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On Stability of Two New Generalized Set-Valued
Functional Equations

WUTTICHAI SURIYACHAROEN1 AND WUTIPHOL SINTUNAVARAT2

ABSTRACT. Denote by Cc(Y ) the set of all closed convex subsets of a Banach space Y . For every A,B ∈
Cc(Y ), we define an operation ⊕ by A ⊕ B := A+B which is a closure of the set A + B := {a + b : a ∈
A, b ∈ B}. The present work aims to establish the Hyers-Ulam-Rassias stability of the following generalized
set-valued functional equations
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and
F (βx+ y)⊕ F (βx− y) = F (x+ y)⊕ F (x− y)⊕ 2(β2 − 1)F (x),

for all x, y, z ∈ X , where F : X → Cc(Y ) is an unknown set-valued function while X is a real vector space,
α ≥ 2 and β /∈ {−1, 0, 1} are fixed integers. These two equations are respectively related to Cauchy-Jensen type
and quadratic type set-valued functional equations.
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[17] Skof, F. Proprietà locali e approssimazione di operatori. Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.

1 VAJIRAVUDH COLLEGE 197 RATCHAWITHI RD, DUSIT,, DUSIT DISTRICT, BANGKOK 10300
Email address: w.suriyacharoen@gmail.com

2 DEPARTMENT OF MATHEMATICS AND STATISTICS, FACULTY OF SCIENCE AND TECHNOLOGY

Email address: wutiphol@mathstat.sci.tu.ac.th


