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Weak and strong convergence of multi-inertial
forward-backward-forward methods for solving monotone
inclusions

PAPATSARA INKRONG1 , PRASIT CHOLAMJIAK1, AND JEN-CHIH YAO2,3

ABSTRACT. In this work, we focus on the inclusion problem for the sum of two monotone operators in real
Hilbert spaces. We establish weak and strong convergence theorems under standard and relatively mild as-
sumptions. A notable contribution of this work lies in the relaxation of commonly imposed conditions. Specifi-
cally, the single-valued operator is required to be only monotone and Lipschitz continuous, without the stronger
assumption of cocoercivity and without requiring prior information of the Lipschitz constant. Finally, we present
several numerical experiments in both finite and infinite-dimensional settings to illustrate and support our main
results.
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