ε,φ defines a partial ordering on V (G). Put x0 := x̃ and let
S0 := Γ(x0) ∩K(x0). Note that S0 is nonempty as x0 ∈ S0. Take x1 ∈ S0 such that

φ(x1) ≤ inf
S0

φ+
1

2

[
φ(x0)− inf

S0

φ

]
=

1

2

[
φ(x0) + inf

S0

φ

]
≤ φ(x0).

We continue constructing the sequence (xn) inductively as follows. Suppose that xn is
already defined for some n ∈ N. Then we take a nonempty set Sn := Γ(xn) ∩K(xn) and
pick xn+1 ∈ Sn satisfying

(3.1) φ(xn+1) ≤ inf
Sn

φ+
1

2

[
φ(xn)− inf

Sn

φ

]
=

1

2

[
φ(xn) + inf

Sn

φ

]
≤ φ(xn).

We may notice now that (φ(xn)) is a nonincreasing real sequence and (xn) satisfies xn ∈
K(xn−1) for all n ∈ N. From the transitivity of G, the sequence (xn) is in K(u) and since φ
is bounded below on K(u), it follows that (φ(xn)) converges to a finite limit φ∗ ∈ R. For
any n ∈ N, we have xn+1 ∈ Γ(xn) which means

p(xn, xn+1) ≤
1

ε
(φ(xn)− φ(xn+1)).

Adding up this inequality for n = i up to n = j−1 > i and using (w1), where i, j ∈ N∪{0},
we get

p(xi, xj) ≤ p(xi, xi+1) + · · ·+ p(xj−1, xj)

≤ 1

ε
(φ(xi)− φ(xj)) ≤

1

ε
(φ(xi)− φ∗).(3.2)

If we let αn := 1
ε (φ(xn)−φ∗) for each n ∈ N, then one may see that αn → 0 and the above

inequality shows that (xn) is Cauchy. The G-completeness of V (G) and the G-sequential
closedness of K(u) implies that (xn) is convergent to a limit point z ∈ K(u). Moreover,
we have z ∈ K(x̃) by (OSC1). Letting i = 0 and j → ∞ in (3.2), using (w2) and the fact
that φ is G-lsca on K(u), we obtain

p(x0, z) ≤
1

ε
(φ(x0)− φ∗) ≤ 1

ε
(φ(x0)− φ(z))

≤ 1

ε

(
inf
K(u)

φ+ rε− inf
K(u)

φ

)
= r.

The above inequalities imply the conclusions (i) and (ii).
To show (iii), let us assume to the contrary that (iii) is false. Then there exists x ∈ K(z)

with x ̸= z and x ≼ε,φ z. Let n ∈ N ∪ {0}. Observe from (3.2) with i = n ∈ N ∪ {0} as
j → ∞, we get z ≼ε,φ xn. Hence, the transitivity of ≼ε,φ implies that x ≼ε,φ xn for any
n ∈ N∪{0}. On the other hand, using (OSC1) and the transitivity of G, we have x ∈ K(xn)

for all n ∈ N ∪ {0}, or that x ∈
∞⋂

n=0

K(xn). Take any n ∈ N ∪ {0}. We have x ∈ Sn and

therefore

(3.3) p(xn+1, x) ≤
1

ε
(φ(xn+1)− φ(x)) ≤ 1

ε

(
φ(xn+1)− inf

Sn

φ

)
.
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From (3.1), we have

φ(xn+1) + φ(xn+1) = 2φ(xn+1) ≤ φ(xn) + inf
Sn

φ

and so φ(xn+1)− infSn φ ≤ φ(xn)− φ(xn+1). Combining this with (3.3), we get

p(xn+1, x) ≤
1

ε
(φ(xn)− φ(xn+1)) → 0.

By (w3), we obtain xn → x and since x ̸= z, this is a contradiction. Therefore we conclude
that (iii) holds true. □

The following direct byproduct is known as the weak formulation of the EVP.

Theorem 3.2 (Generalized EVP: Weak form). Let G := (V (G), E(G)) be a reflexive and
acyclic graph endowed with a G-complete metric d satisfying the (OSC) property. Suppose that p
is a generalized w-distance on V (G). Let φ : V (G) → R and assume that there is u ∈ V (G) such
that φ is G-lsca and bounded below on K(u). Then, for any given ε > 0 and x̃ ∈ K(u), there
exists z ∈ K(x̃) such that

(i) φ(z) + εp(x̃, z) ≤ φ(x̃),
(ii) φ(x) + εp(z, x) > φ(z) for all x ∈ K(z) \ {z}.

Proof. Pick r > 0 such that φ(x̃) < infK(u) φ + rε and apply Theorem 3.1 to obtain the
desired result. □

4. QUASI-EQUILIBRIUM PROBLEMS

The class of QEP generalizes the class of equilibrium problems (EP) by allowing for
the variable constraints. Particularly on a nonempty set X , a QEP consists of an objective
bifunction Φ : X ×X → R and a constraint map T : X ⇒ X and concerns with finding a
point z ∈ X such that z ∈ T (z) and

Φ(z, y) ≥ 0, (∀y ∈ T (z)).

This specific problem will be further denoted briefly as QEP (Φ, T ).
In this section, we discuss some existence results for QEPs by first drawing the varia-

tional principle adapted for the problem and then apply it to confirm the existence of its
solution.

4.1. A variational principle for QEPs. The following result is the variational principle
that is stated for a QEP. It follows from the EVP we proved in the preceding section.

Theorem 4.3. Let G := (V (G), E(G)) be a reflexive and acyclic graph endowed with a G-
complete metric d satisfying the (OSC) property. Suppose that p is a generalized w-distance on
V (G). Let Φ : V (G) × V (G) → R and assume that there is u ∈ V (G) satisfying the following
properties on X := K(u):

(a) Φ(x, z) ≤ Φ(x, y) + Φ(y, z) for every x, y, z ∈ X , and
(b) there exists v ∈ V (G) such that Φ(v, ·) is G-lsca and bounded below on X .

Then for any ε > 0 and x̃ ∈ X , there exists z ∈ K(x̃) such that
(i) εp(x̃, z) ≤ Φ(v, x̃)− Φ(v, z) ≤ Φ(z, x̃),

(ii) Φ(z, x) + εp(z, x) ≥ Φ(v, x)− Φ(v, z) + εp(z, x) > 0 for all x ∈ K(z) \ {z}.

Proof. Immediately from (b), the function φ := Φ(v, ·) is G-lsca and bounded below on X .
By (a), it follows that

Φ(x, y) ≥ Φ(v, y)− Φ(v, x) = φ(y)− φ(x)

for any x, y ∈ X . For any ε > 0, the above inequality and Theorem 3.2 with φ := Φ(v, ·)
on X yield the desired results. □
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4.2. An existence theorem for QEPs. To strengthen the above result to the existence of an
exact solution, a common criterion often involves some compactness assumptions. Since
the metric completeness can be rather restrictive in infinite dimensional settings, we deem
to relax such condition for a more convenient applicability. Our approach involves intro-
ducing a simple unifying concept of a convergence class.

Given any set M . A relation C defined on M ×MN is said to be a sequential convergence
class (or plainly a convergence class for this paper) on M if (x, (xn)) ∈ C implies (x, (xnk

)) ∈
C for all subsequences (xnk

) of (xn). If (x, (xn)) ∈ C, we say that (xn) is C-convergent (or
that it C-converges) to x. In this case, we also adopt the tradition of calling x a C-limit of
(xn). If every sequence has at most one C-limit, then the convergence class C is said to be
Hausdorff. Given two convergence classes C1 and C2 on M , we say that C1 is weaker than C2
if C2 ⊆ C1, i.e., if (xn) is C2-convergent to x implies that it is also C1-convergent to x. If M
is a topological space, then its natural convergence class CM is defined by (x, (xn)) ∈ CM if
and only if (xn) converges to x in the given topology of M . We then say that C is a weaker
convergence class of M if it is a convergence class which is weaker than CM .

Example 4.1. Let M be either a Banach space or a complete CAT(0) space. Then the weak
convergence in such spaces constitutes a weaker convergence class on M , denoted with
Cw. Since whether the weak convergence in a CAT(0) space emerges from a topology
remains an open question, the notion of a weaker convergence class is a relevant concept
for the present situation.

We can adapt the sequential characterizations of several topological concepts to a con-
vergence class. Here, we shall only do so with the combined graphical structure only. Let
G be the graph with a metric d as in the previous sections, then the following definitions
are used.

Definition 4.2. Let C be a convergence class on V (G). A subset C ⊆ V (G) is said to be
(1) G-C-compact if every sequence (xn) in C such that xn ∈ K(xn−1) for each n ∈ N

contains a subsequence that is C-convergent to an element in C;
(2) G-C-closed if every C-convergent sequences in C such that xn ∈ K(xn−1) for each

n ∈ N have their C-limits contained in C.

Definition 4.3. A function φ : V (G) → R is said to be G-C-lower semicontinuous from above
(or G-C-lsca) on C ⊆ V (G) if for any x ∈ C, the inequality φ(x) ≤ limn φ(xn) holds for
every sequence (xn) in C which satisfies (x, (xn)) ∈ C, xn ∈ K(xn−1) for all n ∈ N, and
(φ(xn)) is decreasing.

Apparently, a G-C-compact set is G-C-closed and a G-C-closed subset of a G-C-compact
set is again G-C-compact. If C is a weaker convergence class on V (G), then every G-C-
closed subsets are G-sequentially closed and every G-sequentially compact subsets are
G-C-compact. Moreover, every C-lsca functions are lsca.

We also need to strengthen the (OSC) property. A graph G is said to satisfy the (C-
OSC) property if it satisfies already the (OSC) property and additionally the condition
(OSC1) holds for any C-convergent sequence (xn) in V (G) with C-limit x ∈ V (G) and
xn ∈ K(xn−1) for all n ∈ N. In particular, this implies that K(u) is G-C-closed for every
u ∈ V (G)

Now we are ready to present the main existence theorem for QEPs. Note that the result
is independent of p, which clearly emphasize that the generalized w-distance p only plays
a part in regularizing the perturbed problem and renders a more relaxed geometry for the
supporting structures.
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Theorem 4.4. Let G := (V (G), E(G)) be a reflexive and acyclic graph endowed with a G-
complete metric d. Suppose that C is a weaker convergence class on V (G) such that the (C-OSC)
property holds. Let Φ : V (G) × V (G) → R be a bifunction. Suppose that there is u ∈ V (G) for
which the following properties are satisfied on X := K(u):

(a) Φ(x, z) ≤ Φ(x, y) + Φ(y, z) for every x, y, z ∈ X ,
(b) there exists v ∈ V (G) such that Φ(v, ·) is G-C-lsca and bounded below on X ,
(c) K(q) is bounded and G-C-compact for some point q ∈ X .

Then QEP (Φ,K) has a solution.

Proof. Take any generalized w-distance p on V (G) such that p is bounded on bounded
sets in its first argument (such p exists as we can always choose p = d). Recall that a G-C-
closed set is G-sequentially closed and a G-C-lsca function is G-lsca. Hence, the Theorem
4.3 allows us to pick z1 ∈ K(q) such that Φ(z1, x) + p(z1, x) ≥ 0 for all x ∈ K(z1). Now,
using again the Theorem 4.3, we pick z2 ∈ K(z1) such that 1

2p(z1, z2) ≤ Φ(v, z1)−Φ(v, z2)

and Φ(v, x) − Φ(v, z2) +
1
2p(z2, x) ≥ 0 for all x ∈ K(z2). Continue applying the Theorem

4.3 inductively to construct a sequence (zn) as follows: Suppose that zn ∈ K(zn−1) has
been defined for some n ∈ N. Then we pick zn+1 ∈ K(zn) such that

(4.4)
1

n+ 1
p(zn, zn+1) ≤ Φ(v, zn)− Φ(v, zn+1)

and

(4.5) Φ(v, x)− Φ(v, zn+1) ≥ − 1

n+ 1
p(zn+1, x), (∀x ∈ K(zn+1)).

The (C-OSC) property of G implies that all the sets K(zn) are G-C closed. Invoking the
G-C-compactness for K(u), we can extract a convergent subsequence (zni) from (zn) and
denote its limit by z ∈ X . Since (zni) is eventually in K(zn) for every n ∈ N, the G-C-
closedness of each K(zn) implies that z ∈

⋂∞
n=1 K(zn) so that

⋂∞
n=1 K(zn) is nonempty.

We also have K(z) ⊆
⋂∞

n=1 K(zn). Combining this with (4.5), we deduce for any i ∈ N
that

(4.6) Φ(v, x)− Φ(v, zni
) ≥ − 1

ni
p(zni

, x), (∀x ∈ K(z)) .

From (4.4), we may see that (Φ(v, zn)) is decreasing and has a finite limit by (b). Since p is
bounded on bounded sets in the first argument and (zni

) is a sequence in a bounded set
K(q), the sequence ( 1

ni
p(zni , x)) vanishes as i → ∞. Let x ∈ K(z). Then (4.6) implies

Φ(z, x) ≥ Φ(v, x)− Φ(v, z) ≥ Φ(v, x)− lim
i

Φ(v, zni
) ≥ − lim

i

1

ni
p(zni

, x) = 0,

and therefore the theorem is proved. □

We end this subsection by stating the compact case which is obtained by simply choos-
ing the convergence class to be the one induced from the metric convergence.

Corollary 4.1. Let G := (V (G), E(G)) be a reflexive and acyclic graph endowed with a G-
complete metric d such that the (OSC) property holds and Φ : V (G)×V (G) → R is a bifunction.
Suppose that there is u ∈ V (G) for which the following properties are satisfied on X := K(u):

(a) Φ(x, z) ≤ Φ(x, y) + Φ(y, z) for every x, y, z ∈ X ,
(b) there exists v ∈ V (G) such that Φ(v, ·) is G-lsca and bounded below on X ,
(c) K(u) is bounded and G-compact for some point u ∈ X .

Then QEP (Φ,K) has a solution.
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4.3. Particular weakly compact cases. In this part, we deduce some direct consequences
of Theorem 4.4 by focusing on the convergence class Cw induced by the weak convergence
on either a Banach space or a complete CAT(0) space. The properties of weak convergence
in Banach spaces used here are fundamental, and one may consult any related texts, e.g.
[17], if necessary. One should refer to Proposition 2.1 in the case of a complete CAT(0)
space.

Assume that V (G) is either a Banach space or a complete CAT(0) space with the weaker
convergence class Cw induced from the weak convergence. Then we simply call a G-Cw-
compact set a G-weakly compact set. Similarly, a G-Cw-closed set will be simply called a
G-weakly sequentially closed set and a G-Cw-lsca function is simplfied to a G-weakly lsca
function. Lastly, the (Cw-OSC) property is reduced to the (w-OSC) property.

Corollary 4.2. Let G := (V (G), E(G)) be a reflexive and acyclic graph whose vertex set V (G)
is either a Banach space or a complete CAT(0) space such that the (w-OSC) property is satisfied.
Assume that Φ : V (G)× V (G) → R is a bifunction and there is u ∈ V (G) for which X := K(u)
is bounded and the following properties are satisfied:

(a) Φ(x, z) ≤ Φ(x, y) + Φ(y, z) for every x, y, z ∈ X ,
(b) there exists v ∈ V (G) such that Φ(v, ·) is G-weakly lsca and bounded below on X .

Then QEP (Φ,K) has a solution.

Proof. Since the (w-OSC) property holds, X is G-weakly sequentially closed. By the
boundedness of X , any sequence (xn) in X has a convergent subsequence to some weak
sequential limit point, say x ∈ V (G). If additionally xn ∈ K(xn−1) is satisfied for all
n ∈ N, then x belongs to X which yeilds the G-weak compactness of X . Now, apply The-
orem 4.4 with the convergence class Cw induced from the weak convergence to obtain the
desired conclusion. □

Next, we show that the above corollary can be utmost simplified when the convixity is
in the play. Let us first consider the following primitive property before stating the next
corollary.

Proposition 4.2. If C ⊆ V (G) is G-weakly closed and convex, and φ : C → R is convex and
G-lsca on C, then it is G-weakly lsca on C.

Proof. Let (xn) be a sequence in C which is weakly convergent to x∗ ∈ C, xn ∈ K(xn−1)
for all n ∈ N, and (φ(xn)) is decreasing. Let φ∗ := limn φ(xn) and assume that φ(x∗) >
φ∗. Then there exists N > 0 such that φ(xn) ≤ 1

2 [φ(x
∗) + φ∗] for all n > N . Since

x∗ ∈ conv{xn |n > N}, the convexity of φ yields φ(x∗) ≤ 1
2 [φ(x

∗) + φ∗] < φ(x∗), which is
a contradiction. □

Corollary 4.3. Let G := (V (G), E(G)) be a reflexive and acyclic graph whose vertex set V (G)
is either a Banach space or a complete CAT(0) space such that the (w-OSC) property is satisfied.
Assume that Φ : V (G)× V (G) → R is a bifunction and there is u ∈ V (G) for which X := K(u)
is bounded and the following properties are satisfied:

(a) Φ(x, z) ≤ Φ(x, y) + Φ(y, z) for every x, y, z ∈ X ,
(b) there exists v ∈ V (G) such that Φ(v, ·) is convex, G-lsca and bounded below on X .

Then QEP (Φ,K) has a solution.

Proof. The results follow from Corollary 4.2 and Proposition 4.2. □

We say that a subset C ⊆ V (G) is G-convex if for any u ∈ C, the set K(u)∩C is convex.
This concept allows us to relax the (w-OSC) property to the ordinary (OSC) property, as
follows:
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Proposition 4.3. Suppose that V (G) is either a reflexive Banach space or a complete CAT(0)
space and that the (OSC) property is satisfied. If C ⊆ V (G) is closed, bounded, and G-convex,
then it is G-weakly compact. Moreover, the (w-OSC) property holds on the subgraph GC induced
by C.

Proof. Take any sequence (xn) in C with xn ∈ K(xn−1) for all n ∈ N. Then (xn) also be-
longs to K(x0)∩C, which is weakly compact. Therefore (xn) contains a weakly convergent
subsequence whose weak sequential limit point is in K(x0) ∩ C. The second conclusion
follows from the weak compactness of C. □

Finally, we arrive at the following corollary which is greatly simplified with the help of
convexity.

Corollary 4.4. Let G := (V (G), E(G)) be a reflexive and acyclic graph whose vertex set V (G)
is either a reflexive Banach space or a complete CAT(0) space such that the (OSC) property is
satisfied. Assume that Φ : V (G) × V (G) → R is a bifunction and there is u ∈ V (G) such that
X := K(u) is closed, bounded, and G-convex subset, and the following properties hold:

(a) Φ(x, z) ≤ Φ(x, y) + Φ(y, z) for every x, y, z ∈ X ,
(b) there exists v ∈ V (G) such that Φ(v, ·) is G-lsca, convex, and bounded below on X .

Then QEP (Φ,K) has a solution.

Proof. Apply Corollary 4.2 to the induced subgraph GX by taking into account Proposi-
tion 4.3. □

5. GENERALIZED NASH EQUILIBRIUM PROBLEMS

As an application of Section 4, we deduce a few existence theorems for a General-
ized Nash Equilibrium Problem (GNEP, for short). Recall that a GNEP comprises of k
players (for some k ∈ N), where each player i = 1, · · · , k admits a personal cost ci(·)
that is affected as well by the decisions of all other players. Each player i = 1, · · · , k
assumes a control exclusively over her own decision xi from some decision space Xi un-
der the constraint Ki(·), which is also affected by all the players’ decisions. If we denote
by X :=

∏k
i=1 X

i the space of all decision vectors, then the cost functions are given by
ci : X → R and the constraints by Ki : X → 2X

i

for i = 1, · · · , k. We also adopt
the component representation x = (x1, · · · , xk) with xi ∈ Xi for all i ∈ 1, · · · , k. If
x ∈ X and yi ∈ Xi is a decision of some player i, we use the convention (yi|x−i) =
(x1, · · · , xi−1, yi, xi+1, · · · , xk). The GNEP with the components given aforementioned
will be denoted by GNEP (k, {Xi}, {ci}, {Ki}) and aims to solve for a decision vector
x̂ ∈ X, called a generalized Nash equilibrium, such that x̂ ∈ K(x̂) and

ci(x̂) ≤ ci(xi|x̂−i)

holds for all x = (x1, · · · , xk) ∈ K(x̂) and all players i = 1, · · · , k. Here, we use K(·) :=∏k
i=1 K

i(·). Intuitively, a GNEP asks every players to make the decisions that is feasible
and cannot be improved once everybody played rationally.

In this paper, we focus on a specific type of GNEP where the constraint maps are given
globally by some authorities called a Dictated GNEP (for short, a DGNEP). In such a game,
the global feasibility map K : X → 2X is pre-given by a dictator. Each player i then
follows their dictator by using the constraint map

(5.7) Ki(x) := {ui ∈ Xi | (ui|x−i) ∈ K(x)}
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for x ∈ X. We shall henceforth refer to this game by DGNEP (k, {Xi}, {ci},K). More-
over, we assume that the cost ci for each player i = 1, · · · , k takes the form

(5.8) ci(yi|x−i) := θi(yi) + ηi(x−i)

for yi ∈ Xi and x−i ∈ X−i, where θi : Xi → R is the individual cost, ηi : X−i → R is
the aggregate cost, and X−i :=

∏
j ̸=i X

j . This way, the difference ci(yi|x−i)− ci(x) equals
to θi(yi) − θi(xi) which represents the surplus cost that occurs to the player i when she
replaces her decision xi with yi.

A DGNEP (in fact, any GNEP) can be equivalently stated as a QEP. Suppose that we
were given a DGNEP (k, {Xi}, {ci},K), we define Φ : X×X → R by

(5.9) Φ(x,y) :=

k∑
i=1

[
ci(yi|x−i)− ci(x)

]
for x,y ∈ X. Then x̂ ∈ X is a solution of GNEP (k, {Xi}, {ci},K}) if and only if it solves
QEP (Φ,K).

Next we deduce some existence results for a DGNEP via its QEP reformulation, where
the decision space of each player is prescibed with a graph whose directed edge represents
the feasibility. To this end, note that a DGNEP (k, {Xi}, {ci},K) induces a global feasibility
graph G := (X,E), where the edge E is given by the relation

(5.10) (y,x) ∈ E ⇐⇒ y ∈ K(x).

For this graph G, K coincides with the inward adjacency map. If (xn) is a sequence in
X, then we write (xi

n)n the sequence obtained by the ith coordinate projection, which is
πi(x) := xi.

Theorem 5.5. Suppose that DGNEP (k, {Xi}, {ci},K) takes the form (5.8) and induces a global
feasibility graph G := (X,E) which is reflexive and transitive and X is equipped with a G-
complete metric d and a weaker convergence class C so that G has the (C-OSC) property. Sup-
pose that there exists q ∈ X such that K(q) is bounded G-C-compact and each θi ◦ πi is bounded
below and G-C-lsca on Ki(q). Then DGNEP (k, {Xi}, {ci},K) has a solution.

Proof. Recall that DGNEP (k, {Xi}, {ci},K) is equivalent to QEP (Φ,K), where Φ is de-
fined by (5.9). The conclusion follows by verifying all the requirements of Theorem
4.4. □

The following results are consequences of the above theorem, which are in line with
the Corollaries 4.3 and 4.4, respectively. In both results, X is either a Banach or a com-
plete CAT(0) space and the convergence class is induced with the corresponding weak
convergence. The product X is then equipped with the product metric and the weak con-
vergence on X is therefore coordinatewise. Their proofs are similar to the above theorem
and the proofs are thus omitted.

Corollary 5.5. Suppose that DGNEP (k, {Xi}, {ci},K) takes the form (5.8) and induces a
global feasibility graph G := (X,E) which is reflexive and transitive and X is either a reflex-
ive Banach space or a complete CAT(0) space satisfying the (w-OSC) property. Suppose that
there exists q ∈ X such that K(q) is bounded G-weakly compact and each θi ◦ πi is bounded
below and G-weakly lsca on Ki(q). Then DGNEP (k, {Xi}, {ci},K) has a solution.

Corollary 5.6. Suppose that DGNEP (k, {Xi}, {ci},K) takes the form (5.8) and induces a
global feasibility graph G := (X,E) which is reflexive and transitive and X is either a reflex-
ive Banach space or a complete CAT(0) space satisfying the (OSC) property. Suppose that there
exists q ∈ X such that K(q) is bounded, closed, and K(u) is convex for all u ∈ K(q), and each
θi ◦ πi is bounded below and G-lsca on Ki(q). Then DGNEP (k, {Xi}, {ci},K) has a solution.



Parin Chaipunya, Nantaporn Chuensupantharat and Printaporn Sanguansuttigul 105

We conclude the section with a simple example of a GNEP to illustrate our results.
Note that we shall verify directly the conditions of Theorem 4.1. The process will be the
same with the derivation of GNEP results throughout this section.

Example 5.2. Consider a generalized game of k = 2 players with X1 = X2 = [0, 1].
Let I0 be the line segment joining (0, 1) ∈ R2 to (0, 0) ∈ R2 and for each n ∈ N, let In
be the line segment joining the point

(
1, 1

n

)
∈ R2 to the origin (0, 0) ∈ R2. Put Z :=⋃∞

n=0 In and equip it with the length metric dZ induced by the Euclidean distance, i.e.
dZ(y, ỹ) = ∥y − ỹ∥ if y and ỹ belongs to the same segment In (for some n ∈ N) and
dZ(y, ỹ) = ∥y∥+ ∥ỹ∥ otherwise, where ∥ · ∥ denotes the Euclidean norm. Define a metric
d on X := X1 ×X2 by d(y, ỹ) := dZ(y, ỹ) if both y and ỹ belong to Z, and d(y, ỹ) := 3 if
at least one of y and ỹ is not in Z and y ̸= ỹ. The metric space (X,d) is complete.

Next, we define the dictator’s global feasibility map K(·) for (x, y) ∈ X by

K(x, y) := {(u, v) ∈ Z |u = x, v ≤ y}

if (x, y) ∈ Z, and K(x, y) = {(x, y)} otherwise. Observe that K is compact-valued. Obvi-
ously, the graph G := (X,E), where E is defined by (5.10), is reflexive and transitive. It
also satisfies the (OSC) property.

Let us simply define the linear costs by

(5.11) c1(x, y) := x− y

(5.12) c2(x, y) := y − x

for all x = (x1, x2) ∈ X1 and y = (y1, y2) ∈ X2. We will now show that all the
requirements of Corollary 4.1 are met. Since the costs satisfy (5.8), the bifunction Φ
defined by (5.9) verifies (c). Moreover, the condition (b) is true by the very definition
of (5.11) and (5.12). By Corollary 4.1, the problem QEP (Φ,K), which is equivalent to
DGNEP (k, {Xi}, {ci},K), has a solution.

Finally let us pick one of such a solution explicitly. Recall that K1 and K2 are given
in (5.7). If (x, y) ∈ Z is fixed with x > 0, then c2(x, ·) has no minimizer over K2(x, y).
Thus, the only possible optimal decision for the player i = 1 is x∗ = 0. Since the player
i = 2 seeks to minimize her cost as well, her optimal decision is y∗ = 0. Therefore, a
desired solution is (x∗, y∗) = (0, 0). One should observe that the optimality concept from
a non-cooperative game perspective is quite different from a minimization problem, since
in that case the player i = 1 would want to increase y and the player i = 2 would want to
increase x which is completely opposite to what actually happened here.

CONCLUDING REMARKS

In this paper, we have successfully introduced a version of Ekeland’s variational prin-
ciple which incorperates the graphical structure and a generalized w-distance function.
The graphical structure allows a quasi-optimization view and the generalized w-distance
allows a broader supporting structure. We then took advantage of the former aspect and
develop existence theorems for quasi-equilibrium problems where the constraint map is
induced directly from the graphical structure itself. We also deduce a number of conse-
quences in game theory together with a supporting example. Our example also illustrates
that the Nash equilibrium is much different from the forceful minimization over all the
variables.
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