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Duffing equations with two-component Poisson stable
coefficients

MARAT AKHMET, MADINA TLEUBERGENOVA and AKYLBEK ZHAMANSHIN

ABSTRACT. The research considers Duffing equations with two-component Poisson stable coefficients and
excitation. The existence and uniqueness of the Poisson stable solutions have been proved. A new technique for
verification of the stability is developed. Numerical simulations of the coefficients, excitation as well as solution
are provided.

1. INTRODUCTION AND PRELIMINARIES

The standard Duffing equation has the form [1]

x′′ + ax′ + bx+ cx3 = F0cos(λt),(1.1)

where a is the damping coefficient, b and c are stiffness (restoring) coefficients, F0 is the
coefficient of excitation, λ is the frequency of excitation and t is the time. The major part
of papers on the equation assume that the coefficients a, b, c and F0 are constant [2, 3].
Considering the original model one can assume mechanical reasons for variable coeffi-
cients. For instance, not constant damping and driving force [4]. Then new theoretical
challenges appear. In following the suggestions, rich application opportunities appear
[5, 6, 7]. The second order differential equations, despite their small dimension produce
strong difficulties for study [8, 9], and are source for most modern complexity investiga-
tions. Let us remember the seminal results in [10], which were basics for the research by
S. Smale [11]. Experimentally, the simulations of the Duffing equation by Y. Ueda [12],
are beside those numerical observations of E. Lorenz, which had been finally completed
with the exploration of sensitivity, of the fundamental concept of chaos [13]. This is why,
comprehensive modifications of the Duffing equation with subsequent new methods of
investigation have to be in the focus of researchers. In the present paper, we propose the
model with coefficients, which are most sophisticated, if compared with previous results
[2, 4, 14, 15]. They are Poisson stable functions, the pioneering concept of complexity in-
troduced by H. Poincaré [16]. Another principal novelty of our research is the method of
included intervals. It relies on the suggestions introduced in our recent research, when
the method for existence of stable periodic and almost periodic oscillations in quasi-linear
systems has been adapted for Poisson stable solutions in [17, 18, 19, 20, 21]. It is different
than that used previously in papers [22, 23], and proceeds the approach of many studies
of oscillations [24, 26, 25, 27, 28] to the case of variable coefficients and ultimate complex-
ity of recurrence. There are many specific mathematical methods for the Duffing equation
[2, 3, 5, 6, 7, 8, 9, 12, 29, 30, 31, 32, 33, 34, 35], in which various aspects of dynamics have
been examined numerically and analytically. Nevertheless, one can expect that input-
output results on oscillations of the general theory of differential equations [25, 26, 27, 28]
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due to their approved applications in mechanics, physics and engineering still must be
applied effectively for Duffing equations, and our present study confirms that. Final our
important contribution to the theory is the construction method of samples of Poisson
stable functions by extending traditions, when trigonometric functions are determined as
solutions of differential equations. This time, we have built Poisson stable functions as
solutions of hybrid systems, which admit as a part the logistic equation. Another way for
the functions construction are random processes [36]. We believe that the role of Duffing
oscillators will increase in the machine learning procedures [37, 38].

The main subject of this article is the following equation,

(1.2) x′′ + p(t)x′ + q(t)x+ r(t)x3 = F (t) cos(λt),

where t, x ∈ R; λ is a real constant; p(t), q(t), r(t) and F (t) are continuous functions. We
consider the equation with Poisson stable coefficients and find conditions on the func-
tions, such that the result-dynamics is Poisson stable. The version of the Duffing equation
has not been considered in literature, at all. Apparently, the reason for that is the technical
difficulty of the Poisson stability identification, what has been successfully overcome in
our research.

As far as we aware, F. Moon one of the first who emphasized the importance of inves-
tigation of the mechanical equations of the second order with non-periodic coefficients,
such that non-periodic outputs are expected [39]. Poisson stable inputs and outputs of
our research are not periodic functions, and rather chaotic [16, 40], and this meets the
challenging problems of mechanics, electronics and neuroscience [20, 35, 38, 39, 40].

The following concept of recurrence is a fundamental for the present investigation.

Definition 1.1. [41]A continuous and bounded function ψ(t) : R → Rn is called Poisson
stable, if there exists a sequence tk, which diverges to infinity such that the sequence
ψ(t+ tk) converges to ψ(t) as k → ∞ uniformly on bounded intervals of R.

The sequence tk is said to be the Poisson sequence of the function ψ(t). For convenience,
in the further reasoning, instead of a Poisson stable function we shall use the term Poisson
function.

For a fixed real constant ω > 0, one can write that tk ≡ τk(mod ω), where 0 ≤ τk < ω,
for all k ≥ 1. The boundedness of the sequence τk implies that there exists a subsequence
τkl
, which converges to a number τω. That is, there exist a subsequence tkl

of the Poisson
sequence tk and a number τω such that tkl

→ τω(mod ω) as l → ∞. In what follows, we
shall call the number τω as the Poisson shift for the Poisson sequence tk with respect to the
ω. It is not difficult to find that for the fixed positive ω the set of all Poisson shifts, Tω, is
not empty, and it can consist of several or even infinite number elements. The number
κω = inf Tω, 0 ≤ κω < ω, is said to be the Poisson number for the Poisson sequence tk with
respect to the number ω.

2. THE POISSON STABLE SOLUTION

This section presents the main result of our study. Under certain conditions, it has been
rigorously proved that the Poisson solution, which is asymptotically stable, meets in the
dynamics of the Duffing equation.

Let us denote ω = 2π
λ , and assume that the following conditions are satisfied.

(C1) The function F (t) is Poisson. The coefficients are of two components
such that p(t) = p0 + p1(t), q(t) = q0 + q1(t) and r(t) = r0 + r1(t), where p0, q0 and
r0 are real constants, p1(t), q1(t), and r1(t) are Poisson functions;

(C2) there exists a Poisson sequence tk common for functions p1(t), q1(t), r1(t),
F (t) and the Poisson number κω is equal to zero;
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(C3) p0 > 0, p20 − 4q0 ≤ 0.

From the conditions (C1) and (C2), it can be easily shown that p(t), q(t), r(t) and F (t)
are Poisson functions with the common Poisson sequence tk. The two-component presen-
tation of the coefficients is convenient to specify circumstances of stability as well as the
recurrent properties of the model.

In this paper, we will make use of the norm ∥v∥ = max(| v1 |, | v2 |), for a vector
v = (v1, v2), and corresponding norm for square matrices will be utilized.

Condition (C3) implies that the eigenvalues of the matrix A =

(
0 1

−q0 −p0

)
have neg-

ative real parts and there exist numbers K > 1 and µ > 0 such that ∥eAt∥ ≤ Ke−µt for
t ≥ 0.

We will consider the equation (1.2) provided that a solution x(t) and its derivative x′(t)
are bounded such that supt∈R | x(t) |< H, supt∈R | x′(t) |< H, where H is a fixed positive
number.

For convenience, we introduce some notations

sup
t∈R

| p1(t) |= α, sup
t∈R

| q1(t) |= β, sup
t∈R

| r0 + r1(t) |= γ, sup
t∈R

| F (t) |= δ.

Throughout the paper, the following additional conditions are required.

(C4)
K

µ
(H(α+ β) + γH3 + δ) < H;

(C5)
K

µ
(α+ β + 3γH2) < 1.

Theorem 2.1. If conditions (C1)-(C5) are valid, then the Duffing equation (1.2) admits a unique
asymptotically stable Poisson solution.

Proof. Let us rewrite the equation (1.2) as the system

x′1 = x2,

x′2 = −q(t)x1 − p(t)x2 − r(t)x31 + F (t)cos(λt).(2.3)

We will consider the system (2.3) in the matrix form

y′ = Ay +B(t)y + C(t, y) +G(t),(2.4)

where y(t) = column(y1(t), y2(t)),

A =

(
0 1

−q0 −p0

)
, B(t) =

(
0 0

−q1(t) −p1(t)

)
,

C(t, y) =

(
0

−(r0 + r1(t))y
3
1

)
, G(t) =

(
0

F (t)cos(λt)

)
.

Let us prove that the function G(t) is Poisson stable. Since κω = 0, there exists a sub-
sequence tkl

such that tkl
→ 0(mod ω) as l → ∞. Without loss of generality assume that

tk ≡ τk(mod ω) and τk → 0 as k → ∞. Fix a positive number ϵ, and a bounded interval
I ⊂ R. Since cos(λt) is a continuous periodic function, there exists a natural number k1
such that

| cos(λ(t+ tk))− cos(λt) |=| cos(λt+ 2mπ + λτk)− cos(λt) |=

| cos(λ(t+ τk)− cos(λt) |≤ ϵ

2δ
,

wherem ∈ N, for all t ∈ R and k > k1.Moreover, for the Poisson function F (t) there exists
a natural number k2 such that

| F (t+ tk)− F (t) |≤ ϵ

2
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for all t ∈ I and k > k2. Finally, we obtain that

∥G(t+ tk)−G(t)∥ =| F (t+ tk) cos(λ(t+ tk))− F (t)cos(λt) |≤
| F (t+ tk) || cos(λ(t+ tk))− cos(λt) | + | cos(λt) || F (t+ tk)− F (t) |≤

δ
ϵ

2δ
+
ϵ

2
< ϵ,

for all t ∈ I and k > max(k1, k2). That is why, G(t) is the Poisson function.
From condition (C3) it implies that a bounded on the real axis function z(t) is a solution

of system (2.4) if and only if it satisfies the equation

z(t) =

∫ t

−∞
eA(t−s)[B(s)z(s) + C(s, z(s)) +G(s)]ds, t ∈ R.(2.5)

Denote by U the Banach space of all Poisson functions v(t) = column(v1(t), v2(t)),with
common Poisson sequence tk such that ∥v(t)∥0 < H, where ∥v(t)∥0 = sup

R
∥v(t)∥.

Define on U the operator Φ as

Φv(t) =

∫ t

−∞
eA(t−s)(B(s)v(s) + C(s, v(s)) +G(s))ds, t ∈ R.(2.6)

Let us show that Φ is invariant in U. Fix a function v(t) that belongs to U. We have that

∥Φv(t)∥ ≤
∫ t

−∞
∥eA(t−s)∥(∥B(s)∥∥v(s)∥+ ∥C(s, v(s))∥+ ∥G(s)∥)ds ≤

K

µ
((α+ β)H + γH3 + δ)

for all t ∈ R. Therefore, by the condition (C4) it is true that ∥Φv∥0 < H .
Next by applying the method of included intervals [18], we will show that Φv(t) is a

Poisson function with the sequence tk. Fix an arbitrary positive number ϵ and a closed
interval [a, b], −∞ < a < b < ∞, of the real axis. Let us choose two numbers c < a, and
ξ > 0 satisfying

K

µ
(H(α+ β) + γH3 + δ)e−µ(a−c) <

ϵ

4
,(2.7)

K

µ
ξ(α+ β +H + 3γH2 +H3 + 1)[1− e−µ(b−c)] <

ϵ

2
.(2.8)

Since, B(t) is a Poisson matrix, G(t) and r1(t) are Poisson functions, and the function v(t)
belongs toU, for sufficiently large k the following inequalities are valid ∥B(t+tk)−B(t)∥ <
ξ, ∥G(s+ tk)−G(s)∥ < ξ, | r1(t+ tk)− r1(t) |< ξ and ∥v(t+ tk)− v(t)∥ < ξ for t ∈ [c, b].
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We obtain that

∥Φv(t+ tk)− Φv(t)∥ =

∥
∫ t

−∞
eA(t−s)(B(s+ tk)v(s+ tk) + C(s+ tk, v(s+ tk)) +G(s+ tk))ds−∫ t

−∞
eA(t−s)(B(s)v(s) + C(s, v(s)) +G(s))ds∥ ≤

∥
∫ t

−∞
eA(t−s)(B(s+ tk)v(s+ tk)−B(s)v(s) + C(s+ tk, v(s+ tk))− C(s, v(s)) +

G(s+ tk)−G(s))ds∥ ≤
∫ c

−∞
∥eA(t−s)∥

(
∥B(s+ tk)v(s+ tk)−B(s)v(s)∥+

∥C(s+ tk, v(s+ tk))− C(s, v(s))∥+ ∥G(s+ tk)−G(s)∥
)
ds+∫ t

c

∥eA(t−s)∥
(
∥B(s+ tk)(v(s+ tk)− v(s))∥+ ∥v(s)(B(s+ tk)−B(s))∥

)
ds+∫ t

c

∥eA(t−s)∥
(
∥C(s+ tk, v(s+ tk))− C(s+ tk, v(s))∥+

∥C(s+ tk, v(s))− C(s, v(s))∥
)
ds+

∫ t

c

∥eA(t−s)∥∥G(s+ tk)−G(s)∥ds ≤

2K

µ
((α+ β)H + γH3 + δ)e−µ(a−c) +

K

µ
(ξ(α+ β) +Hξ)[1− e−µ(b−c)] +

K

µ
(3ξγH2 + ξH3)[1− e−µ(b−c)] +

K

µ
ξ[1− e−µ(b−c)]

is correct for all t ∈ [a, b]. From inequalities (2.7) and (2.8) it follows that ∥Φv(t + tk) −
Φv(t)∥ < ϵ for t ∈ [a, b]. Therefore, the sequence Φv(t + tk) uniformly converges to Φv(t)
on each bounded interval of R. That is, Φv(t) is a Poisson function.

The functionΦv(t) is a uniformly continuous, since its derivative is a uniformly bounded
on the real axis. Thus, the set U is invariant for the operator Φ.

Let us show that the operator Φ : U → U is contractive. For any φ(t), ψ(t) ∈ U, one can
attain that

∥Φφ(t)− Φψ(t)∥ ≤∫ t

−∞
∥eA(t−s)∥(∥B(s)∥∥φ(s)− ψ(s)∥+ ∥C(s, φ(s))− C(s, ψ(s))∥)ds ≤

K

µ

(
(α+ β)∥φ(t)− ψ(t)∥0 + γ(| φ2

1(t) | + | φ1(t) || ψ1(t) | + | ψ2
1(t) |)∥φ(t)− ψ(t)∥0 <

K

µ
(α+ β + 3γH2)∥φ(t)− ψ(t)∥0.

Therefore, the inequality ∥Φφ− Φψ∥0 <
K

µ
(α+β+3γH2) ∥φ− ψ∥0 holds, and according

to the condition (C5) the operator Π : U → U is contractive.
By contraction mapping theorem there exists the unique fixed point, z(t), of the opera-

tor Φ, which is the unique Poisson solution of the equation (1.2).
Finally, let us discuss the asymptotic stability of the solution z(t). It is true that

z(t) = eA(t−t0)z(t0) +

∫ t

t0

eA(t−s)(B(s)z(s) + C(s, z(s)) +G(s))ds.
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Denote by z̄(t) another solution of the equation (1.2) such that

z̄(t) = eA(t−t0)z̄(t0) +

∫ t

t0

eA(t−s)(B(s)z̄(s) + C(s, z̄(s)) +G(s))ds.

Making use of the relation

z̄(t)− z(t) = eA(t−t0)((z̄(t0)− z(t0)) +∫ t

t0

eA(t−s)
(
B(s)(z̄(s)− z(s)) + C(s, z̄(s))− C(s, z(s))

)
ds,

one can obtain

∥z̄(t)− z(t)∥ ≤ ∥eA(t−t0)∥∥z̄(t0)− z(t0)∥+∫ t

t0

∥eA(t−s)∥(∥B(s)∥∥z̄(s)− z(s)∥+ ∥C(s, z̄(s))− C(s, z(s))∥)ds ≤

Ke−µ(t−t0)∥z̄(t0)− z(t0)∥+
∫ t

t0

Ke−µ(t−s)
(
(α+ β)∥z̄(s)− z(s)∥+

γ(| z̄21(s) | + | z̄1(s) || z1(t) | + | z21(s) |)∥z̄(s)− z(s)∥
)
ds ≤

K

µ
(α+ β + 3γH2)∥z̄(t)− z(t)∥,(2.9)

for t ∈ R. With the aid of the Gronwall-Bellman Lemma, one can verify that

∥z̄(t)− z(t)∥ ≤ Ke(K(α+β+3γH2)−µ)(t−t0)∥z̄(t0)− z(t0)∥,(2.10)

for all t ≥ t0, and condition (C5) implies that the Poisson solution, z(t), is asymptotically
stable solution of the equation (1.2). The theorem is proved. □

3. A NUMERICAL EXAMPLE

In [42], construction of a Poisson sequence was performed as the solution of the logistic
equation

λi+1 = νλi(1− λi).(3.11)

More precisely, it was proved that for each ν ∈ [3 + (2/3)1/2; 4] there exists a Poisson
solution {γi}, i ∈ Z, of equation (3.11), which belongs to the interval [0; 1].

The Poisson function [17], Θ(t), is a unique bounded on the real axis solution of dif-
ferential equation Θ′ = −3Θ + Ω(t), where Ω(t) is a piecewise constant function defined
on the real axis through the equation Ω(t) = γi, for t ∈ [i; i + 1), i ∈ Z. In this paper we
use the function notation Ω(t) = Ω(ν;q)(t), where q denotes the length of the intervals on
which the function Ω(t) is built.

Consider the following Duffing equation

x′′(t) + (p0 + p1(t))x
′(t) + (q0 + q1(t)) + (r0 + r1(t))x

3(t) = F (t) cos(2t),

where the constants p0 = 4.5, q0 = 5, r0 = 0.006. One can prove [17, 43] that the functions
p1(t) = −0.2

∫ t

−∞ e−3.5(t−s)Ω(3.9:3π)ds, q1(t) = 0.1(
∫ t

−∞ e−2.5(t−s)Ω(3.9:3π)ds)
2, r1(t) =

−0.5(
∫ t

−∞ e−5(t−s)Ω(3.9:3π)ds)
3 and F (t) = 2.7

∫ t

−∞ e−3(t−s)Ω(3.9:3π)ds are Poisson stable.
Conditions (C1)-(C5) are hold with K = 4.34, µ = 2, λ = 2 (the period ω = π), H = 3,
α = 0.06, β = 0.02, γ = 0.01 and δ = 0.9. Since the elements of the Poisson sequence are
multiples of 3π and the period is equal to π, the Poisson number is equal to zero.

In Figures 1 and 2 the simulations of the coefficient p(t) and excitation F (t) cos(2t)) are
shown.
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FIGURE 1. The graph of the coefficient p(t).
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FIGURE 2. The graph of the excitation F (t) cos(2t)).

According to Theorem 2.1, the equation (3.12) possesses a unique asymptotically stable
Poisson solution. Since, it is impossible to determine the initial value for the Poisson so-
lution, we will utilize the following illustration. By the asymptotic property, any solution
from the domain ultimately approaches the Poisson solution, z(t), of the system (3.12).
That is, to visualize the behavior of the Poisson solution z(t), we consider the simulation
of another solution x(t), with initial values x1(0) = x2(0) = 0. Applying (2.10) one can
obtain that

∥x(t)− z(t)∥ ≤ e−0.48t∥x(0)− z(0)∥ ≤ 2He−0.48t,(3.12)

for all t ≥ 0. Thus, if t > (ln 6 + 5 ln 10)/0.48 ≈ 27.72, then ∥x(t) − z(t)∥ < 10−5. The last
inequality demonstrates that the difference x(t) − z(t) asymptotically diminishes. Con-
sequently, the graph of function x(t) approaches the Poisson solution z(t) of the system
(3.12), as time increases. That is why, instead of the curve describing the Poisson solution,
one can consider the graph of x(t). The coordinates and trajectory of the solution x(t),
which asymptotically converges to the Poisson solution z(t), are shown in Figures 3 and
4, respectively.
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FIGURE 3. The coordinates of the solution x(t) with initial values x1(0) =
x2(0) = 0.
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FIGURE 4. The trajectory of the solution x(t).
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1972.

[23] Cheban, D.; Liu, Zh. Periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent and
Poisson stable solutions for stochastic differential equations. J. Differential Equations 269 (2020), 3652–3685

[24] Hartman, P. Ordinary differential equations. SIAM, 2002.
[25] Burton, T. A. Stability and periodic solutions of ordinary and functional differential equations. Elsevier Science,

1985.
[26] Farkas, M. Periodic Motion. Springer-Verlag, New York, 1994.
[27] Yoshizawa, T. Asymptotic behaviors of solutions of differential equations. Qual. Theor. 47 (1987), 1141–1164.
[28] Kuang, Y. Delay differential equations with applications in population dynamics. New York, Academic Press,

1993.
[29] Peng, L. Q.; Wang, W. T. Positive almost periodic solutions for a class of nonlinear Duffing equations with

a deviating argument. Electron. J. Qual. Theo. 6 (2010), 1–12.
[30] Xiao, T. J.; Liang, J.; Zhang, J. Pseudo-almost automorphic solutions to semilinear differential equations in

Banach spaces. Semigroup Forum 76 (2008), 518–524
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